An examination of theJoukowski airfoil in potential flow , without using complex numbers

A Joukowskitype airfoil is one whose profile is described by a mathematical transformation pioneered by
a Russian aerodynamicist, Messr. Joukowski. Islbaseconvenient mathematical propertidsor

certain simple forms of the transformation, the mathematics are particularly elegant when tackled using
complex numbers. For more complicated forms of the transformation, the complex number
representatiois not souseful. This paper keeps the analysis in the domain of real numbers.

In the first part of this paper, we will do our best to construct a Joukowski airfoil as similar as possible to
the one used on early versions of the Cessna 172. In the segooéthis paper, we will look at

potential airflow in two basic configurations. In the third part of this paper, we will show how the
potential airflow around a Joukowski airfoil is the combination of the two basic fldtws.objective of

the fourth, and laspart of this papes to find expressions for the lift, drag and momerdgeneral

form Joukowski airfoilusingthe Cessna 172 airfoil anumerical example.

In a subsequent paper, we will test gxpressionsfor theforce andmechanical momentagainst
simulation results from the OpenFoam program.

Part | i Constructing the airfoil

Letd beginwith a circle, vhose radius i®, and subject it to tweuccessiveo-ordinate transformations.
First, we will shift the circle to the left by distanfend upwards by distange Then, we wil/|
the shifted circle using a Joukowski transformatidhe stepdook like this.
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It is convenient to use three sets ofardinates(xg, yg) for points in the plane of the original circle,
(x5, y5) for points in the plane of the shifted circle &mpelg) for points in the plane of thealworld
airfoil. Considerany pointwhich lieson the origin circle. It maps onto a point on the shifted circle
which, in turn, maps onto a point on tieatworld airfoil.

The equation of the original circle is:

x+y5=R* (1)
Although we have defined a Cartesigry plane, itwill be handyto use polar cordinates as welllf
we defineangledg as the polar angle of poi(ty, yo), measured count@tockwise from thelg-axis,

then we can describéle co-ordinates of thpoint as:

Xo = Rcosfg yo =Rsinfg (2)



The shift (or translationyhich constituteshte first transformation takes any po{at,), yg) = (R, 6g) on
the original circle andnapsit into the point on the shifted circle whoseaalinates are:

xSZRCOSGO—f} 3

Ys = Rsinfg + g ®)

The Joukowski transformatipmwhich we apply nextakes any poinfx,, y;) on the shifted circle and
mapsit into the point on therealworld airfoil whose ceordinates are:

N b?%x,
P=Xt g
* x.S?-I_ySZ (4)
g =y - DY
Toxd 4y’

whereb? is some constant. Equatiés) for p andg can be written in terms of the -wodinates of the
generating point on the original circle as:

b2(Rcosbg — f)
(Rcosbg — f)? + (Rsinbg + g)?
b2(Rsinfg + g)
(RcosBg — f)? + (Rsinbg + g)?

p=(Rcosby —f) +

)

q=(Rsinfg+g) —

As 0, increases frond° to 360°, the corresponding point in tig-y plane runs around the
circumference of the original circle and the corresponding point in-thplane makes one
circumnavigation of the outle of therealworld airfoil.

The following three graphs showrée dfferentkinds of shapes which can be generated using different
combinations oR, f, g andb.
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The transformations are really quite versatile. Look at the folloparsgibility.
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Generally speaking, parameteinfluences the overall horizontal width of trealworld airfoil,
parametelf influences the horizontal asymmetry, paramgtarfluences the vertical asymmetry and

parameteb influences other feature§o t he shape. These

observations ¢

the four parameters are highly intertwined and chanamygpne changes everything.

The early Cessna

meters.

1726s haflta @gfigsesmai mewhhnggathbka
that portion which formed the roof of the cabin) and a wing span of 35 ft. 10 in. Dividing the former by

the latter gives an average chordi@56 ft. The wing was tapered so that the chord at the root was 5 ft.

4 in. and the chord at the tip was 38 in. The average of these two extremes differs slightly from the

average chord because the center section, over the cabin, had a constant profile. For our purposes, we

will use the average chord of 4.856 ft. or, because we will do all of our cadaigl@ti S1 units, 1.480

The profile of the main wing was the NACA 2412 section. | will not get into the NACA specifications
here, because we cannot duplicate this section exactly via Joukowski. Suffice it to say that: (i) the
maximum thickness dhe airfoil was 12% othechord, (ii) the maximum camber was 2% of the chord
and (iii) the point of maximum camber was located 40% of the chodd tifé leading edgel will also

cite here, as an aside, that the maximum cruising speed of the ealyGe$ s
meters per second.

was 140 mph, or

Our task is to fincdhcombination of the parameteRs f, g andb which approximates he Cessna 17286
main wing. One approach is to inspect tfig q) co-ordinates using Equatiais) andto derive

expressions for the chord and thickness. This can be done but the useful results are only approximate and

do notaddress the camber. Another, and often better, approach is visual. A short Visual Basic program

which plots NACA and Joukowski profit for comparisopurposes s
hereto. Fotwo differentses of the parametershe resultdook like this

i sted in Appendi x

T e

NACA in black Joukowski in red

Parameter set2#




Which Joukowski profile better approximates the NACA 2412 profile? | purposefully did not show the

relevantparameters in thigguresabove in order to illustrate the pitfallsf a strictly mathematical
approach to comparison. In my judgment, the upgpakowski profile is better, but the lower Joukowski
profile has betteparameters Let me show the details.

Cessna Upper diagram| Lower diagram
Parameter NACA 2412 Joukowski Joukowski

Joukowski R n/a 0.4051 0.4051
Joukowski f n/a 0.03069 0.03697
Joukowski g n/a 0.02032 0.01622
Joukowski b n/a 0.3672 0.3672
Chord (meters) 1.480 1.480 1.481

max camber 2.00% 2.52% 2.02%

max thickness 12.00% 11.44% 12.00%
camber point 40.00% 49.24% 50.10%
thickness point c. 40% 26.59% 25.18%

The lower Joukowski section has the same chord, camber and thickness as theNA&Chut does not

il ookd as cl ose. Part of the reason i shichhat
cause them to differ from airfoils commonuse:

1. adroop in the nose section;

2. a more bulbous, or rounded, nose and

3. much more curvature in the aft half of the chord.

Forthe purposes of this paper, eitdeukowski airfoil vould do. We will proceed using thlane in the
upper diagram, for which:

R = 0.4051 meters

f = 0.03069 meters

g = 0.02032 meters (6)
b = 0.3672 meters

Part |11 i Understanding airflow using a velocity potential

What isfipotential flowd? Air has a couple of propertiéscompressibility and viscosifiy which make

the mathematics of modeling things moving through air quite difficult. Moving things have a couple of

properties of their owi three dimensions and acceleratiowhich make tk mathematics even more
difficult. Potential flow is the flow of air, or any fluid, in which all four of these inconveniences are
ignored. In other words,
and (iv) inuscid. Even in the face of so many assumptions, one can still get useful results. In a little
more detail, the meanings of these four assumptions are as follows.

Steady That the pattern of the airflow is constant with time.

Jouk

a i r-firheasional, §i) intgmpressiblet | al o

Two-dimensional That he pattern of the airflow is simple enough to be analyzed in two dimensions, not

three. Since all bodies have three dimensiohs, ftow of airwill always be ahreedimensional affair.
However, if one dimension of the body is relatively long, it maghiaéthe flow over parts near the
Ami ddl edo of that di mension is not too much
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affect



the airflow near the middle of the long dimension can be approximated as being constant fra point
point along e long dimension. In other words, the airflow in a csEsion perpendicular to the long
dimension can be analyzed using only two dimensions.

Incompressiblé That the mass density of the air is const a
compressibility is important in many situations, such as the analysis of sound waves. However, many
situations involve air moving in bubkind relatively slowlyand here the compressibility can often be

ignored. The analysis of air flowing at low speeéro® curved surface is one such case. That the density

is assumed to be constant does not prevent a high
the block in the direction of lower pressure.

Inviscidi Inviscid is a fancy adjective usea describe viscosity and, in particular, describes a condition

of no or extremely low viscosity. Molasses has high viscosity. A puddle of molasses will flow down an
inclined surface very sl owly. Ther esseswhicha | ot o
prevent fAblocksodo of molasses from sliding easi/|l
but, in some situations, cannot be ignored. For example, it is the viscosity of the air which prevents it
from sliding smoothly overawign6s sur face and so gives rise to bou
air which gives rise to vortices. In fact, the assumption that the air has no viscosity is tantamount to the
assumption that small volume elements of the air do not rotateal\wlume element of an inviscid

fluid may be stretched and elongated as it slides alongside neighbouring volume elements, but it will not

rotate. Therefore, an inviscid flowadso calledanfirrotationab flow.

f
y

Letd Bnagineanarbitrary pattern opotentialairflow in a twedimensionak-y Cartesiarplane. The

location of any poinin the plane can be described by itsozdinates(x, y). Consider now somegion

in the plane where there is air flowing. (Tharay be regions, such assideanairfoil, where therewill

not beanyair flowing.) We can describe the velocity of the air at any point using a Viéctomill

change from point to point in the plane, but it will not change with time, since the airflow is assumed to
be steady. If weonsider all of the velocitigé at all of the points in the plane where there is air, we can
call the set of velocities a Avector fieldo.

If we pick from all the velocities in the vector field a subset where the velocities are successivdty head
tail, then that subset describes a streamline. A small volume of air which is sindarsline at some
point will always be on this streamline

If the airflow is irrotational, then the streamlines will not circle back on themselves. The velocitids in an
aroundanypoint in the vector field will not curl back on themselves. Mathematically, the measure of the

curl of the vectors in &XW.ectTohre fifidédsladetiafgpatial avteonr by
derivatives and the vector cregoductX matches up those derivatives with the vectors in the vector
field in a way which measures any net circular tengef®r an irrotational flow:

VXV =0 (7)

Now, it is an identity of scatdieldsi a fi s ¢ a |Ibe@inga sktiofesihgte @umbers, one per point in the
X-y planei that:

VX (Vf)=0 (8)

wheref is any scalar fielsandV andX arethe del operatoandthecrossproductonce again.



If the velocity vector field’ satisfies Equatioli7), then there must exist a scalar field, which we will call
@&, which satisfies Equatiof8) and can be written as:

V=Vo (9

That is not to say that it is easy to figure out what scalar diegénerates the vector field| but a scalar
field @ must exist nonetheles®Ve would always like to find the scalar field for a vector field because, if
we can find it, a lot of the mathematics is simplified.

Equation(9) is the mathematical expressishich describean irrotational vector field.

Incompressibility hais ownmathematical expressiotf the airflow is incompressible, then there cannot
be any net flovof air into or outf any given ay givenvolume of space. If a certain quantity of air

flows into the specified volume through one side, then an equal quantity of air must flow out of the
specified volume through its other sid€3therwise, there would be an increase or decrease in the amount
of air inside the volume, which would require that it be poeased or rarified, respectivelyhe

mat hemati cal measure of the net outflow from a

V?V. This s the del operator agabut this time applied to the vector field via the vector-piaiduct-.
The dotproduct matches up the spatial derivatives of the del operator with the vectors in the vector field
in a way which measures any net outward tengleRor an incompressible flow:

ViV =0 (10)

For the inviscid and incompressible flethat we ardooking at in this paper, both of Equatiof$y and
(10) must be satisfied. If they are, then we can combine them as follows:

V=0
- Vi(Ve)=0
- (V*V)e =0
-  Vo=0 (11)

whereV? is called the Laplacian. The scalar figigdwhich has these wonderful properties (only for
steady, inviscid, incompressible flow) and which gives rise to the velocity vectoVfiddalled the

fifvel ocity potent i aThioughlongtshge, the pame of this sicadat funtibre | d o .
velocity potential came to be appliedto any fldwa f p ot e ni which batisfies thesensimplifying
assumptions.

Air flows from points with low potential to points with high potential. (This is the convention for airflow.
The conventia for gravity, for example, is different: a mass will move from points with high potential to
points with low potential.) The spe&dof the air in thed-direction at any point will be equal to the

slope of® with respect tor at that point, thus:

Ve = i 124

Similarly, the speedl, of the air in they-direction at any point will be equal to the slopebofvith
respect tgy at that point, thus:



o
h=g, (2B

Together Equationg124) and(12B) mean thattha i r [ty avagy point can be written as:

V =Vx+Vp
o 0b

One can think of the scalar fiefelasbeinga surface of hills and valleys over thg plane. At all

points, the air tries to climb uphill as steeply as possible, at right angles to lines of constams of
constant are like the contour lines drawn on this surface. The air moves at right angles to lines of
constantp, in the diection in which® increases most steeply.

It would be usefuif we couldidentify a second scalar figlosh which the air movealonglines of

constant Awhat ever 0, am®sdines of cosstadt patentidipThis geeondd i c ul ar |
fedwoul d have to be Aper pelikeduphdl LUdovenhildines drawh dtressfhe® t e nt i «
contour lines on a contour map. They wouldike doublediamond ski runs on a ski hill.

Mathematically, theslopes of this secoratalarfield would be the negative reciprocal of the slopes of the

potential field. (There are two slopes, one indkdirection and one in thg-direction. Only one of them

should be the negative reciprocal. Taking the negative reciprocal of both slopes wouldwwimibig

surface upside down. By convention, the negative reciprocal is itakeex-direction not they-
direction) If we let this second scalar field be represented fen its derivatives must be equal to:

v L (1a

sowe can al so express the airés velocity at any po

Since the airflow isriviscid, it must still be the case thaK ¥ = 0. Therefore:

_0% %
dx 0dy

_ d ( (’ﬂI/) 0 (6111)
Cox\ ox dy \dy
0%y 9%y
=—— 4+ —
0x? = dy?
= -y
so that:

Vg =0 (16)
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It happens, then, that the Laplacian®aind¥ are both zero. The scalar fiéitlis called the
istr eaml i sineelifies of cohstakt aréthe pathtaken bylittle volumes of aifes they pass
through the region of interest.

To illustratethe two scalar functiongetd sonsider the steady flow of incompressible and inviscid air
around an infinitely long cylinder. A typical cressction of the pattern of this airflow is showrthe

following figure. The air approaches the cylinder from the left (in the direction of the pogiaxes)

with speed/,,, where the subscript denotes that this is the speed so far upstream that it is not affected by
the presence of the cylinder. Téyinder has radiu®. (I will usethe symbolR for the radiugo avoid

any confusion with the radiuswe used in the previous section to generate an airfoil.) Any particular
point in the airflow can be located by its polarardinates: distancefrom the center of the cylinder and
angled with respect to th&-axis.

A y-axis
Uniform potential flpw past a cylinder
2 I I — 11
4
2 -
' radiusr |
' R
Voo 9
0 > X-axis
o I xh_.____—-_‘_—- Il
-6
-10 -8 -6 -4 -2 0 2 4 6 8 10

The graph shows 11 streamlingsased apantertically (far upstream) bthedistancgR. All of the
streamlines are shown in black except for the central one, which is shown in red. The red streamline
approaches the cylinder deagnter. The air in this streamline comes to a stop at the surface of the
cylinder. There, it splits into twayith some of the aisliding over the top of the cylinder and the rest
sliding over the bottom. These two red streamlines rejoin at a stagnation point diametppathedo

the oneatthe leading edge.

Each of thell streamlines corresponds to a constant valdg. oln fact, the streamlines werktied
usingan Excel spreadsheet by finding the poatteach value of which hadthell givenvalues of¥,
as determined using the first of Equatigh) from below

I have also plotted in light blue nine ipotential lines. To avoid clutter, | did not plot their symmetric
counterparts in the bottom half of the plane. Each light blue trace isadimgwhich @ is a constant.
The values o | selected for pltiing were the values @ on the surface of the cylinder at angle® of
equal tol°, 20°, 45°, 70°,90°, 110°, 135°, 160° and179°. ltis clear that the ispotential lines anthe
streamlines intersect at right angldhese lines were plotted usitige second of Equatiori$7).
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What | have not told you yet is what thguations for thecalar fieldsP and® actually are. For any
point in the airflow whose radial distanceriand whose polar angle és the value of the streamline
function and ptential unction respectively, are:

RZ
Y= er<1 —r—2>sin9

22 a7
D = Voor<1 +r—2)c056

Before proceeding, let me generalize the free stream $pedtittle bit. In the graph above, the uniform
airflow is from left to right, in the direction of the positi¥eaxis. This is not always convenient. More
generally, we can envision the air flowing uniformly from the lower left towards the upper Vigghtan

still take its speed at a tawaydistance to b&,,, but its directiorfar upstreanis to theright and

upwards. Itis customary to defineanangie@s t he angl e at which the air
versa. The following figure showise convention, in which is the acute positive angle between the

direction of the uniform airflow and theaxis.

uniform airflow atl,

> T-axis
/

To includethis geometry, the streamline and potential functions in Equétibnare rewritten as:

:RZ
Y ="V,r <1 — —2) sin(0 — a)
r
5 (18)

R
& =V,r <1 + r_2> cos(6 — a)

We can calculate the velocity of the air at any point around the cylinder using either functi@usket

the potential field, and find the velocity by taking the gradiEnt V&. Because the potential field is
expressed in polar esrdinateg(r, 8), it is easistif we use the del operator in polar-cadinates, too. (I
have attached as Appendi®0 a quick review of vector operations in tvadmensions.)

Flv( 1 ® 0 |%4 0 9 (% +
7| Voo +r_2 cos(8 — a) + V7 cos( —a)a sy

+§1V 1+:R2 g (CEN))
" T 3 69COS a



and, continuing:

) R? —2R?
7 [Veo| 1+ — | cos(@ — a) + V.7 cos(0 — a) 3 +
r r

:RZ
Voo (1 + —2) [—sin(6 — a)]]
r

<!

40

R? ~ R?
=7 [Vwr <1 — r_2> cos(0 — a)] -0 [Voo (1 + r_2> sin(6 — a) (19

This is thevelocity of the air anywhere outsid# the cylinder. At any point,# is the unit vector pointing
outwards, in the radial direction, and its coefficient is the spetair in the radial directiord is the
tangential unit vector, meaning that it is tangent to the etgimered circle passing through the point,
and it points in the direction in which and@lencreases. Its coefficient is the speed of thenaine
tangential direction(Since anglé is referenced to th&-axis, which points downstream, it happens that
the tangential unit vectdr actually points upstream at points in the upper half oktfigolane shown in
the figure above.)

Now, Equation(19) is very general it is the velocity of the air at all points outside of the cylinder. Let
us now consider only those points which anethe surfacef the cylinder. The radiusof points which
are on the surface is equal to theima® of the cylinder. At those points, Equati¢o) simplifies to:

= —2V,sin(@ —a)8 (20)

|surface
On the surfacghen,t he r adi al component of the airés velocit
along the surface. The speed atahht slides along the surface is the tangential component of the
velocity, —2V,, sin(@ — a). The minus sign has the following meaning. Whi@6 — «) is positive,
the minus sign indicates that the air is moving in the direction in which artiereaseghat is, from
right to left. sin(8 — ) is positive for angle8 — « in the range fron®° to 180°. Generally speaking,
this corresponds to the top side of the cylinder (at least when the air is approaching more or less from the
left and the angle of attkés not unusually large). Similarly, points on the bottamiaceof the cylinder
correspond to points whesm(6 — a) is negative so that theéangential component of the speed is

positive. Here, the positive sign indicates that the air is moving in the direction in whicl®angle
increases, that is, from left to right once again.

The points of maximum speed are reached vshef® — a) = +1 andfé — a = +90°. When the angle
of attack is zero, these two points axacty at thetop and bottom of the cylindekVhenthe angle of
attack changes, the points of maximum spe#ldchange as wellBut, the speed of the air at the two
points of maximum spekwill remain attwice the free streamirspeed/,.

Some readers will have been disappointed at how the equations for the two scalar fi#hatidds in
Equation(17)above, appeared so suddenly, al mostdoout of
Such is life with these scalar functions. Neither mathematics nor iiifagisd them only luck. So, how

does one know if one got lucky? There are two tests. The first is: the functions have to satisfy the so

called boundary conditions. They hawematch the physical boundaries of the situation. In the case

above, they do. They allow for a cylinder of just the right diameter and they allow for a uniform airflow

far away from the cylinder. The second test is this: the two functions havetoyatid. apl ace s equ:
This we have not done, an oversight we will now remedy.
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Aside to verify that the Laplacian is satisfied

We should be able to confirm tHét¥ = V2@ = 0 for the uniform flow. Since we used the potenti
field in Equation(19)t o cal cul ate the airoés velocity,
the Laplacian is zero. Since the streamline function is expressed in poldimrates, it is easier onc
again to use the polar-@rdinate form of the Laplacian.

w2y :Fa< 6)+1 Bz]lp

ror\ or) " 12392
10/ 0¥\ 10°¥
=75 (r5) *72am2
10 oY R?\ 10 0 R%\ .
:;Erﬁ er<1—r—2>sm(9—a) +r—2%%[Vwr<1—r—2>sm(6—a)]
19 R2  2R?\ 19 R?
= ;ar [VOo (1 =) +r_2> sin(@ — a)] +r—2%[er (1 _r_2> cos(0 — a)]
10 R2\ 1 R?\
=5 Vo <r+7>51n(0—a) —r—Zer<1—r—2>sm(8—a)

1 , RZ\ 1 R%\
=— [VOo sin(0 —a) — V,, (—2> sin(6 — a)] ——Vy (1 — —2> sin(f — a)
r r r r

1 R2\ 1 R2\
=—Vy 1_r_2 mn(Q—a)—;Voor 1_r_2 sin(@ — a)

T
=0 0.E.D.

Note thatthe cylinder does not experience any lift. Lift is the net fatgrg on a bodin the direction
perpendicular to the free stream. The cause is more subtle than just the symmetry of the cylinder above
and below the horizontal plan&@he geometry is not symmetric in the horizontal directionjloeit

cylinder does not experience amad either. Drag is the net foraeting on a bodin thedirection

parallel to the free stream, thatdgwnstream.To get lift, weneed toadda second kind of airflonotthe
uniform flow of air.

Adding a vortex to the uniform flow past the cylinder

In this section, we will add a vortex flow to the uniform flow gastcylinder We will begin by looking

at the vortex flow by itself. Physically, a vortex simulates the airflow around a rotating cylinder. If the
air has some viscosity, even a snaatiount, it will begin to circulate around the cylinder. Eventually, a
steadystate will be reached in which the air at the surface of the cylinder moves along with the surface
and the air at greater distaneesgolvesaround the cylinder more slowly.

Let me point out that a vortex flow, in which the air moves in circles, does not violate one of our main
assumptions, that the flow is irrotational. Let me explain why. A flow is rotational if there exists any
point in the flow, which we can imagine is epsd in a very small element of volume, in which the air
rotates around itself. In a vortex, ther@assiblysuch a point, at the very center of the vortex. However,
in the case at hanthecylinderis at the centeand there is nairflow inside thecylinder. Outside the
cylinder, where there is airflow, there are no such points. While small elements of volumevoiey
around the center of the cylinder, the air inside them doa®tadtaround itself.

The potential dinctionand streamline foction for a vorteXluck arrives, in the form of m&jre given by:
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= ( d )1
= . nr
® = (r )e
2
wherer is the vorticityi the strength of the vortéxandin r is the natural logarithm of.

Notwithstanding that #vortex existphysicallyonly if air has someiscosity, theséwo fields still
satisfy the Laplaciarthus

(21)

VZW_1a(a)+1azlp V2¢_16(6)+162¢
~ror Tar r2 002 “|ror rar r2 002

_ (F)la(alnr) _(F)l 6(69)

B 2] ror or ~\27/)r2 06 \a6

_ (F)la(r) _(F)l 6(1)

- 2n)ror \r “\2n/r2 06

B (1")16 D _0

B 2T rar( N

The streamline functiol¥ becomes infinite at = 0, at the center of the vorte¥ortunately, there is no
air at that point, so we need not be concerned about the mathematical singularity there.

As always, thevelocity of the ailis given by the gradient of the potential functidh = Ve:

V =Vo
—(*a+916)¢
“\"ar " 70
5 109
r 0o
~/T'\100
0(i)i%s
2m/r 08
_1 ( d ) 6 22
T r\2m 22)
The velocityhas no radial componeritis entirely angential At every point, the air moves in a circle
around the center of the cylinder. Therefore, the streantfiraag circles around the cylinder and the

lines of constant potential are straight lines which pass through the center of the cylinder. Nbg also
the tangential speed of the air is inversely proportional to the distdrmm the center of the cylinder.

Let me say a quick word about the minus sign which precedes the vdrtinithe streamline function
¥. Looking at Equatiori22), it is clear that the air moves in countéockwise circles (in the direction
of increasing angle®) when the vorticity is algebraically positive. This

direction corresponds to tifeaxis whichwould exist in a conventional y-axis
right-handed cebrdinate frame, as shown in the figure at the right. If r

this vortex is added to a uniform floef air from left-to-right, then the

higher speed air will be on the bottom. This will result in the lift force q;'é_axi; X-axis

acting downwards, in the direction of the negatvaxis. Thiscould be
inconvenient, but is easily rectified by using vortices with negative
algebraic values, which circulate in the clockwise direction
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Interesting things happen when we combine theoamifairflow past the cylindeand thevortex. For the
combined airflow, the scalar fields are:

R? r
Y =Ver|({1——|sin(6 —a) — (—)lnr
T 21
2

R r
b =V,r (1 +—2> cos(0 —a) + (—)9
r 21

(23)

Are we allowed to simply add up the scalar functions? Yes;am add up the scalar fields of two
potential flows knowing that the result will also be a potential flow. This is the case because the
derivatives which operate on the scalar fields are lihdlae derivative of the sum of two fields will be
equal tathe sum of the derivatives of the individual fields. For example, if the Laplacians of the two
fields are separately equal to zettegnthe Laplacian of their sum will also be equal to zero.

The following figure shows the pattern of a uniform flow anaeex around a cylinder. Different

patterns occur for different values of the free stream siigeithe angle of attack, the vorticityl” and

the cylinder radiu®. For the curious, the following pattern was obtainsidgV,, = 4, « = 15°,

I' = —40 andR = 2. The geometry is a little too complicated to be managed entirely on a spreadsheet,

so the Visual Basi c @br avarsa m sleids tt eod ciad cAp md red it h efi s

A y-axis
Uniform plus vortex flow around a cylinder
4
s | y® radiusr ‘
5 , %'\‘QZ/ ——
sy e
Ve r| — ——  r-axis
I ©———I
| —
%% — | SP#2
0 %/ CSP#1
-8 é/
-10 ‘
10 8 6 4 2 0 2 4 6 8 10

The surface of the cylinder is shown in greleat it is almost hidden behind the red streamline which
flows on the surfaceAs before, the cylinder has radi'sand any point in the airflow can be identified
by its polar ceordinateqr, 8). The direction of the uniform flow, is shown by the arrow at the left.
The direction of the vorteK is shown by the arrow inside the cylind&incel” was given a negative
algebraic valuethe two flows combine so that thaflow has its highest speed on the top side of the
cylinder.
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The streamlines are shown in blaakth the exception of thewvo streamlines nearest the cylinder, which
are shown imed. | have not shown any lines of constant potential, which would be a grid everywhere at
right angles to the streamlines.

| selected the streamlings beplotted so they are equally far apanttheverticaldirection,far upstream.
Clearly, the swamlines which pass over the top of the cylinder are compressed together to a greater
extent than those which pass along the bottom. This indicates greater speed on the top side than on the
bottom side.

The incoming airflow comes to rest at stagnatiomip@l (labeledP#1 in the figure) on the surface of

the cylinder, before splitting, with soneé the airflowing over the top anthe resflowing under (over?)

the bottom. There is a similar stagnation paiit2) at t he At r aindei, whgretbedaig e 6 o f
comes to rest again before flowing downstream.

The particular streamline which actually intersects the cylinder at the stagnation points is not shown in the
figure, but it can easily be imagined as the-tinid between the two red s@mlines which are shown.

Far upstream, removed from the influence of the ¢
sloping from the lower left to the upper right at the angle of attable. angle of attack used to produce

the graph wag5°. Note that tle stagnation streamline is natstraight line as it approaches the cylinder.

It begins to slope upwar@g an anglevengreater than the angle of attackimilarly, the stagnation
streamline does not A prlicecither.dAs ond goesfgther amchfumthea s a st r
downstream, and the influence of the cylinder decreases, the stagnation streamline curves back into line

with the uniform flow. Far enough downstream, the stagnation streamline will once again be a straight

line angledupwardsat the angle of attack.

If the vortex is generated by a rotation of the cylinder, then the speeti &f ¢ y rbtationccanhe s

varied independently from the speed of the uniform flow. As the speed of rotation increases, the increas
in vorticity wil!/ increase the amount of At wisto
cylinder.

Now, let us look at what happeas the surfacef the cylinder itself. The surfacesslected
mathematicallypy setting theadi r of the poins of interest equal to the radius of the cylinger
Therefore, on the surface of the cylinder, the streamline function in Eq@agpmneduces to:

r
l‘Ulsurface = - (E) InR  (24)

This is a constantTherefore, W points on the surface of the cylinder have this valu# .of Since a
streamline is defined by its value ¥f if follows that there is onlgtreamline floving along the surface
of the cylinder.

Now, let us considesome othepointswhichliefi jtusout si d e 0 ¢amdee fsiunref aficjeu.st Vdeu |
as being points where the radieslightly more, bysomefractione, say,than the radiu® of the
cylinder. For those points, for whieh= R(1 + €), the streamline function in Equati¢®23) becomes

2

l1"|just outside = Vo R(1 +€) (1 — R2(1 + €)?

]sin(@ —a) — (%) In[R(1+¢€)] (25)

For very smalk, we can use the Taylor series expansionssabdequergpproximations that
1/(1 +€)? =1 — 2e and thain(1 + €) = e. This way, we canpproximaté? | st outside as:
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Y just outsize = VoR(1L+ €)[1 — (1= 26)] sin(8 — @) — (%) [InR +In(1 + 6)]

r
= 2V, Re(1 + ¢€)sin(0 — a) — (ﬂ) (InR +¢)

r r
=— (—) InR + [ZVOOR sin(@ — a) — —] €+ [2V,Rsin(6 — a)]e?
21 2m

r
= Y|surface + [ZVOOR sin(6 — a) — E] € + [2V,Rsin(f — a)]e?

r
= Wsyrrace + [ZVOOR sin(6 — a) — E] e forverysmall e (26)

These approximations become bettet gsts increasingly smaller, and become exact whemaches
zero.

Look at the coefficient of, in the square bracket§ here could be circumstances where this coefficient
is zero even wheaitself is not zero.The entirec term will vanish at these points, which will therefore
have the same value ®fas the points on the surface, even though they are just oilisidarface. By
definition, trese pointgust outside the surface alke on the stagnation streamline.

We can figure out which points these ardihging the values of angke which cause the coefficient ef
to equal zero. For the moment, letaslcl t hese points dAcri Bifocthelrd poi nt s
polar angles. Setting the coefficienteodéqual to zero at these angles gives:

r
2V, Rsin(6, — @) — o= 0

- sin(f,—a) = AR

)+ a 27)

> G =sin™ (4an33

Since the inverse sine funatiproduces two angles around the circle for the same value of its argument,
there will be two angle8. for any given value of” /4nV,,R. These two angles correspond to the two
stagnation points or, more precisely, to the upstream and downsitagmation streamlines or, even

more precisely, to the points just outside the surface where the upstream and downstream stagnation
streamlines arrive at the surface. In other words, these two angles describe the polar angles at which the
upstream and dawstream stagnation streamlines intersect the cylinder.

Let us consider the simplest case, where there is no \airtdk WhenI" = 0, the term inEquation(27)
reduces tain~1(0), which has the two valu@sandr. The two corresponding critical angle#lwhen
bef. = a andf,. =  + «a, respectively. The latter poinbrresponds to the upstream stagnation
streamline, whose intersection point laksectly in the eye of the windThe former point corresponds to
the downstream stagnation streamline, sehimtersection point in this zevorticity case is the trailing
edge.

For the values used to produce the plot above, which were listed in the text just before the graph, the
argument’/4nV,, R is equal to—40/(4m x 4 x 2) = —0.398. The two values ofin~1(—0.398) are
—23.45° and+203.45°. Adding the angle of attack5°, gives intersection angles $£218.45° and

—8.45°. The former is the angle around the cylinder at which the upstream stagnation point is located;
the latter is the angle around the cylinder of the downstream stagnation point.
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Adding the vortexhasmoved both stagnation poiritsthedownwardddirection, colloquially speaking,

towards the bottom of the cylinder. As the speed of rotation increases, the two stagnation points will

continue to shift downwards. As the speed of rotation increases even further, there will come a speed at
which the two stagriin points merge on the bottom surface. As the speed of rotation is increased even
further than that é wel |, I |l eave you to work tha

Usingthe potentiabndstreamline functios) we can calculate the velocity of the air anywhere outside the
cylinder. In fact, we can calculate the velocising either one of the functions in Equat{@s3).

Suppose we use tipotential functiorthis time around The radial component of the velocity is given by
the radial derivative of the potential functionyush

(3<D

-SJorfs+EJeso-o (L)
e[ 7 (e

=V, <1 2 )cos(e —a) (284)

and the tangential component of the velocity is given by the tangential derivative of the potential function,
thus:
109

Voo =7%
10 R? r
=39 V. r<1+—>cos(9—a)+(2n)0]

1 RZ\ r
—;er 1+r_2 sin(f — a) + =—

2nr

= -V 1+:R2 in(@ )+ I 28B
= -V, 2 sin a oy ( )

These are the components of théar v eat anycpoiriagound the cylindemot just on the surface.

While it is nice to know the velocity field, whate usually preferto know isthe pressure at points on the

surface of the cylinder, from whicke can calculate the forces actingttwe cylinder That is what we

are going to do now. We wi | | start t hheswfacal ysi s
Philosophically, the air can react with the cylinder only at points where they make contact, and those

points of contact are the surface of the cylind&he velocity of the air at any point that is not on the

surface has only an indirectfiuence on the pressure on the surface, through its participation in the whole
physical process which determines the velocity of the air on the surface.

Restricting our attention to the surface only, then R, and the components the velocityin Equations
(28) reduce to:

V;lsurface =0

r (29)
VGlsurface =2V sin(@ — a) + TR
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As before, there is no radial component of the velocitlge air slides along the surfateough various
angles of. There happen to be two pointsadiich the tangential componeoft the velocityvanishes
hereas well. These two points are, of course, the stagnation pdinésangle®, arecalculated by
setting the tangential component of the velocity to zero, upon which we get:

r
2V, sin(fg — a) = —

2mR
- sin(f;, —a) = LR
— oin—1
- 05 =sin (4anR) +a (30)

These angle8; are exactly the same as the anglesThey mean different things, though. The critical
anglesd,. were determined for points located just outside of the surface of thearylihd angle§, were
determined fopoints which are exactly on the surface. That their values turn out to be the same actually
tells us something new: that thagnation streamlines intersect the surfaiceght angles.

In any event, we now havedalightfully simple expression in Equati¢R9) for theair speed at all points
on the surface of the cylindem the followingdiscussionwe will have need for the square of the speed
on the surface of the cylinder. For convenience, we will whiae down here, as:

1—' 2
V2 — [, sin0 -0 - —| @1
|surface sin( a) TR 31

Ber n o Brindipled s

Bernoullids Pri nci pthegeneral observatipreabdutandtureahateherggisnt i on of
conserved. In our universe, energy is, in fact, conservVad.amount of energy which exists after any

event or series of events is the same as the amount of energy which existed bbeEneoligidering a

specific event or series of events, it can sometimes be a puzzle to figure out what form some of the energy
took, but it is always the case that the total energy in a specific event or series of events can be entirely
accounted for and does not change.

Messr. Bernoulli was the first to apply tlibservationd the flow of air. He reasoned that thetal
enery which any littleelement ofair has mustemain constant as thiitle element of air travelalong a
streamline.That little volume of aipossesseseveral different kinds of energyOnekind is its net
kinetic energy, being the energy of its physical translation. Ang&thdiis its gravitational potential
energy, which changes as the liglementof air rises or falls in the gravitational field of the Earth. A
third kind is thekinetic energy bthe atoms inside the little volume as they move about. This sort of
energy is affected by the temperature, pressure and density of the air. Adodiththe energy of the
little volume due to its rotation, which is the kinetic counterpart of its kieekcgy due to translation.

What Messr. Bernoulli figured out is that the sum of these difféiads of energy is a constant as the
little volume elementravelsalong a streamline. For inviscid air flowing at low spesatt pedominantly

in the horizatal direction, two of theskindsof energy are much more significant than the others. They
are: (i) the kinetic energy of translation and (ii) the energy due to the static pressure.

Theenergy due to the static pressoam be thought of as thetal amount of energwhich would be

required(and was requiredd bring together from infinite separation all of the atoms irlittie volume
element. The atoms are pressed together and, given a chance, would want to spread themselves apatrt.
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Here, in thdower atmosphere of the Earth, the atoms are kept pressed together by the aggregate weight of
the air which extends five or ten miles above the volume element.

Bernoullids Principl(eafiopot edistfiermtiten@:.leow)y pe of f 1l o

%pV2 + p = constant along a streamline (32)

where:

o p is the (constant) density of the &ito not forget that we have assumed incompressibility)

o V is the speed of the air atyapointalongthe streamline; and

o p is the static pressure at that point.

We are interested in Bernoullidés Principle becaus
the cylinder. To use Bewemeedtbknowihe sghare ohtleisgeédef f or t

the air at the points of interest. Fortunately, we know this for the points on the surface of the,cylinder
and wrote it down ifequation(31).

All of the points on the surface of the cylinder, batithetop andon thebottom, are on the streamline

which passes through titwo stagnation poirst Since they are all on the s
Principle can be applied themas follows:

Geve+p) = (372 +9)

1
= EpV2|5urface + plsurface

stag point surface

2

r
1 .
= Ep [ZVOO Sln(9 - (,Z) - ﬁ + plsurface (33)

What | have done here is set the energy at the stagnation point (on-tientb&ide of the equation)

equal to the energy at any point on the surface (on thehiégit side of the equation). Using the

stagnation pointsa sort of reference point for Bernoulli s
stagnation points, thepeed of the air is zero

SettinglV’ = 0 at the stagnation points on the {b&ind side reduceke previous expression to:

2

r
1 .
plstag point = 3P [ZVoo sin(6 — a) — ﬁ] + plsurface

r 2
- plsurface = —%,0 [ZVoo Sin(e - a) - ﬁ - plstag point (34)

Whatever its valuen|s;qg point IS @ constarfior our rotating cylinder. hksofar as Equatiori34) is

concernedp|stqg poine 1S the same for all points on the surfadée righthand side oEquation(34) is

an expression for the pressuiiferencebetween the pressure at any point on the surface and some

constant, whi ceferencepressabaThis ia doing td vioek oufifine for our purpos¢he

netforce acting on the cylinder is the resultant of the pressures acting all around the surface and is not

changed if we add or subtract some constant to all the measurements of pressure. Indghtvrenat

force does not depend on thiesolutepressures which act on the surface, but onlydlsivepressures.

Something else is interesting about Equati®#). p, V., a, I' andR are all parameters ttfie physical

configuraton Let 6 s examine the case where t heOnewésetnder r
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up the physical apparatus and set the cylinder spinalinfijye parameters are constafthe only
remainingvariable on the righband side of Equatio{B4) is the polar anglé. In other words, the

pressure difference at a particular point, with respect to the pressure at the stagnation points, depends only
on the angular location of the point.

Letd asethe symbolAp as thefloverpressure atthe point on te surface of the cylinder which is at angle
6 with respect to th&€-axis Over-pressuras not meant to mean that the pressure is necessarily a high
pressure. Isimply means thatp is algebraicallypositive if the pressure at tabjectpoint is geater

than the pressure at the stagnation pdikie can writeEquation(34) as:

2

r
1 .
Ap = —p [2Ve sin(@ — a) — e (35)

Let me say @uickword about dimensions. If the spdégdis measured in meters per second and the
density oftheair is measured in kilograms per cubic meter (the density of air at STP is drd0atkg/
m?3), then the units ofAp will be [kg/m3][m/s]? = [kgm/s?]/[m?] = [N]/[m?]. Newtons per square
meter is the standard Sl unit of pressure.

The following graph shows tteverpresure around the cylinder (in Newtons per square meter) using the
same numerical valuesin the preceding sectioif, = 4m/s, @ = 15°, I’ = —40m?/s anda = 2m.

| have shown the stagnation streamline (in red) to gibettelidea of the orientation of the msure

distribution. To meet the needs of the horizontal scale of this graph, | have extended the stagnation
streamline further upstream and downstream than in the preceding graph. (I will discuss the green line
below.) Therelativepressure at various jmbs on the surface is represented by the length and direction of
the black arrows. By its very nature, pressure acts perpendicularly to the surface, so the lines are radial
from the center of the cylinder. The vertical and horizontal axes of the gepbadedhe samein

Newtons per square meter. The length of the pressure arrows can be related directly to a corresponding
length on either axis.

Pressure around rotating cylinder
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Let me say a wordbout the pressure arrows. | have added arrows to indicate which walathe

pressure is acting. Once again, télativepressure is the amount by which the pressure at any particular

point on the surface is greater than the static pressurestagreation points. At the stagnation points

themselves, the relative pressure is Zafthough the absolute pressure is n@hn the top side of the
cylinder, the air is moving and so, by Bernoull i
stagnation points. Mathematically, the lower relative pressure arises from the minus sign in the expression

for the overpressure in Equatiof85). | have shown #lower absolute pressigaith arrows pointing

outwards from the surface.

Note thattheabsolute pressure on the bottom side of the cylinder is also less than the absolute pressure at
the stagnation poigtso the arrows theffer the relative pressusalsopoint away from the surface. In

fact, the absolute pressure on the surface ishessthe absolute pressure at the stagnationgoint

everywhere except at the stagnation points.

Because the absolute pressure on the surface is less than at the stagnagjdrhpeashown the relative
pressure fpull ing o uhebattondEéamoubtofthdfi paud | toh eosthedp f & red e
top and bottom Since the air on the top of the cylinder is moving faster than the air on the bottom, the

relative pressure on the top is less than the relative pressure on the bottom. Ther@iessure acting

upwards: lift.

It is a straightforward exercise to calculate the lift, by integrating thepressure in Equatiof85)

around the surface. Presstmeces both absolute and relative, act perpendidylar the surface they

abut At the point on the surface located at ar@jléhe radial vector which is perpendicular to the surface

has the same slope as the vector pointing from the center of the cylinder to the point. We can separate the
overpressure into its componemtp,, ading upwards andp, acting towards the right as follows:

Ap,, = Apsin 0
RN IED
Ap, = Ap cos B

Pressure exerts a force by pressing or pulling on an &mearea ighe product of lengths in two

directions Because we have modeled the cylinder uaihgo-dimensional flow, one of the dimensions

on which the pressure pressethie distance intothepagé or t he moment , l et 6s ass
the pressure acting on an area whose depth into the page is giveitfioysecond distance we casauto

define an area could be aalirarc of the circle representing the surface of the cylinderargshort

enough to be considered straight has a length equal tygltheetd s r (®dnmultiptied by the small

angle subtended by the arc as seen fitwrtenter of the circl&ld). Therefore, the small bit of force

which the ovetpressure exerts on the surface in the immediate vicinity of the point located & &ngle

dF, = —Apy (L X Rd6)
dF, = —Ap, (L X RdO)

The depth. into the page iarbitrary. It makes most sense to standardize the formulae by de¢tigl
to a unit length, say, 1 meter. Théme force dF, anddF, are the forces per unit length, say, per meter,
of depth into the page. On this basis, we get:

dF, = —Ap,Rdf = —ApRsin6 de} 37
dF, = —Ap,RdO = —ApR cos 6 dO (7
The minus signs exist to suit our requirement that a negativepovee s sur e fApul | so0 t he su

outward direction. We can add up the small bits of fdigeall around the cyfider as follows:
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