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An examination of the Joukowski airfoil in potential flow , without using complex numbers 

 

A Joukowski-type airfoil is one whose profile is described by a mathematical transformation pioneered by 

a Russian aerodynamicist, Messr. Joukowski.  It has some convenient mathematical properties.  For 

certain simple forms of the transformation, the mathematics are particularly elegant when tackled using 

complex numbers.  For more complicated forms of the transformation, the complex number 

representation is not so useful.  This paper keeps the analysis in the domain of real numbers. 

 

In the first part of this paper, we will do our best to construct a Joukowski airfoil as similar as possible to 

the one used on early versions of the Cessna 172.  In the second part of this paper, we will look at 

potential airflow in two basic configurations.  In the third part of this paper, we will show how the 

potential airflow around a Joukowski airfoil is the combination of the two basic flows.  The objective of 

the fourth, and last, part of this paper is to find expressions for the lift, drag and moment of a general-

form Joukowski airfoil, using the Cessna 172 airfoil as a numerical example. 

 

In a subsequent paper, we will test the expressions for the force and mechanical moment against 

simulation results from the OpenFoam program. 

 

Part I ï Constructing the airfoil  

 

Letôs begin with a circle, whose radius is , and subject it to two successive co-ordinate transformations.  

First, we will shift the circle to the left by distance  and upwards by distance .  Then, we will ñinvertò 

the shifted circle using a Joukowski transformation.  The steps look like this. 

 

 

 

 

 

 

 

 

 

 

 

 

It is convenient to use three sets of co-ordinates:  for points in the plane of the original circle, 

 for points in the plane of the shifted circle and  for points in the plane of the real-world 

airfoil.  Consider any point which lies on the origin circle.  It maps onto a point on the shifted circle 

which, in turn, maps onto a point on the real-world airfoil. 

 

The equation of the original circle is: 

 

 

 

Although we have defined a Cartesian -  plane, it will be handy to use polar co-ordinates as well.  If 

we define angle  as the polar angle of point , measured counter-clockwise from the -axis, 

then we can described the co-ordinates of the point as: 
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The shift (or translation) which constitutes the first transformation takes any point  on 

the original circle and maps it into the point on the shifted circle whose co-ordinates are: 

 

 

 

The Joukowski transformation, which we apply next, takes any point  on the shifted circle and 

maps it into the point on the real-world airfoil whose co-ordinates are: 

 

 

 

where  is some constant.  Equation  for  and  can be written in terms of the co-ordinates of the 

generating point on the original circle as: 

 

 

 

As  increases from  to , the corresponding point in the -  plane runs around the 

circumference of the original circle and the corresponding point in the -  plane makes one 

circumnavigation of the outline of the real-world airfoil.   

 

The following three graphs show three different kinds of shapes which can be generated using different 

combinations of , ,  and .  
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The transformations are really quite versatile.  Look at the following possibility. 

Generally speaking, parameter  influences the overall horizontal width of the real-world airfoil, 

parameter  influences the horizontal asymmetry, parameter  influences the vertical asymmetry and 

parameter  influences other features of the shape.  These observations are ñgenerally speakingò because 

the four parameters are highly intertwined and changing any one changes everything. 

 

The early Cessna 172ôs had a gross main wing area of 174 sq. ft. (ñgrossò meaning that this area includes 

that portion which formed the roof of the cabin) and a wing span of 35 ft. 10 in.  Dividing the former by 

the latter gives an average chord of 4.856 ft.  The wing was tapered so that the chord at the root was 5 ft. 

4 in. and the chord at the tip was 3 ft. 8½ in.  The average of these two extremes differs slightly from the 

average chord because the center section, over the cabin, had a constant profile.  For our purposes, we 

will use the average chord of 4.856 ft. or, because we will do all of our calculations in SI units, 1.480 

meters. 

 

The profile of the main wing was the NACA 2412 section.  I will not get into the NACA specifications 

here, because we cannot duplicate this section exactly via Joukowski.  Suffice it to say that: (i) the 

maximum thickness of the airfoil was 12% of the chord, (ii) the maximum camber was 2% of the chord 

and (iii) the point of maximum camber was located 40% of the chord aft of the leading edge.  I will also 

cite here, as an aside, that the maximum cruising speed of the early Cessnaôs was 140 mph, or 18.78 

meters per second.    

 

Our task is to find a combination of the parameters , ,  and  which approximates the Cessna 172ôs 

main wing.  One approach is to inspect the  co-ordinates using Equation  and to derive 

expressions for the chord and thickness.  This can be done but the useful results are only approximate and 

do not address the camber.  Another, and often better, approach is visual.  A short Visual Basic program 

which plots NACA and Joukowski profiles for comparison purposes is listed in Appendix ñAò attached 

hereto.  For two different sets of the parameters, the results look like this: 

 

 
 

 

Parameter set #1 

Parameter set #2 

NACA in black, Joukowski in red 
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Which Joukowski profile better approximates the NACA 2412 profile?  I purposefully did not show the 

relevant parameters in the figures above, in order to illustrate the pitfalls of a strictly mathematical 

approach to comparison.  In my judgment, the upper Joukowski profile is better, but the lower Joukowski 

profile has better parameters.  Let me show the details. 

 

Parameter 

Cessna  

NACA 2412 

Upper diagram 

Joukowski 

Lower diagram 

Joukowski 

Joukowski R n/a 0.4051 0.4051 

Joukowski f n/a 0.03069 0.03697 

Joukowski g n/a 0.02032 0.01622 

Joukowski b n/a 0.3672 0.3672 

Chord (meters) 1.480 1.480 1.481 

max camber 2.00% 2.52% 2.02% 

max thickness 12.00% 11.44% 12.00% 

camber point 40.00% 49.24% 50.10% 

thickness point c. 40% 26.59% 25.18% 

 

The lower Joukowski section has the same chord, camber and thickness as the NACA 2412, but does not 

ñlookò as close.  Part of the reason is that Joukowski profiles have three general characteristics which 

cause them to differ from airfoils in common use: 

1. a droop in the nose section; 

2. a more bulbous, or rounded, nose and 

3. much more curvature in the aft half of the chord. 

 

For the purposes of this paper, either Joukowski airfoil would do.  We will proceed using the one in the 

upper diagram, for which: 

 

 

 

Part I I ï Understanding airflow using a velocity potential 

 

What is ñpotential flowò?  Air has a couple of properties ï compressibility and viscosity ï which make 

the mathematics of modeling things moving through air quite difficult.  Moving things have a couple of 

properties of their own ï three dimensions and acceleration ï which make the mathematics even more 

difficult.  Potential flow is the flow of air, or any fluid, in which all four of these inconveniences are 

ignored.  In other words, airflow is ñpotentialò if it is (i) steady, (ii) two-dimensional, (iii) incompressible 

and (iv) inviscid.  Even in the face of so many assumptions, one can still get useful results.  In a little 

more detail, the meanings of these four assumptions are as follows. 

 

Steady ï That the pattern of the airflow is constant with time.   

 

Two-dimensional ï That the pattern of the airflow is simple enough to be analyzed in two dimensions, not 

three.  Since all bodies have three dimensions, the flow of air will always be a three-dimensional affair.  

However, if one dimension of the body is relatively long, it may be that the flow over parts near the 

ñmiddleò of that dimension is not too much affected by the happenings at the ñendsò.  If that is so, then 
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the airflow near the middle of the long dimension can be approximated as being constant from point-to-

point along the long dimension.  In other words, the airflow in a cross-section perpendicular to the long 

dimension can be analyzed using only two dimensions. 

 

Incompressible ï That the mass density of the air is constant.  Air is, of course, compressible.  The airôs 

compressibility is important in many situations, such as the analysis of sound waves.  However, many 

situations involve air moving in bulk and relatively slowly, and here the compressibility can often be 

ignored.  The analysis of air flowing at low speed over a curved surface is one such case.  That the density 

is assumed to be constant does not prevent a higher pressure on one side of a ñblockò of air from pushing 

the block in the direction of lower pressure. 

 

Inviscid ï Inviscid is a fancy adjective used to describe viscosity and, in particular, describes a condition 

of no or extremely low viscosity.  Molasses has high viscosity.  A puddle of molasses will flow down an 

inclined surface very slowly.  There is a lot of ñfrictionò between the molecules of molasses which 

prevent ñblocksò of molasses from sliding easily alongside each other.  The viscosity of air is quite low 

but, in some situations, cannot be ignored.  For example, it is the viscosity of the air which prevents it 

from sliding smoothly over a wingôs surface and so gives rise to boundary layers.  It is the viscosity of the 

air which gives rise to vortices.  In fact, the assumption that the air has no viscosity is tantamount to the 

assumption that small volume elements of the air do not rotate.  A small volume element of an inviscid 

fluid may be stretched and elongated as it slides alongside neighbouring volume elements, but it will not 

rotate.  Therefore, an inviscid flow is also called an ñirrotationalò flow. 

 

Letôs imagine an arbitrary pattern of potential airflow in a two-dimensional -  Cartesian plane.  The 

location of any point in the plane can be described by its co-ordinates .  Consider now some region 

in the plane where there is air flowing.  (There may be regions, such as inside an airfoil, where there will 

not be any air flowing.)  We can describe the velocity of the air at any point using a vector .   will 

change from point to point in the plane, but it will not change with time, since the airflow is assumed to 

be steady.  If we consider all of the velocities  at all of the points in the plane where there is air, we can 

call the set of velocities a ñvector fieldò. 

 

If we pick from all the velocities in the vector field a subset where the velocities are successively head-to-

tail, then that subset describes a streamline.  A small volume of air which is on this streamline at some 

point will always be on this streamline.   

 

If the airflow is irrotational, then the streamlines will not circle back on themselves.  The velocities in and 

around any point in the vector field will not curl back on themselves.  Mathematically, the measure of the 

curl of the vectors in a vector field is given by the ñcurlò: .  The ñdelò operator  is a set of spatial 

derivatives and the vector cross-product  matches up those derivatives with the vectors in the vector 

field in a way which measures any net circular tendency.  For an irrotational flow: 

 

 
 

Now, it is an identity of scalar fields ï a ñscalar fieldò being a set of single numbers, one per point in the 

-  plane ï that: 

 

 

 

where  is any scalar field, and  and  are the del operator and the cross-product once again. 
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If the velocity vector field  satisfies Equation , then there must exist a scalar field, which we will call 

, which satisfies Equation  and can be written as: 

 

 

 

That is not to say that it is easy to figure out what scalar field  generates the vector field , but a scalar 

field  must exist nonetheless.  We would always like to find the scalar field for a vector field because, if 

we can find it, a lot of the mathematics is simplified. 

 

Equation  is the mathematical expression which describes an irrotational vector field.  

Incompressibility has its own mathematical expression.  If the airflow is incompressible, then there cannot 

be any net flow of air into or out of any given any given volume of space.  If a certain quantity of air 

flows into the specified volume through one side, then an equal quantity of air must flow out of the 

specified volume through its other sides.  Otherwise, there would be an increase or decrease in the amount 

of air inside the volume, which would require that it be compressed or rarified, respectively.  The 

mathematical measure of the net outflow from a specified point in a vector field is the ñdivergenceò: 

.  This is the del operator again, but this time applied to the vector field via the vector dot-product .  

The dot-product matches up the spatial derivatives of the del operator with the vectors in the vector field 

in a way which measures any net outward tendency.  For an incompressible flow: 

 

 
 

For the inviscid and incompressible flows that we are looking at in this paper, both of Equations  and 

 must be satisfied.  If they are, then we can combine them as follows: 

 

 

 

where  is called the Laplacian.  The scalar field , which has these wonderful properties (only for 

steady, inviscid, incompressible flow) and which gives rise to the velocity vector field , is called the 

ñvelocity potentialò or the ñpotential fieldò.  Through long usage, the name of this scalar function ï the 

velocity potential ï came to be applied to any flow ï a ñpotentialò flow ï which satisfies these simplifying 

assumptions.   

 

Air flows from points with low potential to points with high potential.  (This is the convention for airflow.  

The convention for gravity, for example, is different: a mass will move from points with high potential to 

points with low potential.)  The speed  of the air in the -direction at any point will be equal to the 

slope of  with respect to  at that point, thus: 

 

 

 

Similarly, the speed  of the air in the -direction at any point will be equal to the slope of  with 

respect to  at that point, thus: 
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Together, Equations  and  mean that the airôs velocity at any point can be written as: 

 

 

 

One can think of the scalar field  as being a surface of hills and valleys over the -  plane.  At all 

points, the air tries to climb uphill as steeply as possible, at right angles to lines of constant .  Lines of 

constant  are like the contour lines drawn on this surface.  The air moves at right angles to lines of 

constant , in the direction in which  increases most steeply. 

 

It would be useful if we could identify a second scalar field, in which the air moves along lines of 

constant ñwhateverò, as opposed to perpendicularly across lines of constant potential .  This second 

field would have to be ñperpendicularò to the potential field, like uphill / downhill lines drawn across the 

contour lines on a contour map.  They would be like double-diamond ski runs on a ski hill.   

 

Mathematically, the slopes of this second scalar field would be the negative reciprocal of the slopes of the 

potential field.  (There are two slopes, one in the -direction and one in the -direction.  Only one of them 

should be the negative reciprocal.  Taking the negative reciprocal of both slopes would simply turn the 

surface upside down.  By convention, the negative reciprocal is taken in the -direction, not the -

direction.)  If we let this second scalar field be represented by , then its derivatives must be equal to: 

 

 

 

so we can also express the airôs velocity at any point as: 

 

 

 

Since the airflow is inviscid, it must still be the case that .  Therefore: 

 

 

 

so that: 
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It happens, then, that the Laplacians of  and  are both zero.  The scalar field  is called the 

ñstreamline functionò since lines of constant are the paths taken by little volumes of air as they pass 

through the region of interest.  

 

To illustrate the two scalar functions, letôs consider the steady flow of incompressible and inviscid air 

around an infinitely long cylinder.  A typical cross-section of the pattern of this airflow is shown in the 

following figure.  The air approaches the cylinder from the left (in the direction of the positive -axis) 

with speed , where the subscript denotes that this is the speed so far upstream that it is not affected by 

the presence of the cylinder.  The cylinder has radius .  (I will use the symbol  for the radius to avoid 

any confusion with the radius  we used in the previous section to generate an airfoil.)  Any particular 

point in the airflow can be located by its polar co-ordinates: distance  from the center of the cylinder and 

angle  with respect to the -axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The graph shows 11 streamlines, spaced apart vertically (far upstream) by the distance .  All of the 

streamlines are shown in black except for the central one, which is shown in red.  The red streamline 

approaches the cylinder dead-center.  The air in this streamline comes to a stop at the surface of the 

cylinder.  There, it splits into two, with some of the air sliding over the top of the cylinder and the rest 

sliding over the bottom.  These two red streamlines rejoin at a stagnation point diametrically opposed to 

the one at the leading edge.   

 

Each of the 11 streamlines corresponds to a constant value of .  In fact, the streamlines were plotted 

using an Excel spreadsheet by finding the points at each value of  which had the 11 given values of , 

as determined using the first of Equations  from below. 

 

I have also plotted in light blue nine iso-potential lines.  To avoid clutter, I did not plot their symmetric 

counterparts in the bottom half of the plane.  Each light blue trace is a line along which  is a constant.  

The values of  I selected for plotting were the values of  on the surface of the cylinder at angles of  

equal to , , , , , , ,  and .  It is clear that the iso-potential lines and the 

streamlines intersect at right angles.  These lines were plotted using the second of Equations . 

-axis 

-axis 

  
 

radius  
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uniform airflow at  

-axis 
 

 

What I have not told you yet is what the equations for the scalar fields  and  actually are.  For any 

point in the airflow whose radial distance is  and whose polar angle is , the value of the streamline 

function and potential function, respectively, are: 

 

 

 

Before proceeding, let me generalize the free stream speed  a little bit.  In the graph above, the uniform 

airflow is from left to right, in the direction of the positive -axis.  This is not always convenient.  More 

generally, we can envision the air flowing uniformly from the lower left towards the upper right.  We can 

still take its speed at a faraway distance to be , but its direction far upstream is to the right and 

upwards.  It is customary to define an angle  as the angle at which the air ñattacksò the object, or vice 

versa.  The following figure shows the convention, in which  is the acute positive angle between the 

direction of the uniform airflow and the -axis. 

 

 

 

 

 

 

 

 

 

To include this geometry, the streamline and potential functions in Equation  are re-written as: 

 

 

 

We can calculate the velocity of the air at any point around the cylinder using either function.  Letôs use 

the potential field, and find the velocity by taking the gradient: .  Because the potential field is 

expressed in polar co-ordinates , it is easiest if we use the del operator in polar co-ordinates, too.  (I 

have attached as Appendix ñBò a quick review of vector operations in two-dimensions.) 
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and, continuing: 

 

 

 

This is the velocity of the air anywhere outside of the cylinder.  At any point,  is the unit vector pointing 

outwards, in the radial direction, and its coefficient is the speed of the air in the radial direction.   is the 

tangential unit vector, meaning that it is tangent to the origin-centered circle passing through the point, 

and it points in the direction in which angle  increases.  Its coefficient is the speed of the air in the 

tangential direction.  (Since angle  is referenced to the -axis, which points downstream, it happens that 

the tangential unit vector  actually points upstream at points in the upper half of the -  plane shown in 

the figure above.) 

 

Now, Equation  is very general ï it is the velocity of the air at all points outside of the cylinder.  Let 

us now consider only those points which are on the surface of the cylinder.  The radius  of points which 

are on the surface is equal to the radius  of the cylinder.  At those points, Equation  simplifies to: 

 

 

 

On the surface, then, the radial component of the airôs velocity vanishes.  This means that the air slides 

along the surface.  The speed at which it slides along the surface is the tangential component of the 

velocity, .  The minus sign has the following meaning.  When  is positive, 

the minus sign indicates that the air is moving in the direction in which angle  decreases, that is, from 

right to left.   is positive for angles  in the range from  to .  Generally speaking, 

this corresponds to the top side of the cylinder (at least when the air is approaching more or less from the 

left and the angle of attack is not unusually large).  Similarly, points on the bottom surface of the cylinder 

correspond to points where  is negative, so that the tangential component of the speed is 

positive.  Here, the positive sign indicates that the air is moving in the direction in which angle  

increases, that is, from left to right once again. 

 

The points of maximum speed are reached when  and .  When the angle 

of attack is zero, these two points are exactly at the top and bottom of the cylinder.  When the angle of 

attack changes, the points of maximum speed will change as well.  But, the speed of the air at the two 

points of maximum speed will remain at twice the free stream airspeed . 

 

Some readers will have been disappointed at how the equations for the two scalar functions  and , in 

Equation  above, appeared so suddenly, almost out of thin air.  They were not somehow ñderivedò.  

Such is life with these scalar functions.  Neither mathematics nor magic ñfindsò them, only luck.  So, how 

does one know if one got lucky?  There are two tests.  The first is: the functions have to satisfy the so-

called boundary conditions.  They have to match the physical boundaries of the situation. In the case 

above, they do.  They allow for a cylinder of just the right diameter and they allow for a uniform airflow 

far away from the cylinder.  The second test is this: the two functions have to satisfy Laplaceôs equation.  

This we have not done, an oversight we will now remedy.  

 



~ 11 ~ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that the cylinder does not experience any lift.  Lift is the net force acting on a body in the direction 

perpendicular to the free stream.  The cause is more subtle than just the symmetry of the cylinder above 

and below the horizontal plane.  The geometry is not symmetric in the horizontal direction, but the 

cylinder does not experience any drag either.  Drag is the net force acting on a body in the direction 

parallel to the free stream, that is, downstream.  To get lift, we need to add a second kind of airflow to the 

uniform flow of air. 

 

Adding a vortex to the uniform flow past the cylinder 

 

In this section, we will add a vortex flow to the uniform flow past the cylinder.  We will begin by looking 

at the vortex flow by itself.  Physically, a vortex simulates the airflow around a rotating cylinder.  If the 

air has some viscosity, even a small amount, it will begin to circulate around the cylinder.  Eventually, a 

steady-state will be reached in which the air at the surface of the cylinder moves along with the surface 

and the air at greater distances revolves around the cylinder more slowly. 

 

Let me point out that a vortex flow, in which the air moves in circles, does not violate one of our main 

assumptions, that the flow is irrotational.  Let me explain why.  A flow is rotational if there exists any 

point in the flow, which we can imagine is enclosed in a very small element of volume, in which the air 

rotates around itself.  In a vortex, there is possibly such a point, at the very center of the vortex.  However, 

in the case at hand, the cylinder is at the center, and there is no airflow inside the cylinder.  Outside the 

cylinder, where there is airflow, there are no such points.  While small elements of volume may revolve 

around the center of the cylinder, the air inside them does not rotate around itself.  

 

The potential function and streamline function for a vortex (luck arrives, in the form of me) are given by: 

 

 

Aside to verify that the Laplacian is satisfied 

 

We should be able to confirm that  for the uniform flow.  Since we used the potential 

field in Equation  to calculate the airôs velocity, let us use the streamline function to confirm that 

the Laplacian is zero.  Since the streamline function is expressed in polar co-ordinates, it is easier once 

again to use the polar co-ordinate form of the Laplacian. 
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-axis 

-axis 

 

-axis 

 

 

where  is the vorticity ï the strength of the vortex ï and  is the natural logarithm of .  

Notwithstanding that the vortex exists physically only if air has some viscosity, these two fields still 

satisfy the Laplacian, thus: 

 

 

 

The streamline function  becomes infinite at , at the center of the vortex.  Fortunately, there is no 

air at that point, so we need not be concerned about the mathematical singularity there. 

 

As always, the velocity of the air is given by the gradient of the potential function: : 

 

 

 

The velocity has no radial component; it is entirely tangential.  At every point, the air moves in a circle 

around the center of the cylinder.  Therefore, the streamlines  are circles around the cylinder and the 

lines of constant potential are straight lines which pass through the center of the cylinder.  Note also that 

the tangential speed of the air is inversely proportional to the distance  from the center of the cylinder. 

 

Let me say a quick word about the minus sign which precedes the vorticity  in the streamline function 

.  Looking at Equation , it is clear that the air moves in counter-clockwise circles (in the direction 

of increasing angles ) when the vorticity is algebraically positive.  This 

direction corresponds to the -axis which would exist in a conventional 

right-handed co-ordinate frame, as shown in the figure at the right.  If 

this vortex is added to a uniform flow of air from left-to-right, then the 

higher speed air will be on the bottom.  This will result in the lift force 

acting downwards, in the direction of the negative -axis.  This could be 

inconvenient, but is easily rectified by using vortices with negative 

algebraic values, which circulate in the clockwise direction. 
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Interesting things happen when we combine the uniform airflow past the cylinder and the vortex.  For the 

combined airflow, the scalar fields are: 

 

 

 

Are we allowed to simply add up the scalar functions?  Yes, we can add up the scalar fields of two 

potential flows knowing that the result will also be a potential flow.  This is the case because the 

derivatives which operate on the scalar fields are linear ï the derivative of the sum of two fields will be 

equal to the sum of the derivatives of the individual fields.  For example, if the Laplacians of the two 

fields are separately equal to zero, then the Laplacian of their sum will also be equal to zero. 

 

The following figure shows the pattern of a uniform flow and a vortex around a cylinder.  Different 

patterns occur for different values of the free stream speed , the angle of attack , the vorticity  and 

the cylinder radius .  For the curious, the following pattern was obtained using , , 

 and .  The geometry is a little too complicated to be managed entirely on a spreadsheet, 

so the Visual Basic program listed in Appendix ñCò was used to calculate the streamlines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The surface of the cylinder is shown in green, but it is almost hidden behind the red streamline which 

flows on the surface.  As before, the cylinder has radius  and any point in the airflow can be identified 

by its polar co-ordinates .  The direction of the uniform flow  is shown by the arrow at the left.  

The direction of the vortex  is shown by the arrow inside the cylinder.  Since  was given a negative 

algebraic value, the two flows combine so that the airflow has its highest speed on the top side of the 

cylinder. 

 

 

 

  

radius  

 -axis 

-axis 
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The streamlines are shown in black, with the exception of the two streamlines nearest the cylinder, which 

are shown in red.  I have not shown any lines of constant potential, which would be a grid everywhere at 

right angles to the streamlines. 

 

I selected the streamlines to be plotted so they are equally far apart, in the vertical direction, far upstream.  

Clearly, the streamlines which pass over the top of the cylinder are compressed together to a greater 

extent than those which pass along the bottom.  This indicates greater speed on the top side than on the 

bottom side. 

 

The incoming airflow comes to rest at stagnation point #1 (labeled  in the figure) on the surface of 

the cylinder, before splitting, with some of the air flowing over the top and the rest flowing under (over?) 

the bottom.  There is a similar stagnation point ( ) at the ñtrailing edgeò of the cylinder, where the air 

comes to rest again before flowing downstream. 

 

The particular streamline which actually intersects the cylinder at the stagnation points is not shown in the 

figure, but it can easily be imagined as the mid-line between the two red streamlines which are shown.  

Far upstream, removed from the influence of the cylinder, this ñstagnationò streamline is a straight line 

sloping from the lower left to the upper right at the angle of attack.  The angle of attack used to produce 

the graph was .  Note that the stagnation streamline is not a straight line as it approaches the cylinder.  

It begins to slope upwards at an angle even greater than the angle of attack.  Similarly, the stagnation 

streamline does not ñproceedò downstream as a straight line either.  As one goes further and further 

downstream, and the influence of the cylinder decreases, the stagnation streamline curves back into line 

with the uniform flow.  Far enough downstream, the stagnation streamline will once again be a straight 

line angled upwards at the angle of attack. 

  

If the vortex is generated by a rotation of the cylinder, then the speed of the cylinderôs rotation can be 

varied independently from the speed of the uniform flow.  As the speed of rotation increases, the increase 

in vorticity will increase the amount of ñtwistò which the airflow experiences in the neighbourhood of the 

cylinder. 

 

Now, let us look at what happens on the surface of the cylinder itself.  The surface is selected 

mathematically by setting the radii  of the points of interest equal to the radius of the cylinder .  

Therefore, on the surface of the cylinder, the streamline function in Equation  reduces to: 

 

 

 

This is a constant.  Therefore, all points on the surface of the cylinder have this value of .   Since a 

streamline is defined by its value of , if follows that there is only streamline flowing along the surface 

of the cylinder.   

 

Now, let us consider some other points which lie ñjust outsideò the surface.  We can define ñjust outsideò 

as being points where the radii are slightly more, by some fraction , say, than the radius  of the 

cylinder.  For those points, for which , the streamline function in Equation  becomes: 

 

 

 

For very small , we can use the Taylor series expansions and subsequent approximations that 

 and that .  This way, we can approximate  as: 
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These approximations become better as  gets increasingly smaller, and become exact when  reaches 

zero.   

 

Look at the coefficient of , in the square brackets.  There could be circumstances where this coefficient 

is zero even when  itself is not zero.  The entire  term will vanish at these points, which will therefore 

have the same value of  as the points on the surface, even though they are just outside the surface.  By 

definition, these points just outside the surface also lie on the stagnation streamline. 

 

We can figure out which points these are by finding the values of angle  which cause the coefficient of  

to equal zero.  For the moment, let us call these points ñcriticalò points, and use the symbol  for their 

polar angles.  Setting the coefficient of  equal to zero at these angles gives: 

 

 

 

Since the inverse sine function produces two angles around the circle for the same value of its argument, 

there will be two angles  for any given value of .  These two angles correspond to the two 

stagnation points or, more precisely, to the upstream and downstream stagnation streamlines or, even 

more precisely, to the points just outside the surface where the upstream and downstream stagnation 

streamlines arrive at the surface.  In other words, these two angles describe the polar angles at which the 

upstream and downstream stagnation streamlines intersect the cylinder. 

 

Let us consider the simplest case, where there is no vortex at all.  When , the term in Equation  

reduces to , which has the two values  and .  The two corresponding critical angles will then 

be  and , respectively.  The latter point corresponds to the upstream stagnation 

streamline, whose intersection point lies directly in the eye of the wind.  The former point corresponds to 

the downstream stagnation streamline, whose intersection point in this zero-vorticity case is the trailing 

edge. 

 

For the values used to produce the plot above, which were listed in the text just before the graph, the 

argument  is equal to .  The two values of  are 

 and .  Adding the angle of attack, , gives intersection angles of  and 

.  The former is the angle around the cylinder at which the upstream stagnation point is located; 

the latter is the angle around the cylinder of the downstream stagnation point.   



~ 16 ~ 

 

Adding the vortex has moved both stagnation points in the downwards direction, colloquially speaking, 

towards the bottom of the cylinder.  As the speed of rotation increases, the two stagnation points will 

continue to shift downwards.  As the speed of rotation increases even further, there will come a speed at 

which the two stagnation points merge on the bottom surface.  As the speed of rotation is increased even 

further than that é well, I leave you to work that out.   

 

Using the potential and streamline functions, we can calculate the velocity of the air anywhere outside the 

cylinder.  In fact, we can calculate the velocity using either one of the functions in Equation .  

Suppose we use the potential function this time around.  The radial component of the velocity is given by 

the radial derivative of the potential function, thus: 

 

 

 

and the tangential component of the velocity is given by the tangential derivative of the potential function, 

thus: 

 

 

These are the components of the airôs velocity at any point around the cylinder, not just on the surface.   

 

While it is nice to know the velocity field, what we usually prefer to know is the pressure at points on the 

surface of the cylinder, from which we can calculate the forces acting on the cylinder.  That is what we 

are going to do now.  We will start the analysis of pressure by looking at the airôs velocity on the surface.  

Philosophically, the air can react with the cylinder only at points where they make contact, and those 

points of contact are the surface of the cylinder.   The velocity of the air at any point that is not on the 

surface has only an indirect influence on the pressure on the surface, through its participation in the whole 

physical process which determines the velocity of the air on the surface. 

 

Restricting our attention to the surface only, then , and the components of the velocity in Equations 

 reduce to: 
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As before, there is no radial component of the velocity.  The air slides along the surface through various 

angles of .  There happen to be two points at which the tangential component of the velocity vanishes 

here as well.  These two points are, of course, the stagnation points.  The angles  are calculated by 

setting the tangential component of the velocity to zero, upon which we get: 

 

 

 

These angles  are exactly the same as the angles .  They mean different things, though.  The critical 

angles  were determined for points located just outside of the surface of the cylinder; the angles  were 

determined for points which are exactly on the surface.  That their values turn out to be the same actually 

tells us something new: that the stagnation streamlines intersect the surface at right angles. 

 

In any event, we now have a delightfully simple expression in Equation  for the air speed at all points 

on the surface of the cylinder.  In the following discussion, we will have need for the square of the speed 

on the surface of the cylinder.  For convenience, we will write that down here, as: 

 

 

 

Bernoulliôs Principle 

 

Bernoulliôs Principle is a special application of the general observation about nature that energy is 

conserved.  In our universe, energy is, in fact, conserved.  The amount of energy which exists after any 

event or series of events is the same as the amount of energy which existed before.  When considering a 

specific event or series of events, it can sometimes be a puzzle to figure out what form some of the energy 

took, but it is always the case that the total energy in a specific event or series of events can be entirely 

accounted for and does not change. 

 

Messr. Bernoulli was the first to apply this observation to the flow of air.  He reasoned that the total 

energy which any little element of air has must remain constant as that little element of air travels along a 

streamline.  That little volume of air possesses several different kinds of energy.  One kind is its net 

kinetic energy, being the energy of its physical translation.  Another kind is its gravitational potential 

energy, which changes as the little element of air rises or falls in the gravitational field of the Earth.  A 

third kind is the kinetic energy of the atoms inside the little volume as they move about.  This sort of 

energy is affected by the temperature, pressure and density of the air.  A fourth kind is the energy of the 

little volume due to its rotation, which is the kinetic counterpart of its kinetic energy due to translation. 

 

What Messr. Bernoulli figured out is that the sum of these different kinds of energy is a constant as the 

little volume element travels along a streamline.  For inviscid air flowing at low speed, and predominantly 

in the horizontal direction, two of these kinds of energy are much more significant than the others.  They 

are: (i) the kinetic energy of translation and (ii) the energy due to the static pressure.   

 

The energy due to the static pressure can be thought of as the total amount of energy which would be 

required (and was required) to bring together from infinite separation all of the atoms in the little volume 

element.  The atoms are pressed together and, given a chance, would want to spread themselves apart.  
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Here, in the lower atmosphere of the Earth, the atoms are kept pressed together by the aggregate weight of 

the air which extends five or ten miles above the volume element.   

 

Bernoulliôs Principle for this simple type of flow (a ñpotentialò flow) is often written as: 

 

 

 

where: 

  is the (constant) density of the air (do not forget that we have assumed incompressibility); 

  is the speed of the air at any point along the streamline; and 

  is the static pressure at that point. 

 

We are interested in Bernoulliôs Principle because we can use it to calculate the pressure on the surface of 

the cylinder.  To use Bernoulliôs Principle for this purpose, we need to know the square of the speed of 

the air at the points of interest.  Fortunately, we know this for the points on the surface of the cylinder, 

and wrote it down in Equation .  

 

All of the points on the surface of the cylinder, both on the top and on the bottom, are on the streamline 

which passes through the two stagnation points.  Since they are all on the same streamline, Bernoulliôs 

Principle can be applied to them as follows: 

 

 

 

What I have done here is set the energy at the stagnation point (on the left-hand side of the equation) 

equal to the energy at any point on the surface (on the right-hand side of the equation).  Using the 

stagnation points as a sort of reference point for Bernoulliôs Principle is a huge benefit because, at the 

stagnation points, the speed of the air is zero. 

 

Setting  at the stagnation points on the left-hand side reduces the previous expression to: 

 

 

 

Whatever its value,  is a constant for our rotating cylinder.  In-so-far as Equation  is 

concerned,  is the same for all points on the surface.  The right-hand side of Equation  is 

an expression for the pressure difference between the pressure at any point on the surface and some 

constant, which we can call the ñreference pressureò.  This is going to work out fine for our purpose ï the 

net force acting on the cylinder is the resultant of the pressures acting all around the surface and is not 

changed if we add or subtract some constant to all the measurements of pressure.  In other words, the net 

force does not depend on the absolute pressures which act on the surface, but only the relative pressures. 

 

Something else is interesting about Equation .  , , ,  and  are all parameters of the physical 

configuration.  Letôs examine the case where the cylinder rotates at a constant angular speed.  Once we set 
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up the physical apparatus and set the cylinder spinning, all five parameters are constant.  The only 

remaining variable on the right-hand side of Equation  is the polar angle .  In other words, the 

pressure difference at a particular point, with respect to the pressure at the stagnation points, depends only 

on the angular location of the point. 

 

Letôs use the symbol  as the ñover-pressureò at the point on the surface of the cylinder which is at angle 

 with respect to the -axis.  Over-pressure is not meant to mean that the pressure is necessarily a high 

pressure.  It simply means that  is algebraically positive if the pressure at the subject point is greater 

than the pressure at the stagnation point.  We can write Equation  as: 

 

 

 

Let me say a quick word about dimensions.  If the speed  is measured in meters per second and the 

density of the air is measured in kilograms per cubic meter (the density of air at STP is around 

), then the units of   will be .  Newtons per square 

meter is the standard SI unit of pressure.   

 

The following graph shows the over-pressure around the cylinder (in Newtons per square meter) using the 

same numerical values as in the preceding section: , ,  and . 

 

I have shown the stagnation streamline (in red) to give a better idea of the orientation of the pressure 

distribution. To meet the needs of the horizontal scale of this graph, I have extended the stagnation 

streamline further upstream and downstream than in the preceding graph.  (I will discuss the green line 

below.)  The relative pressure at various points on the surface is represented by the length and direction of 

the black arrows.  By its very nature, pressure acts perpendicularly to the surface, so the lines are radial 

from the center of the cylinder.  The vertical and horizontal axes of the graph are scaled the same, in 

Newtons per square meter.  The length of the pressure arrows can be related directly to a corresponding 

length on either axis.     
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Let me say a word about the pressure arrows.  I have added arrows to indicate which way the relative 

pressure is acting.  Once again, the relative pressure is the amount by which the pressure at any particular 

point on the surface is greater than the static pressure at the stagnation points.  At the stagnation points 

themselves, the relative pressure is zero (although the absolute pressure is not).  On the top side of the 

cylinder, the air is moving and so, by Bernoulliôs Principle, has a lower absolute pressure than at the 

stagnation points. Mathematically, the lower relative pressure arises from the minus sign in the expression 

for the over-pressure in Equation .  I have shown the lower absolute pressures with arrows pointing 

outwards from the surface.   

 

Note that the absolute pressure on the bottom side of the cylinder is also less than the absolute pressure at 

the stagnation points, so the arrows there for the relative pressures also point away from the surface.  In 

fact, the absolute pressure on the surface is less than the absolute pressure at the stagnation points 

everywhere except at the stagnation points. 

 

Because the absolute pressure on the surface is less than at the stagnation points, I have shown the relative 

pressure ñpulling outwardsò, both on the top and the bottom.  The amount of the ñpullò is different on the 

top and bottom.  Since the air on the top of the cylinder is moving faster than the air on the bottom, the 

relative pressure on the top is less than the relative pressure on the bottom.  There is a net pressure acting 

upwards: lift. 

 

It is a straightforward exercise to calculate the lift, by integrating the over-pressure in Equation  

around the surface.  Pressure forces, both absolute and relative, act perpendicularly to the surfaces they 

abut.  At the point on the surface located at angle , the radial vector which is perpendicular to the surface 

has the same slope as the vector pointing from the center of the cylinder to the point.  We can separate the 

over-pressure into its components  acting upwards and  acting towards the right as follows: 

 

 

 

Pressure exerts a force by pressing or pulling on an area.  An area is the product of lengths in two 

directions.  Because we have modeled the cylinder using a two-dimensional flow, one of the dimensions 

on which the pressure presses is the distance into the page.  For the moment, letôs assume that we look at 

the pressure acting on an area whose depth into the page is given by .  The second distance we can use to 

define an area could be a small arc of the circle representing the surface of the cylinder.  An arc short 

enough to be considered straight has a length equal to the cylinderôs radius  multiplied by the small 

angle subtended by the arc as seen from the center of the circle .  Therefore, the small bit of force 

which the over-pressure exerts on the surface in the immediate vicinity of the point located at angle  is: 

 

 

 

The depth  into the page is arbitrary.  It makes most sense to standardize the formulae by setting  equal 

to a unit length, say, 1 meter.  Then, the forces   and  are the forces per unit length, say, per meter, 

of depth into the page.  On this basis, we get: 

 

 

 

The minus signs exist to suit our requirement that a negative over-pressure ñpullsò the surface in the 

outward direction.  We can add up the small bits of force  all around the cylinder as follows: 




