
~ 1 ~

Plotting OpenFoam forces and moments in real time

The following screenshot shows three separate windows on the console. If you are an OpenFoam user,

you will recognize the underlying window as the output from an OpenFoam job. The case directory is

ñ/joukowskiSimple#Dò, which is located inside directory ñ/airfoilsò in my home directory ñjim@jimò.

This information is marked by the arrow #1. OpenFoam is in the midst of iteration #5112 (see arrow #2).

The forces and moments are being logged to a file (see arrow #3).

A second terminal has been opened (see textbox #4), and the directory in it changed to the case directory.

In this directory, the command line ñpython3 fplot.py ò begins execution of a python file named

ñfplot.pyò (see arrow #5). This program ï ñfplot.pyò ï begins by summarizing the various force data files

which exist, and the starting and ending time/iterations which they contain (see arrow #6). Then, the

program asks the user to specify the force or moment and the direction to be plotted (see arrow #7).

When that is done, the program produces the third window containing the plot (see textbox #8). The

graph selected here shows the absolute values (as opposed to the relative values) of the induced force in

the Y-direction. The object being simulated is a one millimeter thickness of an airfoil with a chord of

about 1.4 meters, so the values of the force are reported in Newtons (e.g., 1.647 Newtons). Although the

values of the force are known from the very first iteration of the job, the user selected to plot only the last

two hundred or so. Note that the last iteration plotted is #5111, which was the last completed iteration at

the time the user invoked ñfplot.pyò by typing ñpython3 fplot.py ò in response to the prompt.

#8

#1

#2

#3

#4

#5

#6

#7

~ 2 ~

The graph shows three perturbations, which result from the user changing control parameters in the

/system/fvSolution file on the fly. It is very handy to be able to see such consequences in real time.

It is indeed unfortunate that OpenFoam is available only under Linux, since the plotting must therefore be

done in Linux, too. The great disadvantage of Linux is that nothing can be done without delving into the

operating system. A further disadvantage is that the development tools available for Linux are, at best,

archaic. I hope that my instructions are complete enough to help you navigate through the shoals.

A quick overview of the ñforcesò subdirectory

The plotting procedure is contained in a single program, named ñfplot.pyò, which resides in the case

directory. The following screenshot shows the case directory ñjoukowskiSimple#Dò. Arrow #9 shows

that the program ñfplot.pyò is simply one more file inside the case directory. The only other file inside

this case directory, which is not a standard OpenFoam file, is the one identified by arrow #10. It is named

ñjoukowskiXYZ#D.geo.mshò and has nothing to do with this plotting procedure. It contains the

description of the mesh which I produced for this application using GMesh. Alert readers will notice that

OpenFoam has continued to run since the screenshot above was taken ï it is now executing an iteration

after #5150.

OpenFoam is logging forces and moments into the subdirectory named ñ/forcesò (see arrow #11). Just so

that we have the same information, OpenFoam was instructed to log forces and moments by making two

changes in the ñ/systemò directory, adding a command to the ñ/system/controlDictò file and adding a file

to the ñ/systemò directory. The following screenshot shows the four files in the ñ/systemò directory.

#9

#10

#11

~ 3 ~

The first change is to add a command to the ñ/system/controlDictò file, which will cause it to execute the

added file as a function.

functions

{

 #include "ForceAndMoment"

}

This command causes OpenFoam to execute the file ñForceAndMomentò at the end of every iteration.

The added file ñForceAndMomentò (see arrow #12) has the following contents.

/* -------------------------------- * - C++ - * ---------------------------------- * \

| ========= | |

| \ \ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \ \ / O p eration | Version: 2.1.1 |

| \ \ / A nd | Web: www.OpenFOAM.org |

| \ \ / M anipulation | |

\ * --- */

forces

{

 type forces;

 functionObjectLibs ("libforces.so");

 outputControl timeStep;

 outputInterval 1;

 patches ("airfoil.*");

 pName p;

 UName U;

 rhoName rhoInf;

 log true;

 CofR (0 0 0.0005);

 rhoInf 1.225;

}

In my case, the forces are those which act on the patch named ñairfoilò. Note that the moment is

calculated around the point which is one-half of the Z-thickness and that the air density is stated at sea

level. Of course, you will have to change the contents of this file so that it calculates the forces and

moments of interest in your application.

In any event, when OpenFoam logs the forces and moments, they are recorded in time-stamped files

contained inside the ñ/forcesò directory. The typical content of a ñ/forcesò directory is shown in the

following screenshot.

#12

~ 4 ~

Every time you restart execution of an OpenFoam job, a new directory is created in the ñ/forcesò

directory, with the name being the starting time or iteration number. For example, the directory

ñ/forces/2950ò was created at the start of iteration #2951. Each time-stamped directory contains a single

text file, named ñforces.datò. The following screenshot shows the starting lines in the file

ñ/forces/2950/forces.datò.

#13

X-, Y- and Z- components of four variables:

1. induced pressure,

2. viscous pressure,

3. induced moment and

4. viscous moment

~ 5 ~

The first line is a text header (see arrow #13) describing the contents of the 13 columns of data. Each

subsequent line contains the time or iteration number, followed by 12 force and moment values. The

OpenFoam job will continue to add lines to this ñ/forces/2950/forces.datò file until execution is halted. If,

and when, execution is restarted, OpenFoam will create a new directory with the then-time stamp and

begin to enter force and time data into that new file.

It follows that the ñ/forcesò directory will contain an unknown number of time-stamped subdirectories. If

the user has not deleted or changed any of the subdirectories or their ñforces.datò files, then the collection

of all the ñforces.datò files will contain an iteration-by-iteration list of the force and moment data from the

commencement of the job.

However, the user can delete or edit the time-stamped folders in the ñ/forcesò directory. He can also

change the contents of the ñforces.datò files themselves. For example, the user can manually edit the

ñforces.datò files to merge the lists. We are going to have the plotting program do the merging for us.

A quick overview of the ñfplot.pyò procedure

The ñfplot.pyò program works through five main steps:

1. Organize the force and moment data and store it in vectors.

2. Get plotting instructions from the user.

3. Create a temporary data file with the data to be plotted, called ñplotfile.datò.

4. Create a temporary gnuplot script file, called ñgnuscript.txtò.

5. Execute the gnuplot script file and then delete the two temporary files.

Step #1 ï Organize the force and moment data

The program reviews the names of the time-stamped folders in the ñ/forcesò directory in order to establish

their sequence. It relies on the names. It assumes, for example, that the file named

ñforces/2350/forces.datò contains data from times/iterations prior to those in the file named

ñforces/3725/forces.datò. The program does not care if files are missing or mislabeled but, if they are, the

data will be plotted out of sequence.

The program reads the data from all the ñforces.datò files and stores it in 13 vectors (called ñlistsò in

Python). The vectors have obvious names: Time[], FXinduced[], FYinduced[], é, MZviscous[].

The program reads the data and closes the ñforces.datò files as quickly as possible. Since the OpenFoam

job will probably be executing when ñfplot.pyò is run, potential conflict over the use of the current

ñforces.datò file is minimized by closing it as soon as the data has been read.

Step #2 ï Get instructions from the user

The program will display a summary of the ñforces.datò files like that shown in the following screenshot.

As described before, the user invokes the program by: (i) changing the current working directory to the

case directory (see arrow #14) and then (ii) typing the command line ñpython3 fplot.py ò (see arrow

#15). In the case illustrated, there are 12 time-stamped subdirectories in the ñ/forcesò directory. It can be

seen that the user has deleted a number of files created earlier in the job. There is a gap, for example,

between iteration #109 and iteration #2150 (see arrow #16). There is also a bit of back-tracking (see

arrow #17). Folder ñ4775ò accumulated force and moment data up until iteration #4912ò but the

following folder, ñ4900ò, begins at iteration #4901. [How did this happen? The ñ/system/controlDictò is

set to record the complete state every 25 iterations. A complete state was therefore written at iteration

#4900. Shortly thereafter, the user (me) decided to change a parameter in the ñ/system/fvSolutionò file.

~ 6 ~

But, the parameter change did not work out, which is to say, that the solution began to diverge. I halted

execution just after iteration #4912, and re-started from the last complete state, being iteration #4900.]

The plot will begin at the time/iteration typed by the user in response to the prompt shown and will

continue up until the end of the data. Then, the program will ask the following four questions.

ñAbsoluteò does not refer to the mathematical function. It refers instead to the unadjusted force and

moment values calculated by OpenFoam. The alternate ï ñrelativeò ï values are the percentage

differences between the absolute values and the average of the absolute values over the range of

times/iterations being plotted. The other three questions determine which of the 12 variables will be

plotted.

The userôs response can be either in small case or in upper case. In the event of an invalid response, the

program will assume a default value.

Step #3 ï Create a temporary data file

From this point onwards, program ñfplot.pyò proceeds without any further input from the user. In this

Step #3, the program creates a temporary text file. The temporary text file has the name ñplotfile.datò and

#14
#15

#16

#17

~ 7 ~

is created inside the ñ/forcesò directory. This text file consists of two columns of numbers. The first

column contains the times/iterations in the range selected and the second column contains the value to be

plotted on the vertical axis. There are no column or row headers.

Step #4 ï Create a temporary Gnuplot script file

The program creates a second temporary file as well, with the name ñgnuscript.txtò. This is also a text

file and is also created in the ñ/forcesò directory. This file is a so-called ñscriptò. It contains a list of

commands which will be executed by Gnuplot. In many ways, ñgnuscript.txtò resembles a Windows

batch file like autoexec.bat.

Gnuplot is a general purpose plotting program designed for use with Linux.

Step #5 ï Execute the Gnuplot script file

ñfplot.pyò then executes Gnuplot as a subprocess. The file ñgnuscript.txtò contains the instructions for the

Gnuplot interpreter and the file ñplotfile.datò contains the values it will plot. The titles and labels which

Gnuplot uses to format the plot were coded into the script file when it was built during Step #4.

Step #6 ï Delete the two temporary files

The window containing the plot will persist until it is closed when the user clicks on the ñXò button at the

upper left corner. To clean up its mess, the program will delete the two temporary files ñplotfile.datò and

ñgnuscript.txtò. If at any time you discover files with these names in your ñ/forcesò directory, they can be

deleted without concern. In fact, the program deletes any old copies it finds before creating new ones.

A listing of the program ñfplot.pyò

In this section, I give a listing of the program ñfplot.pyò. It is a text file, meaning that it can be edited

with any text editor, including ñgeditò on Linux systems and ñNotepadò on Windows systems. Although

it is simply a text file, it has the syntax of a Python program, hence the extension ñ.pyò. Python is a

programming language which resembles BASICA from the mid-1980s. It is an interpreter, which means

that it works its way through the lines in real time, executing them one-by-one.

[Aside for a brief rant: I do not worship Windows by any means, but I know a good tool when I find one.

Microsoftôs Visual Basic is a good tool. Python is not nearly as good. Based on my recent internet

searching, it seems that there was at one time an attempt by the Linux folks to build an interface which

would run Windows executable programs (those with the extension ñ.exeò) on Linux machines. I think it

was called ñWineò. It was a great idea, but constant upgrades by Microsoft left Wine far behind. It looks

like another attempt was made, somewhat later, which would run Visual Basic programs on Linux

machines. This effort, called ñMonoò, seems to be well along its way to history, too. There seems to

have been an heroic effort by a French man to produce from scratch a Linux version of Visual Basic,

called ñGamBasò. A commendable objective, I must say, but too much for one man. None of my efforts

to download and install GasBas were successful. There must be a ñCò or ñC++ò implementation for

Linux somewhere ï after all, OpenFoam is written in ñCò ï but I could not find a complete and functional

package within the time I cared to devote to the task. That pretty much left Python, which can do the job

I want it to do, but not nearly as well as one might hope. But, enough ranting, here is the listing.]

~ 8 ~

This is a Python program designed to plot forces and moments from the

forces.dat files produced by OpenFoam.

Assumptions:

1. That this file is named "fplot.py";

2. That this file is located in the case directory;

3. That /system/controlDict writes forces into a directory named /forces;

4. That an OpenFoam job is running in a terminal window.

Invocation:

1. Open a second terminal window;

2. Change directory to the case dir ectory;

3. Type the command "python3 fplot.py".

File names.

InputFileName = "./forces.dat" # A f ile containing force and moment data

PlotFileName = "./plotfile.dat" # The file with data selected for plotting

GnuFileName = "./gnuscript.txt" # The file with gnuplot script

Define variables.

ForceTimeDirNames = [] # List of time - dirs containing force data files

NumForceTimeDirNames = 0 # Number of time - dirs containing force data files

StartTimesInDir = [] # The first time/iteration in a force data fil e

EndTimesInDir = [] # The last time/iteration in a force data file

NumTimesInDir = [] # Number of times/iterations in a force data file

Time = [] # Vectors to hold original force and moment data

FXinduced = []

FYinduced = []

FZinduced = []

FXviscous = []

FYviscous = []

FZviscous = []

MXinduced = []

MYinduced = []

MZinduced = []

MXviscous = []

MYviscous = []

MZviscous = []

PlotTime = [] # Vectors to hold the X - Y values to be plotted

PlotValue = []

StartPlottingAtTime = 0 # Time/iteration at which plotting starts

PlotAbsOrRel = True # True for absolute; False for relative

PlotIndOrVis = True # True for induced; False for viscous

PlotForOrMom = True # True for force s; False for moments

PlotX = True # True to plot X - direction values

PlotY = False # True to plot Y - direction values

PlotZ = False # True to plot Z - direction values

Step #1 - Get the name of the case directory.

import os

CaseDir = os.getcwd()

is a comment in Python.

cwd is the current working directory.

This syntax defines vectors

with a zero-based index.

~ 9 ~

Step #2 - Change to the directory containing OpenFoam's force data files.

os.chdir('forces')

ForceTopDir = os.getcwd()

Step #3 - Make a list of the time - directories containing force data files.

for name in os.listdir("."):

 if os.path.isdir(name):

 ForceTimeDirNames.append(name)

NumForceTimeDirNames = len(ForceTimeDirNames)

if (NumForceTimeDirNames == 0):

 print(" Error: No force data files were found.")

 import sys

 sys.exit()

else:

 print(" \ n" + \

 "There are " + str(NumForceTimeDirNames).strip() + \

 " force directories in the case directory.")

S tep #4 - Put the list of time - directories into chronological order.

Use a bubble - type sorting procedure.

if (NumForceTimeDirNames >= 2):

 for Index1 in range(1, NumForceTimeDirNames):

 for Index2 in range(Index1 + 1, NumForceTimeDirNames + 1):

 if (int(ForceTimeDirNames[Index1 - 1]) > \

int(ForceTimeDirNames[Index2 - 1])):

 TempName = ForceTimeDirNames[Index1 - 1]

 ForceTimeDirNames[Index1 - 1] = Force TimeDirNames[Index2 - 1]

 ForceTimeDirNames[Index2 - 1] = TempName

Step #5 - Open each force data file and parse the data into vectors.

for Index in range(NumForceTimeDirNames):

 #

 # Step #5A - Change to the appropriate force directory.

 os.chdir(ForceTimeDirNames[Index])

 #

 # Step #5B - Open the force data file.

 try:

 FileNumber = open(InputFileName, "r")

 except:

 print("Error: Could not open file " + \

 str(ForceTimeDirNames[Index].strip()) + \

 In putFileName + ".")

 import sys

 sys.exit()

 #

 # Step #5C - Parse out the data in each line.

 LineNumber = 0

 import re

 for OriginalLine in FileNumber:

 # Do not process blank lines.

 if (len(OriginalLine) > 1):

 # Do not process the first line, with a header including "Time".

 if (OriginalLine.find("Time") < 0):

 LineNumber = LineNumber + 1

 # Replace all occurrences of "(" with a blank space.

 ModifiedLine = Origi nalLine.replace("(", " ")

Indents are very important in Python.

Multiples of three blanks are used here.

A ñrangeò does not include the last number.

~ 10 ~

 # Replace all occurrences of ")" with a blank space.

 ModifiedLine = ModifiedLine.replace(")", " ")

 # Replace each white space with a single blank space.

 re.sub(" \ s \ s+" , " ", Modifie dLine)

 # Read and store the iteration/time number.

 ModifiedLine.lstrip()

 parts = ModifiedLine.split(" ",1)

 TempString = parts[0].strip()

 Time.append(TempString)

 # If this is the first line, make a note of the start time.

 if (LineNumber == 1):

 StartTimesInDir.append(TempString)

 # Read and store FXinduced.

 ModifiedLine = parts[1].lstrip()

 parts = ModifiedLine.split(" ",1)

 TempString = parts[0].strip()

 FXinduced.append(TempString)

 # Read and store FYinduced.

 ModifiedLine = parts[1].lstrip()

 parts = ModifiedLine.split(" ",1)

 TempString = parts[0].strip()

 FYinduced.append(TempString)

 # Read and store FZinduced.

 ModifiedLine = parts[1].lstrip()

 parts = ModifiedLine.split(" ",1)

 TempString = parts[0].strip()

 FZinduced.append(TempString)

 # Read and store FXviscous.

 ModifiedLine = parts[1].lstrip()

 parts = ModifiedLine.split(" ",1)

 TempString = parts[0].strip()

 FXviscous.append(TempString)

 # Read and store FYviscous.

 ModifiedLine = parts[1].lstrip()

 parts = ModifiedLine.split(" ",1)

 TempString = parts[0].strip()

 FYviscous.append(TempString)

 # Read and store FZviscous.

 ModifiedLine = parts[1].lstrip()

 parts = ModifiedLine.split(" ",1)

 TempString = parts[0].strip()

 FZviscous.append(TempString)

 # Read and store MXinduced.

 ModifiedLine = parts[1].lstrip()

 parts = ModifiedLine.split(" ",1)

 TempString = parts[0].strip()

 MXinduced.append(TempString)

 # Read and store MYinduced.

 ModifiedLine = parts[1].lstrip()

 parts = ModifiedLine.split(" ",1)

 TempString = parts[0].strip()

 MYinduced.append(TempString)

 # Read and store MZinduced.

 ModifiedLine = parts[1].lstrip()

 parts = ModifiedLine.split(" ",1)

 TempString = parts[0].str ip()

 MZinduced.append(TempString)

 ñSplitò breaks a string into two parts.

~ 11 ~

 # Read and store MXviscous.

 ModifiedLine = parts[1].lstrip()

 parts = ModifiedLine.split(" ",1)

 TempString = parts[0].strip()

 MXviscous.append(TempStri ng)

 # Read and store MYviscous.

 ModifiedLine = parts[1].lstrip()

 parts = ModifiedLine.split(" ",1)

 TempString = parts[0].strip()

 MYviscous.append(TempString)

 # Read and store MZviscous .

 ModifiedLine = parts[1].lstrip()

 parts = ModifiedLine.split(" ",1)

 TempString = parts[0].strip()

 MZviscous.append(TempString)

 #

 # Step #5D - Make a note of the end time.

 LastEntry = len(Time)

 EndTimesInDir.append(Time[LastEntry - 1])

 #

 # Step #5E - Close the input force data file.

 FileNumber.close()

 #

 # Step #5F - Return to the parent directory.

 os.chdir("..")

Step #6 - Describe the data files to the user.

print("Force Dir Start Time End Time No. of times")

for Index1 in range(NumForceTimeDirNames):

 OutputString = ForceTimeDirNames[Index1]

 for Index2 in range(len(OutputString), 14):

 OutputString = OutputString + " "

 OutputString = OutputString + StartTimesInDir[Index1]

 for Index2 in range(len(OutputString), 28):

 OutputString = OutputString + " "

 OutputString = OutputString + EndTimesInDir[Index1]

 for Index2 in range(len(OutputString), 42):

 OutputString = OutputString + " "

 NumTimes = 1 + int(EndTimesInDir[Index1]) - int(StartTimesInDir[Index1])

 OutputString = OutputString + str(NumTimes).strip()

 print(OutputString)

Step 7 - Prompt the user to select the number of times/iterations.

EarliestStartTime = int(StartTimesInDir[0])

LatestStartTime = int(EndTimesInDir[NumForceTimeDirNames - 1])

OutputString = " \ n" \

 + "Plot beginning with time/iteration number [" \

 + str(EarliestStartTime).strip() + " - " \

 + str(LatestStartTime).strip() +"]: "

Response = input(OutputString)

StartPlottingAtTime = int(Response)

if (StartPlottingAtTime < EarliestStartTime):

 StartPlottingAtTime = EarliestStartTime

 print("Error: Start time is out of range. " \

 + "Using " + str(EarliestStartTime).strip + ".")

if (StartPlottingAtTime > LatestStartTime):

 StartPlottingAtTime = LatestStartTime

Use an ending backslash

for line continuation.

Add entries to a vector

by ñappendingò them.

~ 12 ~

 print("Error: Start time is out of range. " \

 + "Using " + s tr(LatestStartTime).strip() + ".")

Step #8 - Prompt the user to select absolute or relative values.

OutputString = "Plot absolute or relative values [a/r]: "

Response = input(OutputString)

if ((Response == "a") or (Response == "A")):

 PlotAbsOrRel = True

else:

 if ((Response == "r") or (Response == "R")):

 PlotAbsOrRel = False

 else:

 print("Invalid response. Will plot absolute values.")

 PlotAbsOrRel = True

Step #9 - Prompt the user to select induced or viscous results.

OutputString = "Plot induced or viscous results [i/v]: "

Response = input(OutputString)

if ((Response == "i") or (Response == "I")):

 PlotIndOrVis = True

else:

 if ((Response == "v") or (Response == "V")):

 PlotIndOrVis = False

 else:

 print("Invalid response. Will plot induced values.")

 PlotIndOrVis = True

Step #10 - Prompt the user to select forces or moments.

OutputString = "Plot forces or moments [f/m]: "

Response = input(OutputString)

if ((Response == "f") or (Respons e == "F")):

 PlotForOrMom = True

else:

 if ((Response == "m") or (Response == "M")):

 PlotForOrMom = False

 else:

 print("Invalid response. Will plot forces.")

 PlotForOrMom = True

Step #11 - Prompt the user to select the desired direction.

OutputString = "Plot in which direction? [x/y/z]: "

Response = input(OutputString)

if ((Response == "x") or (Response == "X")):

 PlotX = True

 PlotY = False

 PlotZ = False

else:

 if ((Response == "y") or (Response == "Y")):

 PlotX = False

 PlotY = True

 PlotZ = False

 else:

 if ((Response == "z") or (Response == "Z")):

 PlotX = False

 PlotY = False

 PlotZ = True

 else:

~ 13 ~

 print("Invalid response. Will plot X - values.")

 PlotX = True

 PlotY = False

 PlotZ = False

Step #12 - Transfer the selected data items into new vectors.

del PlotTime[:]

del PlotValue[:]

for Index in range(len(Time)):

 if (int(Time[Index]) >= StartPlottingAtTime):

 PlotTime.append(Time[Index])

 # Block to plot forces.

 if (PlotForOrMom == True):

 if ((PlotIndOrVis == True) and (PlotX == True)):

 PlotValue.append(FXinduced[Index])

 if ((PlotIndOrVis == True) and (PlotY == Tr ue)):

 PlotValue.append(FYinduced[Index])

 if ((PlotIndOrVis == True) and (PlotZ == True)):

 PlotValue.append(FZinduced[Index])

 if ((PlotIndOrVis == False) and (PlotX == True)):

 PlotValue.append(FXviscous[Index])

 if ((PlotIndOrVis == False) and (PlotY == True)):

 PlotValue.append(FYviscous[Index])

 if ((PlotIndOrVis == False) and (PlotZ == True)):

 PlotValue.append(FZviscous[Index])

 # Block to plot moments.

 else:

 if ((PlotIndOrVis == True) and (PlotX == True)):

 PlotValue.append(MXinduced[Index])

 if ((PlotIndOrVis == True) and (PlotY == True)):

 PlotValue.append(MYinduced[Index])

 if ((PlotIndOrVis == True) and (PlotZ == True)):

 PlotValue.append(MZinduced[Index])

 if ((PlotIndOrVis == False) and (PlotX == True)):

 PlotValue.append(MXviscous[Index])

 if ((PlotIndOrVis == False) and (PlotY == True)):

 PlotValue.append(MYviscous[Index])

 if ((PlotIndOrVis == False) and (PlotZ == True)):

 PlotValue.append(MZviscous[Index])

NumValuesToPlot = len(PlotTime)

Step #12 - Convert to relative values, if selected.

if (PlotAbsOrRel == False):

 #

 # Step #12A - Calculate the total of the values.

 TotalValue = 0

 for Index in range(NumValuesToPlot):

 TotalValue = TotalValue + float(PlotValue[Index])

 #

 # Step #12B - Calculate the average value.

 AverageValue = TotalValue / NumValuesToPlot

 #

 # Step #12C - Calculate the relative value percentages.

 for Index in range(NumValuesToPlot):

 PlotValue[Index] = str((float(PlotValue[Index]) - AverageValue) \

 * 100 / AverageValue)

 ñLenò is defined for lists as well as strings.

 This is Pythonôs Val() function.

~ 14 ~

Step #13 - Write the selected data into the temporary plot file.

Step #13A - Delete any existing temporary plot file.

try:

 os.remove(PlotFileName)

except:

 if (False):

 print("") # Do nothing if there is no old plot file.

Step #13B - Open a new temporary file to hold the data to be plotted.

try:

 FileNumber = open(Plot FileName, "w")

except:

 print("Error: Could not open file " + \

 str(ForceTimeDirNames[Index].strip()) + \

 PlotFileName + ".")

 import sys

 sys.exit()

Step #13C - Write the data.

for Index in range(NumValuesToPlot):

 FileNumber.write(PlotTime[Index] + " " + PlotValue[Index] + " \ n")

Step #13D - Close the temporary plot file.

FileNumber.close()

Step #14 - Prepare a script file for gnuplot.

Step #14A - Delete any existing gnuplot file.

try:

 os.remove(GnuF ileName)

except:

 if (False):

 print("") # Do nothing if there is no old gnuplot file.

Step #14B - Open a temporary file for the script to control gnuplot.

FileNumber = open(GnuFileName, "w")

Step #14C - Organize and write the gnuplot script .

FileNumber.write("# GnuPlot script file \ n")

FileNumber.write("set autoscale # scale axes automatically \ n")

FileNumber.write("unset log # remove any loraithmic scaling \ n")

FileNumber.write("unset label # remove any previous labels \ n")

FileNumber.wri te("set xtic # set xtics automatically \ n")

FileNumber.write("set ytic auto # set ytics automatically \ n")

FileNumber.write("unset key \ n")

FileNumber.write("unset mouse \ n")

FileNumber.write("set grid \ n")

OutputString = CaseDir + ": "

if (PlotAbsOrRel == True):

 OutputString = OutputString + "Absolute "

else:

 OutputString = OutputString + "Relative "

if (Plot Ind OrVis == True):

 OutputString = OutputString + " induced "

else:

 OutputS tring = OutputSt ring + "viscous "

 These are all GnuPlot commands.

 Python will not accept an empty block of code. Use a dummy.

~ 15 ~

if (PlotForOrMom == True):

 OutputString = OutputString + "force "

else:

 OutputString = OutputString + "moment "

if (PlotX == True):

 OutputString = OutputString + "in X - direction"

else:

 if (PlotY == True):

 OutputString = OutputString + "in Y - direction"

 else:

 OutputString = OutputString + "in Z - direction"

FileNumber.write("set title '" + OutputString + "' \ n")

FileNumber.write("set xlabel 'Time or iteration' \ n")

if (PlotForOrMom == True):

 OutputString = "Force - "

else:

 OutputString = "Moment - "

if (PlotAbsOrRel == True):

 OutputString = OutputString + "absolute"

else:

 OutputString = OutputString + "relative"

FileNumber.write("set ylabel '" + OutputString + "' \ n")

OutputString = "plot '" + PlotFileName + "' with linespoints"

FileNumber.write(OutputString)

Step #14D - Close the gnuplot script file.

FileNumber.close()

Step #15 - Execute the gnuplot script.

import os

import subprocess

GnuPlotProcess = subprocess.Popen("gnuplot - persist " + GnuFileName, \

 shell = True)

os.waitpid(GnuPlotProcess.pid, 0)

Step #16 - Wait for the user to press any key.

response = input(" \ nHit any key to exit.")

Step #17 - Delete the two temporary files.

import os

os.remove(PlotFileName)

os.remove(GnuFileName)

Step #18 - Exit.

import sys

sys.exit()

In order to create this program, use a text editor to type in the lines, or cut-and-paste. The file must be

saved with the extension ò.pyò or, alternatively, the extension changed to ñ.pyò before use. Lastly, the

file must be saved into or copied into the case directory of interest.

This is where the program

executes the Gnuplot script.

The plot will not stay visible

unless ñpersistedò.

~ 16 ~

Finicky operating system stuff #1

In order for Python to run, it must be installed on your Linux computer. Your Linux installation may or

may not have arrived with a default version of Python. Regrettably, the Python folks are as busy as bees

and revise their baby constantly. However, because Python is not very advanced, the revisions are

significant and usually fatal to programs written for earlier versions. What works in one version of

Python will not work in another. Be advised that the version of Python I used to develop this application

is Python-3.3.0.

The Linux folks keep pretty busy, too, and there are umpteen versions of their baby as well. I use

Ubuntu, which I believe is version 10.04 of Linux. However, I do not expect that your version of Linux

will affect your ability to use this application ï the version of Python is more important.

I used the following procedure to download and install Python-3.3.0, and then to convince Linux to find

and execute it. Start up a new terminal window ï the prompt I get is ñjim@jim:~$ò, but your prompt will

be different.

Step #1 ï Download a bunch of stuff

Type in the line shown in the following screenshot, which begins with ñsudo apt - get install build -

essential ò and ends with ñ tk - devò. You may be asked to enter the administratorôs password. This

command will download and install eight library-type things. I have no idea what these things do, why

they are needed or even whether they are needed at all. The list of instructions from which I took

guidance seemed to say that these files are needed to compile Python. But, I thought Python was an

interpreter é

Step #2 ï Download Python-3.3.0

When the processing in Step #1 is finished, download Python-3.3.0 from the python.org website using the

command ñwget http://www.python.org/ftp/python/3.3.0/Python - 3.3.0.tar.bz2 ò, as shown in

the following screenshot.

http://www.python.org/ftp/python/3.3.0/Python-3.3.0.tar.bz2

~ 17 ~

A ñtarò file is Linuxôs version of a zipped file. The ñwgetò command downloads the file but does nothing

with it. You can use your file browser to confirm that the ñwgetò command downloaded the file

ñPython - 3.3.0.tar.bz2 ò into your HOME directory, in my case, the ñjimò directory.

Step #3 ï Make a directory for the Python-3.3.0 files

I next made a new directory named ñPython-3.3.0ò inside my HOME directory. I did this by typing

ñmkdir Python - 3.3.0 ò in response to the ñjim@jim:~$ò prompt. Using the file browser, I moved the

downloaded file into the new directory. This is a screenshot of my HOME directory after Step #3.

Step #4 ï Unzip the downloaded file

The next step is to unzip the downloaded file. Since I had been playing around using the file browser, I

opened a new terminal window. Before giving me the ñjim@jim:~$ò prompt, Linux gave me a disturbing

message, which is shown in the following screenshot.

the new directory

the downloaded file is here

~ 18 ~

It seems that the operating system can no longer find my OpenFoam installation. Users of OpenFoam

will recognize the phrase ñ/opt/openfoam211/etc/bashrc ò as part of the line you added to the

ñ~/.bashrcò file when you installed OpenFoam. It seems that the ñwgetò command did something to

affect my OpenFoam installation. This is typical of the tomfoolery that plagues Linux. Fortunately, the

remedy, which I describe below, did not take much time.

Because the downloaded file has now been moved into a new directory, it is necessary to change into that

directory, using the command ñcd Python - 3.3.0 ò. The downloaded file is extracted using the command

ñtar �±xjf Python - 3.3.0.tar.bz2 ò, as shown in the screenshot above.

A review of your HOME directory after the extraction is completed will show that the extraction process

extracted the file into a new directory, called ñPython-3.3.0ò, which is a subdirectory of the directory

ñPython-3.3.0ò which we created manually.

Step #4 ï ñConfigure the buildò

This is what my list of instructions calls this next step, which is the first step towards installing Python-

3.3.0 from the files which have now been downloaded and extracted. The following screenshot shows the

procedure, starting with a new terminal window.

Because I have not yet fixed the OpenFoam problem, bash is still complaining. It is necessary to change

directories twice, to get down into ñHOME/Python-3.0.0/Python-3.3.0ò. Then, typing the command

ñ./configure - �±prefix=/opt/python3 ò will begin the configuration.

Steps #5 and #6 ï Make and install python3

After the configuration is

completed, something needs to be

made, which is accomplished in

Step #5 by typing ñmakeò in

response to the prompt. Step #6

must be the installation itself,

because it is executed by typing

ñsudo make install ò in response

to the prompt. Both of these

operations take a fair amount of

time and are accompanied by lots

of activity on the screen. These

two screenshots show the two

commands just before the Return

key is pressed. Step #5

