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Physics of an axial coil gun 

 

Part I I  ï Circuit analysis 

 

In this part of the paper, we will look at how the slug extracts energy from the magnetic field set up by 

current flowing through the coil.  The following figure shows the layout of the physical components in 

the circuit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The coil gun itself is simply the coil shown as an inductor on the right-hand side of the figure.  Everything 

else is the power supply or, more appropriately, the energy stock.  The energy stock we will use in this 

application is described in another paper, titled A high-voltage Buck-Boost capacitor charger.  The 

capacitor bank consists of twenty-two 2200ɛF capacitors wired in series, giving a total capacitance of 

100ɛF.  Each capacitor has a voltage rating of 450V, so the capacitor bank should be able to withstand up 

to 9900V.  The charger described in the earlier paper takes five minutes to charge the capacitor bank up to 

a voltage of 4000V, at which time it holds energy of 800 Joules. 

 

The control relay, too, is included in the charger.  When the operator presses the FIRE pushbutton, the 

relay contacts close and the voltage over the capacitor bank is applied to the external circuit.  In our case, 

the external circuit consists of the coil gunôs coil. 

 

From an electrical point-of-view, the situation is a little different.  The following schematic diagram 

shows the circuit we will examine in this part of the paper.  
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I have placed the slug as a black box in parallel with the coil.  It is, after all, the coil which delivers 

energy to the slug.  Whether this is appropriate remains to be seen.  If necessary, we will move it into a 

series position. 

 

The most important characteristic of the capacitor bank, other than its capacitance, is its equivalent series 

resistance .  In the earlier paper, we estimated the  of the capacitor bank to be about 1.98ɋ.  In 

this paper, we will use a value of 2ɋ for the equivalent series resistance of the capacitor bank. 

 

In the earlier paper, we also specified that the FIRE relay would be Digikeyôs part number 374-1108-ND.  

This is a relay manufactured by Meder Electronics and used, among other purposes, for RF surgery.  Its 

contacts are rated at 10KV.  The datasheet for the component states that its static contact resistance is 

150mɋ.  In this paper, we will use a value of 0.15ɋ for the resistance of the switch ().  The datasheet 

also states that the relayôs closing time, including the debounce, is about 3 milliseconds.  This could be a 

significant fraction of the whole duration of a run.  In Part I of this paper, we looked at examples where 

the acceleration of the slug took place over 6 milliseconds.  We will have to bear this limitation of the 

relay in mind.  To be precise about it, the voltage which is imposed over the coil will not be a ñcleanò 

4KV at time  when the switch is closed.  Instead, it will be erratic, as the relayôs contacts open and 

close for a short interval.  There may be sparks across the gap, with accompanying surges of current.  

(The contacts of the relay used in the earlier paper were also rated up to three Amperes.  That is not nearly 

enough for this application, which will draw tens or perhaps hundreds of Amperes.  However, there are 

lots of other relays.  A quick search on the internet showed one which could carry 150 Amperes.  It also 

has an even lower static contact resistance.) 

 

The coil itself also has several characteristics, which I have shown in the schematic diagram as the series 

combination of a resistance, an inductance and a capacitance.  Since we have not yet specified any 

features for the coil, the best we can do at this point is to make educated guesses.  If we are lucky, the 

guesses will within a factor of ten.  But, they will give us a starting point for figuring out what the coil 

should be like. 

 

So, let us suppose that: 

 the coil has an overall length, or height, of about 50 cm, and 

 has an inside diameter of 2 cm. 

 

The inside diameter of the coil should be thought of as the diameter of the core on which the wire will be 

wound.  We will want to use very heavy wire.  Suppose we use #4 gauge enameled copper wire.  Its main 

characteristics are: 

 the wire diameter, excluding the enamel coating, is 5.189 mm, 

 its resistance is 0.2485ɋ per thousand feet, 

 it is rated for 55.7 continuous Amperes and 

 permits a maximum current of 83.5 Amperes. 

 

Note that this is heavy wire ï we will be able to wind only 4.9 turns per inch along the coil.  Let us wind a 

coil with a round number of 96 turns.  The exact length of the coil will be 49.81 cm, which is 

approximately 50 cm. 

 

The average radius of each turn, taking into account the wireôs diameter as well as the core radius, is 

1.259 cm.  Therefore, the average circumference of each turn () is 7.91 cm, or 3.11 inches.  96 such 

circumferences will use up 298.6 inches, or 24.88 feet, of wire.  This is a small fraction of one thousand 
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feet, so the resistance will be a small fraction of 0.2485ɋ.  In fact, the total resistance of this length of 

wire is only 0.0062ɋ. 

 

We could wind many layers of this wire before the resistance of the wire begins to compare with the 2ɋ 

equivalent series resistance of the capacitor bank.  Adding more turns would certainly be useful ï we 

know that the strength of the magnetic field set up increases as the number of turns increases. 

 

However, increasing the number of turns also increases the coilôs inductance, which may not be a good 

thing.  For a coil which is long compared with its diameter, and which has an air core, the following 

formula for the inductance can be used: 

 

 

 

where  is the permeability of free space ( ),  is the total number of turns in the 

coil,  is the area of a cross-section of the coil and  is the length of the coil.  Using the physical 

parameters we have already set, the inductance can be computed as follows: 

 

 

 

The circular turns of wire which make up the coil are positioned face-to-face.  The adjacent turns are not 

unlike the plates of a capacitor.  In this sense, each pair of turns acts like a small capacitor.  Indeed, the 

very wire itself has an innate amount of capacitance.  Any piece of the wire is a small volume of copper, 

and a certain amount of charge needs to flow into the volume before it starts to ñexpressò a voltage.  We 

will not delve into this phenomenon.  I expect that the coil and its wire have an aggregate capacitance of a 

hundred picoFarads, or less.  Whatever the exact value of this capacitance, it will be negligible compared 

with the capacitance of the 100ɛF capacitor bank. 

 

So, how many layers of turns should the coil have?  I do not have a proper answer for that question just 

yet.  What we will do is this.  Let us start off by assuming the coil has one layer, with 96 turns, and 

therefore a resistance of 0.0062ɋ and an inductance of .  After we see what happens, we may 

circle back and make a new assumption.  As we increase the number of turns from 96 to, say, , the 

resistance will increase (approximately) with the ratio  and the inductance will increase 

(approximately) with the ratio . 

 

The response of the circuit, excluding the slug  

 

Since we know nothing about how the slug 

affects the circuit, let us begin by ignoring it 

entirely.  We will discharge the capacitor 

bank through the empty coil.  Gathering up 

the various values of the components, the 

circuit looks as shown to the right. 
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Component  is the series combination of: (i) the equivalent series resistance of the capacitor bank, (ii) 

the static resistance of the relay contacts and (iii) the resistance of the wire in the coil.  Component  is 

the inductance of the coil and component  is the capacitance of the capacitor bank.  The switch is closed 

at time .  The initial voltage over the capacitor is 4000V. 

 

I have labeled in the figure the four circuit variables of interest.  They are: 

  is the instantaneous voltage drop over the capacitor, 

  is the instantaneous voltage drop over the series resistance in the circuit, 

  is the instantaneous voltage drop over the ideal inductance of the coil and 

  is the instantaneous current flowing through the circuit. 

 

All four variables are functions of time .  (There is a convention that capital letters should be used to 

represent voltages and currents which are constant with respect to time and that small letters should be 

used to represent instantaneous or time-varying voltages and current.  In our case, there are no constant 

quantities at all, so I have used capital letters throughout.  This will avoid confusion between  for 

voltages and  for the slugôs speed.)   

 

To solve for four circuit variables, we need four circuit equations.  They are: 

 

The V-I characteristic of the capacitance 

 

 

 

I have introduced the symbol  for the initial voltage over the capacitor.  The instantaneous voltage over 

the capacitor is reduced from its initial voltage by the cumulative amount of current which has been 

extracted from it, divided by the capacitance. 

 

The V-I characteristic of the resistance 

 

The voltage-current characteristic of the resistor is simply Ohmôs Law: 

 

 
 

The V-I characteristic of the inductance 

 

 

 

When the current flowing through the inductance increases, a voltage (the so-called ñback EMFò) is 

developed over the inductance which is proportional to the rate of change of the current. 

 

The sum of the voltage drops around the circuit 

 

Since this is a series circuit, the sum of the voltage drops around the closed loop must be equal to zero.  

So, after the switch is closed, we must have: 
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The four equations can be combined quite easily, and the result is a second-order differential equation in 

the single variable . 

 

 

 

It is likely that a solution of this differential equation will have the form , where  and  are two 

constants.  Since this is a second-order differential equation, there should be two solutions, both of which 

will have this form.  Since this form is assumed to be a solution of Equation , it had better satisfy 

Equation .  Substituting, and taking the derivatives, gives: 

 

 

 

Notice how conveniently the exponential term can be eliminated, leaving behind a quadratic equation in 

the parameter , the so-called ñcharacteristic equationò.  By the way, we were able to eliminate the 

exponential term by making the following observation.  The exponential term is never exactly equal to 

zero, so the only way in which the middle expression can always be equal to zero (that is, be equal to zero 

at any arbitrary time ) is if the coefficient of the exponential term is exactly equal to zero. 

 

Quadratic equations have two roots.  (A ñrootò is a value of  at which the expression computes out to 

zero.)  In this case, the two roots are: 

 

 

 

We could have one small difficulty.  If ,  and  have the right combination of values, the term under 

the square root will be positive, and there will be two real values for .  But, if the three components have 

the wrong(?) combination of values, the term under the square root will be negative.  If that is the case, 

then we will have to invoke the imaginary number , which is the square root of , which is to say, 

.  When  has an imaginary part, the solution will have a form like .  Exponential terms 

with imaginary exponents are just another way of expressing sinusoidal terms consisting of sine and 

cosine functions. 

 

Using our component values,  and .  So, the term 

under the square root is positive, and  has the following two values: 

 

 

 

The physical units of  are actually 1/second, so that the product of  and time  is dimensionless.  These 

two exponents correspond to two different solutions of Equation .  Using a subscript  to identify one 
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of the solutions and a subscript  to identify the other solution, we can write down the general form of the 

solution of Equation  as: 

 

 

 

To figure out the two remaining constants  and , we need to apply the initial conditions for the 

circuit.  We know two things: (i) that the initial current is equal to zero and (ii) that the initial voltage over 

the inductor is equal to .  (Note that the third thing we know, that the initial voltage over the capacitor is 

equal to , has already been incorporated into the first circuit equation, and therefore does not constitute 

ñnewò information.)   

 

It is obvious that the current will be zero before the switch is closed.  The first initial condition does not 

mean this.  What it means is that the current will also be zero immediately after the switch is closed.  Our 

circuit includes an inductor and the current flowing through an inductor cannot change instantaneously.  

Since no current flows immediately after the switch is closed, there will be no voltage drop over the 

resistor, and the inductor must absorb the full voltage drop over the capacitor. 

 

Applying the first initial condition is easy.  We simply substitute  into Equation , at which time 

the current must be zero, so that: 

 

 

 

Applying the second condition requires that we first get an expression for the voltage over the inductor.  

We can do this by substituting the expression for the current given by Equation  into the circuit 

equation given in Equation .  We proceed as follows. 

 

 

 

Now that we have an expression for , we can apply the second initial condition by evaluating it at 

time .  We get: 

 

 

 

Substituting our physical values, we can compute  as follows.  
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The constants  and  have units of amperes.  Now that we have found  and , we can write down 

the complete expression for the current, as: 

 

 
 

The following plot shows the waveform of this current. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This is a relatively fast discharge.  The horizontal scale represents a total time of one-half millisecond.  

The current peaks about 20 microseconds after the start of the discharge.  And, it peaks at about 1960 

Amperes, which is a huge current.  There are several points to note. 

1. Do not forget that it will take up to 3 milliseconds for the contacts of the relay to close.  As the 

contacts are closing, the current which is able to force its way through will be less than shown 

here.  Furthermore, current of this magnitude will vaporize the relay contacts as well as the wire 

itself. 

2. The ñfastò term in the solution is the  term.  It is the term which makes the 

algebraically-positive contribution to the current, so it drives the current up to its peak.  After the 

peak, the ñslowò term  takes over and eases the current back down to zero. 

3. Increasing the resistance of the coil by adding turns will slow the timing down and, at the same 

time, reduce the peak current experienced. 

4. Adding turns to the coil will also increase its inductance.  At some point, the inductance will 

become large enough to introduce a sinusoidal waviness to the discharge. 

 

Before we start adding turns to the coil, merely for the purpose of ñslowing the discharge downò, let us do 

something else. 
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Modeling the slug as an electrical component 
 

The slug is not unlike an ideal transformer, in that it draws its energy from the magnetic field set up by 

the coil.  In an ideal transformer, the secondary circuit draws its energy from the primary circuit.  In an 

ideal transformer, though, the exchange of energy is indirect.  The secondary circuit uses a second coil to 

draw the energy from the magnetic field set up by the primary coil.  In order for a voltage to be developed 

over the secondary coil, the magnetic field must be varying.  If the magnetic field set up by the primary 

coil does not vary, the secondary coil cannot extract any energy from the magnetic field.  For this reason, 

an ideal transformer will not function unless the current, and magnetic field, vary or are alternating. 

 

There is no such requirement in the case of the slug.  It can extract energy directly from the coilôs 

magnetic field whether the field is changing or not.  In fact, a coil powered by a dc current might very 

well be a better choice for a coil gun, if we could get a dc current large enough. 

 

The voltage drop  over the coil does depend on the change in the current flowing through it, whether 

there is any slug present or not.  That voltage is given by Equation .  The instantaneous power 

consumed by the coil, in the absence of the slug, is the product of this voltage and the instantaneous 

current, namely: 

 

 

 

The energy which is absorbed by the coil is the power multiplied by the time over which it is drawn.  If 

the current started from zero at time , then the energy absorbed by the coil is equal to: 

 

 

 

The energy absorbed by the inductor is stored in the magnetic field which exists in and around the coil. 

 

We can calculate the power consumed by the slug in a similar way.  In Part I of this paper, we looked at 

the kinetic energy of the slug, which at any time is equal to: 

 

 

 

where  is the mass of the slug and  is its instantaneous speed.  The power consumed by the slug  is 

the change in its kinetic energy () which takes place in some small interval of time ().  That is: 

 

 

  

Now, the derivative of the slugôs speed with respect to time is defined as its acceleration.  From Newtonôs 

Law, , we know that the slugôs acceleration is equal to the applied force  divided by the slugôs 

mass.  Therefore, 
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This is the instantaneous power consumed by the slug.  It must be supplied by the coil.  Therefore, in the 

electrical circuit, the instantaneous power consumed by the coil will be the sum of Equations  and 

, thus: 

 

 

 

Anticipating what we will find in Part III of this paper, the force on the slug  is the product of two terms: 

(i) a spatial distribution which does not depend on time, and (ii) the square of the current flowing through 

the coil.  As we did in Part I of this Paper, we will let  be the spatial distribution of the force, which 

we can, say, calculate at a reference current of one Ampere.  We can then write the total force acting on 

the slug as: 

 

 
 

This nicely separates the dependence of the force on time from the dependence of the force on the slugôs 

displacement (although the slugôs location does also depend on time).  Substituting this form for the force 

into Equation  gives: 

 

 

 

It makes eminent sense to define a ñvoltage dropò  for the slug.  Since power is always the product of a 

current and a voltage, Equation  suggests that we define the following voltage drop: 

 

 

 

If we do this, then the power drawn by the coil-slug combination is equal to: 

 

 

 

This says that a good way to model the slugôs electrical impact on the circuit is to place it in series with 

the coil, so that the same current flows through both.  (This is not how we assumed it would be, in the 

schematic diagram above.)  Treated in this way as a series component, the voltage drop of the slug is 

.  For a normal resistor, the voltage drop is expressed by Ohmôs Law as .  Comparing the 

two expressions makes it clear that we can think of the slug as a variable resistor, whose resistance at any 

moment is given by , the product of its speed and the spatial component of the force factor. 
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The revised circuit schematic, taking the slug into account 

 

The following schematic diagram shows how the electrical circuit should be represented to account for 

the slug. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For ready reference, I have shown the V-I characteristic of each component, including the slug.  I have 

shown the slug as being in series with the ideal inductance of the coil.  This is consistent with Equation 

, which has the slug making an additive (that is, series) contribution to the voltage around the loop.   

 

Once again, the sum of the voltage drops around the circuit must add up to zero.  Therefore: 

 

 

 

It is useful to express the current  in Equation  in terms of the charge  on the capacitor.  This is 

easily done on the left-hand side ï the voltage drop over the capacitor  is equal to the stored charge  

divided by the capacitance.  Generally speaking, current is defined as the rate at which charge passes by a 

given point in the circuit.  In our case, a positive current, as defined in the schematic, corresponds to 

decreasing charge on the capacitor, so that: 

 

 

 

Substituting this into Equation  gives: 
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I have called this the Circuit equation because it encompasses all aspects of the electric circuit.  However, 

we are going to have to solve this differential equation jointly with another, which describes the dynamics 

of the slug.  Using Newtonôs Law: 

 

 

 

We will also need the slugôs speed  for Equation , which we get by integrating Equation . 

 

 

 

Numerically integrating the two equations 

 

A joint closed-form solution of Equations ,  and  is not possible.  However, they are in a 

form which makes numerical integration quite convenient.  We will divide the slugôs run into very short 

increments of time, whose length  we will call a time step.  At the beginning of each time step, we will 

know the following quantities, which will be results from the calculations for the previous time step: 

 

 

 

In general, variables have the subscript  for their values at the start of a time step and the subscript 

 for their values at the end. 

 

We are also going to approximate the spatial distribution of the force .  Since the slug does not move 

very far during a short time step, the value of  will be almost constant during the step.  Let us assume 

that we can find some average value  for  which applies during the whole step.  Since the slugôs 

speed will not change by much during the time step, it being so short, it is reasonable to estimate that the 

slugôs position at the end of the time step will be very close to: 

 

 
 

We can look up in the force field table the values of the spatial component  at the beginning and the 

end of the time step.  The average value of the spatial component (average over distance, not time) will 

be: 

 

 

 

We first apply the Dynamics Equation  to find the slugôs acceleration at the start of the time step: 
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Then, we apply the Mechanics Equation  to find the slugôs speed at the end of time step.  

 

 

 

Using the Taylor series expansion of any function, we can write the slugôs position at the end of the time 

step as follows: 

 

 

 

Then, we apply the Circuit Equation  to calculate the second derivative of the charge: 

 

 

 

We can now determine what the current will be at the end of the time step: 

 

 

 

Using Taylorôs expansion once again, we can write the charge at the end of the time step as follows: 
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Having completed the calculations for this time step, we can now move on to the next time step, where 

the quantities , ,  and  become the corresponding starting quantities for the next time 

step. 

 

Monitoring the error of the numerical integration  

 

The errors which arise from using the approximations during each time step will accumulate during the 

course of a run of the slug.  Fortunately, there is a delightful way to monitor the cumulative error.  Energy 

must be conserved during the run.  We can calculate the total energy in the system at any point in time.  

The following table sets out the energies of each component at the beginning and end of a time step. 

 

Component Energy at start Energy at end Change in energy 

Capacitor 
, or 

  

, or 

 
 

Resistor    

Inductor    

Slug    

 

Energy stored in the capacitor 

 

The energy stored in a capacitor is usually written in terms of its voltage, as .  Since the charge  

stored in the capacitor is equal to , the energy stored can also be written in terms of the charge as 

.  Note that, since the capacitor is the source of the energy in our application,  will be less 

than  and the change in the capacitorôs energy will be negative.  In any event, the capacitorôs 

energy at the end of any particular time step is given by: 

 

 

 

Energy burned by the resistor 

 

The resistor does not hold its energy per se, but we can describe the energy it burns as the ñcumulative 

heatò dissipated up to a certain time during the run.  We will, of course, keep a running total of this heat, 

for which we will use the symbol  at the beginning of each time step.  The resistor burns heat at 

the instantaneous rate of , so the heat burned off by the resistor during one time step will be equal to: 

 

 

 



~ 14 ~ 
 

I have kept terms of higher-order powers in time because this calculation is part of a check of the 

accuracy.  While the extra terms may not be significant, keeping them removes one more source of 

uncertainty.  Continuing with the integration gives: 

 

 

 

Finally, the cumulative heat burned off by the resistor by the end of a time step can be written as: 

 

 

 

Energy stored in the inductor 

 

The energy stored in the inductor at the end of a time step will be equal to: 

 

 

 

Energy stored in the slug 

 

The energy stored in the slug ï its kinetic energy ï at the end of a time step is similar: 

 

 

 

Total energy 

 

The total energy of the system, including energy dissipated as heat, should always equal the energy which 

was stored in the capacitor before the start of a run.  At the end of each time step, it should be the case 

that: 

 

 
 

Monitoring the sum of the voltage drops 

 

A second useful check during the numerical integration is to ensure that the sum of the voltage drops 

around the circuit is always zero.  This is easily done by evaluating the quantities in the Circuit Equation 

 at the start or end of each time step.  If the sum of the voltage drops varies from zero, it is a sign that 

the time step  is likely too large, so that the approximations used to linearize the speed and model the 

charge as a quadratic are too imprecise.  Decreasing the time step should fix that. 

 

Results of the numerical integration 

 

For the purpose of this example, we will use the same spatial distribution for the force field as we used as 

an example in Part I of this paper.  There, we assumed that the spatial distribution of the force field had a 

parabolic shape, reaching a maximum value somewhere near the face of the coil and extending a fixed 

distance on either side of that maximum.  The following figure shows the shape of the force field. 
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In the earlier example, the spatial distribution was quantified as follows: 

 

 

 

For the example in Part I, we assumed that the maximum value of the force was , that the 

peak of the force occurred at a distance  from the center of the coil and that its spatial 

ñextentò was characterized by .  Note that the coil we are simulating is  long, so its face 

is  from the center of the coil.  The force field was zero outside of the range  and, 

to ensure this, the current was ñstoppedò once the slug had passed through the force field. 

 

We need to change things a little.  The total force is the product of  and the square of the current and 

we will set  taking this into account.  The graph below are based on . I chose this 

value so that a current of 100 Amperes would give rise to a total force of  at its peak spatial 

point.  If the current is higher, the strength of the force field will everywhere be proportionately greater. 

 

Appendix ñAò attached hereto is a listing of a short Visual Basic program (named Integration3) which 

carries out this numerical integration.  The following curves show what happens when the slug (with a 

mass of ) is placed  from the origin (being  inside the left edge of the force field and 

 to the left of the optimal displacement) and the capacitor bank is discharged.   
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