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An OpenFoam Analysis 

 

The shape of a flexible membrane airfoil in a uniform two-dimensional flow 

 

In this paper, we are going to examine the two-dimensional case of a flexible membrane whose length is 

greater than the distance between two supporting end-points.  The following figure illustrates most of the 

important terms and conventions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A reference chord line passes through the leading edge (L.E.) and trailing edge (T.E.) at an angle of attack 

 with respect to the direction of the oncoming wind.  The leading and trailing edges are not round, 

despite the dots used to identify them in the figure.  They are mathematical points.  They are separated by 

a constant distance  and held in place by some structure which is not shown in the figure. 

 

The membrane itself is rendered in red.  It is longer than the chord  by some fraction , which stands for 

ñthickness ratioò.  This use of the word ñthicknessò is a little bit improper.  Hereôs why.  The membrane 

itself is going to be treated as an idealized sheet, having no physical thickness at all.  The red curve 

represents the cross-section of that idealized sheet.  I anticipate that the sheet will take on a static shape in 

response to the airflow.  Hopefully, the static shape will be a gentle curve, something like the curve 

described by the midpoints of the line segments between the top surface and bottom surface of a classical 

airfoil.  For a classical airfoil, the degree of curvature of that midpoint line is captured in a parameter 

called the ñcamberò of the airfoil.  Mathematically, the camber is the ratio of two distances: the maximum 

departure of the midpoint line from the straight line extending from the leading edge to the trailing edge, 

divided by the length of the straight line segment from the leading edge to the trailing edge.  A highly-

curved airfoil has a greater camber than a flatter airfoil.  Camber is quite different from thickness.  

Typically, the thickness of a classical airfoil is captured by another parameter, the ñthickness ratioò, 

which is another ratio: the maximum vertical separation between the top and bottom surfaces, divided by 

the length of the line segment from the leading edge to the trailing edge.  The parameter  I am calling 

thickness is really the camber of the airfoil, but it makes intuitive sense in this application.  If it did not 

cause so much distraction, I could have called  something like the ñlength ratioò or the ñslack ratioò. 

 

The membrane is perfectly flexible, so that mechanical moments cannot be transmitted from one spot in 

the membrane to its neighbors.  The membrane is flexible but it is not elastic.  It does not stretch.  

Whatever the shape it takes on under the influence of the airflow, its surface length will always be equal 

to . 

 

I have shown two co-ordinate frames of reference in the figure.  The -  frame, with the capital letters, is 

oriented so that the -axis is parallel to the wind direction.  I will be simulating the aerodynamics using 
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the OpenFoam CFD package and the -  frame of reference will be aligned with the length and height of 

the virtual wind tunnel which encloses the membrane.  The -  frame, with the small letters, is fixed to 

the airfoil, with its origin at the leading edge and its -axis pointing aft along the reference chord line.  I 

have chosen to use the same letters for the axes of both co-ordinate frames notwithstanding possible 

confusion.  It will be handy to be able to manipulate the shape of the airfoil as a mathematical function 

using the traditional  notation.  On the other hand, OpenFoam and pre-processing the mesh are 

also easiest if the traditional letters are used for the axes.  The use of capital letters for one frame of 

reference and small letters for the other seems to be the best compromise. 

 

The overall procedure we will use is iterative.  We will assume some shape for the membrane, and then 

run an OpenFoam simulation to determine the distribution of forces along the membrane.  The assumed 

shape will remain the same throughout the OpenFoam run.  After the run is completed, we will re-

calculate the shape which the membrane would take on when subjected to the forces calculated by 

OpenFoam.  The new shape will be shape of the airfoil assumed for the next OpenFoam run, and held 

constant during that run.  If and when we get to a point where the OpenFoam simulations generate force 

distributions which are the same as those used to calculate the shape of the membrane, we will be done. 

 

I have used the words ñairfoilò and ñmembraneò interchangeably.  To be precise, I suppose, I could limit 

use of the word membrane to the physical material and use of the word airfoil to the shape of the 

membrane.  Let me define the ñslackò in the membraneôs surface length as the extra length of the 

membrane over and above the minimum length it needs to extend in a flat sheet from the leading edge to 

the trailing edge.  So long as the amount of slack is not too great, I anticipate that the membrane will have 

an airfoil-like shape.  With that anticipation in mind, I will continue to interchange the words airfoil and 

membrane. 

 

As a first step, letôs try to analyze the shape of the membrane when it is subjected only to a difference in 

pressure between its top and bottom surfaces.  The membrane may be infinitely thin, but that does not 

prevent it from having a top and bottom.  The forces to which pressure gives rise act perpendicularly to 

the membrane at every point.  A real airflow will also give rise to forces acting tangentially along the 

surface(s), a consequence of the viscosity of real air, which expresses itself through phenomena like the 

boundary layer.  If we can succeed with the simpler case of pressure only, then we will consider the more 

general case where the airflow exerts forces tangential to the membrane as well as perpendicular to it. 

 

The shape of a flexible membrane when subjected to a given static pressure distribution 

 

The first question is a practical one: in what form will the pressure data be provided by OpenFoam when 

we need it to re-calculate the shape of the membrane?  I am not referring to the difference between data in 

digital form and data in analogue form (the pressure distribution is going to be in digital form) nor am I 

referring to the difference between data known at discrete points and data given by closed-form 

expressions (the pressure distribution is going to be in discretized form).  If the spacing of the data points 

does not meet our needs, then we will have to fit a curve globally or interpolate locally between the points 

at which the data is available. 

 

Instead, what I am asking is whether the pressure will be reported at points along the reference chord line, 

or at points along the curved surface.  When the camber of the airfoil is small, distances measured along 

the reference chord line will be close to distances measured along the surface.  At greater curvatures, the 

difference will be greater.  This difference will likely be more of a problem near the leading edge, which 

is unfortunate because that region of the surface makes a disproportionate contribution to the lift.  The 

following figure illustrates the issue. 
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We will use the symbol  for distances measured along the membraneôs surface from the leading edge.  

The question, then, is whether the pressure distribution will be available as a function of the chord-wise 

distance  or as a function of the surface-wise distance .  For the time being, letôs 

assume it is the latter, namely, . 

 

The pressure  I am referring to is the net pressure acting on the membrane at any given point.  Since the 

membrane is assumed to be infinitely thin, every point on the top surface can be paired with a 

corresponding point on the bottom surface which lies directly through the membrane.  The absolute 

pressure acting at any point on the top surface will be directly opposed by the absolute pressure acting at 

the corresponding point on the bottom surface.  Because the two points have the same mathematical 

location, we can treat them as one and simply use the net pressure acting on them.   

 

Letôs consider a very short piece of the membrane, having a surface length of .  Since we are looking at 

the two-dimensional case, we will assume that the width of the piece in the -direction, which axis points 

out of the page in this instance, is one unit length long, say, one meter.  Then, the area of this piece of 

membrane is also given by , although it should be understood that there is an implicit multiplication by 

one unit length in the orthogonal direction.  If the local overpressure is , then the magnitude of the force 

 acting on the piece will be equal to the pressure multiplied by the area, namely, .  (I am going 

to use the word ñoverpressureò in this paper for the net pressure acting upwards.)  If  is imagined to be 

suitably short, then the piece will be an almost flat rectangle.  The force due to the overpressure will act in 

the direction perpendicular to this flat rectangle. 

 

We are going to ignore the force of gravity on the membrane.  Even if a real membrane is not infinitely 

thin, it can still be lightweight enough that the other forces swamp the gravitational force, which is to say, 

the weight.  

 

And, indeed, there are two forces other than the overpressure which act on the piece of membrane we are 

considering.  The piece is pulled to the left by the rest of the membrane on the upwind side and to the 

right by the rest of the membrane on the downwind side.  The two dimensional case is tantamount to 

considering a membrane with an infinite span, in which the distribution of the forces in each cross-section 

is the same.  Either assumption gives the same result: that there are no net forces acting in the -direction, 

in the span-wise direction. 

 

The following figure shows the balance of forces acting on the piece of membrane we are considering.  I 

have used the symbol  for the force pulling the piece towards the right and  for the force pulling the 

piece towards the left.  These two tensions, and the aerodynamic force, too, have specific directions as 

well as magnitudes.  They are all vector quantities and, starting with this figure, I will denote them as 

such. 
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I have placed a small dot at the midpoint of the line segment joining the leading and trailing edges of the 

piece.  Although the curvature of the membrane causes it to depart slightly from the line segment, the 

departure is small and will become even smaller as we reduce the segment length .  The segment length  

 can be calculated by applying the Pythagorean Theorem to  and , which are the run and rise, 

respectively, of the line segment. 

 

To set up the equations of motion (or absence of motion) for this bit of membrane, letôs imagine that we 

first divide the total arc of the membrane  into  pieces, all with equal lengths .  Then: 

 

 

 

The  pieces, which I will call ñsegmentsò of the membrane, are linked edge-to-edge.  We will treat the 

links as if they were ideal, frictionless hinges, so that each segment is free to rotate with respect to its 

neighbour on the other side of the hinge.  Since there are  segments, there must be  hinges.  The 

two outermost hinges are the leading and trailing edges of the whole membrane.  We can number the 

hinges from left to right along the -axis, with the leading edge of the membrane being numbered Hinge 

#  and the trailing edge being numbered Hinge # .  The following figure illustrates the numbering 

scheme in the neighborhood of some arbitrary Segment #.  

 

 

 

 

 

 

 

 

 

 

 

Take note: since the segment lengths  are all the same, the spacing of the hinges along the -axis will 

not be the same.  Also note that the segments shown in this figure still have their original curvature.  

Although I call them segments, they are not necessarily ñstraight lineò segments (yet).  In other words, 

adjacent segments meet at their shared hinge with the same geometrical tangent. 

 

Letôs now consider the forces which any segment exerts on its neighbour through their shared hinge.  I 

will sometimes refer to these as ñtangential forcesò since they act in directions which are tangential to the 

membrane.  Of course, the force which one segment exerts on its adjacent neighbour will be equal and 

opposite to the force which that neighbour exerts on the given segment.  It follows that we will need to 

define only one tangential force for each hinge.  We can identify the tangential forces using the same 

-axis 

 

 

  

 

 

segment length  
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index numbers as the hinges through which they act.  We are free to pick which side of the segments we 

want to use for indexing purposes.  Letôs pick this way: tension  is the force per unit length in the -

direction which Segment # exerts on the segment immediately to its left, which is Segment # .  

Since forces acting through the hinge are equal and opposite, it follows that Segment #  exerts a force 

equal to  on Segment #.   

 

I am going to use the symbol  for the 

slope of the membrane at Hinge #.  This 

angle describes the slope of the line-of-

action of the tension force acting through 

the hinge.  While this angle will be very 

close to the average of the slopes of two 

adjacent segments, it may not be exactly 

equal to that average.  The figure here 

shows the configuration of the tangential 

forces defined in the neighborhood of 

Segment #. 

 

The following free-body diagram shows in blue the three forces acting on Segment #.  When drawing 

this diagram, I used the normal convention that angle  increases from left-to-right.  Abiding by the 

convention will ensure that the algebraic signs work out consistently.  One consequence is that the lines-

of-action of the tangential forces pass beneath the midpoint of each segment.  The convention does not 

mean that angle  must be greater than angle , or even that angle  is physically greater than 

angle ; it merely ensures that the equations which we develop from the figure are consistent with the 

usual understanding that an angle such as  become more algebraically positive when it becomes 

geometrically bigger.  

 

 

 

 

 

 

 

 

 

 

 

 

 

In this diagram, I have at last shown Segment # as a straight line segment, with the aerodynamic force 

arising from the net overpressure acting perpendicular to its slope and passing through its midpoint.  The 

segmentôs average slope is not .   and  are the slopes of the membrane at the left and right edges 

of Segment #, respectively, but neither is the average slope.  For the time being, I will use another angle 

altogether, the angle , for the slope of the segment itself. 

 

Now, letôs resolve the three forces acting on Segment # into their components in the  and  directions. 
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The absolute value bars, when applied to a vector, signify the vectorôs magnitude, or length.  The 

equations have been written assuming that the magnitudes of the forces are positive when the forces act in 

the directions shown in the figure.   

 

We are also going to calculate the net mechanical moment tending to rotate Segment #.  It is convenient 

to use the midpoint of the segment as the rotation axis for this moment.  To calculate the moment, we 

need to know the distances from the midpoint to the lines-of-action of the applied forces.  Since we have 

already resolved the forces into their components, it is enough to make a note of the perpendicular 

distances from the midpoint to the end-points of the Segment #, which are the moment arms through 

which the force components exert their leverage. 

 

 

 

I will use the convention that a moment is positive if the effect of its rotation is aligned with the positive 

-axis.  A positive moment therefore tends to force the leading edge of the segment downwards.  The 

moments due to the four components of the tangential forces are as follows. 

 

 

 

The pressure force  does not generate any moment since it acts through the rotation axis.  We can now 

add up the various bits to calculate the total force and moment acting on Segment #. 

 

The sum of the forces in the -direction 

 

 

 

The sum of the forces in the -direction 
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The sum of the moments in the -direction 

 

 

  

We are going to require that the sums of the forces in both directions, and the sum of the moments, all be 

zero.  This will put Segment # into a static equilibrium, in which it will neither translate nor rotate.  If 

either of the total forces was non-zero, the piece would accelerate, and then move, in the direction of the 

non-zero force.  If the total moment was non-zero, the piece would be torqued into rotational motion.  

Since we expect the membrane to take on a stable shape, each piece in the membrane must be at rest.  

Setting the total forces and the moment equal to zero gives the following three equations. 

 

 

 

It can be seen in the previous figure that angle  is one of the acute angles in a right triangle whose short 

sides have lengths  and .  Using the definition of tangent, we can write: 

 

 

 

which allows us to re-write Equation  as : 

 

 

 

We can combine Equations  and  in a way which will isolate angle  on the left-hand side.  

We can also re-arrange Equation  to the same end.  We get: 

 

 

 

Setting the two right-hand sides equal gives: 
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This is a significant result.  It means that the tension all along the membrane is constant.  I suspected this 

might be the case but, when laying out the force diagram shown above, I did not want to begin by 

assuming constant tension, as is often done. 

 

That  allows us to simplify Equation  by dividing the tension out of the right-hand side 

altogether.  This leaves: 

 

 

 

I have made liberal use of the identities for sine and cosine with multiple arguments, namely, 

 and .   

 

Equation  is also a significant result.  It means that the average slope of each segment is in fact equal 

to the arithmetic average of the angles of the tangential forces at its two edges.  It is a result which follows 

quite naturally when the magnitudes of the tangential forces at the two edges are set equal, per Equation 

.  This, too, is an assumption that is often made when the force diagram is laid out. 

 

I want to clean up the notation.  Letôs define a new symbol  for the (constant) tension in the membrane.  

Letôs also eliminate reference to angle  by using Equation .  Then, the three Equations  for 

equilibrium can be restated as: 

 

 

 

However, these three equations are no longer independent.  The reader can verify that substituting 

 from the first equation and  from the second equation into the third 

equation gives the identity .  In other words, the third equation does not contain any information 

that the first two equations do not.  Furthermore, the first two equations are not independent either.  The 

reader can verify that multiplying the first equation by  and the second equation by 

 and then adding them together reduces to the identity .  Philosophically, we 

already used up the information in two of the equations when we derived the expressions for  and . 

 

For no particular reason, letôs pick the second expression as the sole independent one.  If we assume that 

 and  are known, then we can calculate  as follows. 
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To make the algebra easier to follow, letôs introduce the symbol  for .  It follows that  

will be equal to  and Equation  can be written as: 

 

 

 

This is a fourth order polynomial in , which can be put into standard form as follows. 

 

 

 

Since Equation  is of order four, it will have four roots.  There will be four values for , which 

generally will consist of two pairs of complex numbers and their conjugates, having the form  

and , where  is the imaginary number.  If all four roots are strictly complex, then we will have a 

problem.  Or, rather, Segment # will have a problem.  An absence of real roots means that Segment # 

does not have an equilibrium point.   

 

Hopefully, we will find that one of the pairs of complex roots is not strictly complex, but degenerates into 

the same real number, appearing twice.  If so, then that real number will be the value of  (recall 

that we replaced  by  just for convenience).  The inverse cosine function is not unique, which is 

to say that it is not really a mathematical function, but a ñrelationò.  It will return two possible values for 

the angle .  We will probably be able to figure out which one is the sensible one by looking at 

.   

 

Letôs think about how we can apply this sequence of calculations to an arbitrary segment.  The three 

original equilibrium equations for Segment # involved six variables: , , , ,  and .  

We used two of the equations to derive  and .  That left four unknowns 

( , ,  and ) but only one independent equation.  If that is all we have, then we will not be able 
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Angle and tension just right 

T.E. L.E. 
 

 

Tension too low 

T.E. L.E. 
 

 

to obtain a unique solution for the arbitrary segment.  Under some conditions, however, we can do better.  

Consider the following statement, which is shown as a diagram:   

 

 

 

 

 

 

I have looked at the four variables from the point-of-view of their appearance as one travels physically 

along the surface of the membrane, from the leading edge on the left to the trailing edge on the right.  In 

order to establish equilibrium for the 
st
 segment, which is immediately to the left of Segment #, one 

would have needed to know or calculate three of the variables: ,  and .  If  we already know those 

three variables, then we can use Equation  to calculate .  That would mean that we now know the 

three variables needed to apply Equation  to the next segment to the right, Segment # . 

 

We can use this process to ñmarchò from the leading edge of the membrane to the trailing edge.  There 

might be a little trouble with the very first segment at the start of the march, since the first segment does 

not have any segment to its left, but letôs put that difficulty aside for the time being.   

 

We can march merely along until we reach the very last segment, Segment #.  The angle we calculate, 

which will be , will be the angle the membrane makes with the reference chord line when it arrives 

at the trailing edge.  Indeed, we can then use all of the previously calculated values of , for  

to find out where the last hinge point is located in the -  plane.  We will find that we have arrived 

exactly at the trailing edge, whose -  co-ordinates are , right?  Wrong. 

 

If everything was perfect, we would indeed arrive exactly at the trailing edge.  But getting everything 

perfect requires that we take the right step at the beginning of the march.  The equation we use to 

calculate angle  when we are at Segment # requires that we know: (i) angles  and  for the 

preceding two segments and (ii) the tension .  When we start out at the leading edge, ready to tackle 

Segment #, we will not know any of these values.  We will have to make guesses for them.  If our 

guesses are perfect, the marching process will take us to the trailing edge, and it will be at the end of the 

chord, right where we want it.  If our guesses are not perfect, the trailing edge will not be at the end of the 

chord.  However, where the trailing edge ends up will shed light on how we should revise our starting 

guesses to come closer on the next attempt. 

 

The following figures illustrate the kinds of outcomes one expects to find if the initial guesses are wrong. 

 

 

 

 

 

 

 

 

 

 

 

 

 

If we know these, é 

é then we can find this. 
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Angle too small 

T.E. L.E. 
 

 

Tension far too high 

T.E. L.E. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

[Subsequent note: In due course, I found that my expectations when the guessed tension is too high or too 

low are reversed.  Too high a guess for the leading edge tension causes the membrane to be flatter than it 

should be.  Too low a guess for the leading edge tension allows the pressure to wrap the membrane into a 

spiral.] 

 

The analysis in this section do not require that the overpressure be constant along the membrane.  For 

example, the tension in the membrane will be constant even if the overpressure varies along the chord.  

When the overpressure is a constant, however, we expect that the shape of the membrane will simplify 

into a circle. 

 

Generalizing from overpressure-only to an arbitrary distribution of surface forces 

 

In the preceding section, we examined the shape of the membrane when it was subjected to forces which 

acted perpendicularly to the surface, as would be the case if there was only a difference in pressure 

between the top and bottom surfaces.  More generally, a membrane placed in an air flow will experience 

tangential forces as well as normal forces.  In this section, we will try to generalize the marching 

procedure to allow arbitrary forces to be applied to each segment.  Since the forces are arbitrary, it is not 

worthwhile resolving them into components normal and tangential to the surface.  The only constraint we 

will impose here at the outset of the generalized analysis is that the forces act at the midpoints of the 

segments.  Letôs begin with a revised force diagram showing all of the forces acting on Segment #.  

Incidentally, since the forces are arbitrary, they could include the segmentôs weight. 

 

 

 

 

 

 

 

 

 

 

 

 

This free-body diagram is the same as the previous one except for the force acting at the midpoint of the 

segment, which now includes components in the - and -directions.  The tension vectors  and  are 

defined as before, as are the angles ,  and .  Like we did before, we will add up the forces in the 
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- and -directions and the moments around the midpoint of the segment.  Since the non-tension force is 

applied at the midpoint of the segment, as it was before, the moment equation does not change.  It 

depends only on the forces acting at the end-points of the segment, which are the tension forces.  The 

three equations for equilibrium (setting the sums of the forces and the moment to zero) are as follows. 

 

 

 

A noticeable difference from before is that angle , the slope of the segment, does not appear in the first 

two equations.  This is because the external force is no longer required to be perpendicular to the surface.  

If we approach these equations like we did before, by assuming that we have already processed the 

segment to the left and therefore already know  and , then we have three equations in the three 

unknowns ,  and .  The left-to-right marching process should work here, too. 

 

Interestingly, even though the force has been generalized, the solution of the three equations is simpler 

than it was before.  At least, the procedure to get the solution is easier than it was.  Letôs combine 

Equations  and  in two different ways. 

 

 

 

We intuitively expect that angle  will be relatively small, if  there is not too much slack in the 

membrane and if it slopes nicely from the leading edge to the trailing edge.  That is not always the case, 

however.  At the leading edge, for example, suction forces can pull upwards and forwards on the 

membrane, possibly even pulling some of the membrane upwind of the leading edge.  I raise this issue 

because taking the inverse tangent function in Equation  will not give a unique value for angle , 

but will give several periodic alternatives.  We need to be definite about the quadrant in which angle  

lies.  Even if we use the ATAN2() function in the computer code, we will still need to ensure that the 

angle is measured in the conventional counter-clockwise direction.  This issue is not unrelated to the 

physical requirement that the tension in the membrane always be positive.   

 

We can confirm the quadrant of angle  by referring to balance of -direction forces in Equation 

.  We can re-arrange Equation  to be: 
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Since the denominator will always be positive (except in the trivial case when the membrane is hanging 

loose), the algebraic sign of  will be the same as the algebraic sign of the numerator.  If the 

numerator is algebraically positive, then the net force on the segment in the -direction is positive, the 

right-hand edge of the segment is being pulled towards the right, and angle  will be in the first or 

fourth Quadrants.  If the numerator is algebraically negative, then angle  will be in the second or third 

Quadrants.   

 

Now letôs look at the second way of combining Equations  and . 

 

 

 

During the march, we first calculate angle  using Equation  and then calculate  using 

Equation .  Angle  is then calculated from the third equilibrium equation, re-arranged as: 

 

 

 

I will not take the trouble to go through the algebra to express ,  and  entirely in terms of 

variables known from segments to the left of Segment #.  It is enough for our purposes to use Equation 

 to calculate  from the variables from segments to the left, to substitute  into Equation 

 to calculate  and then to substitute both into Equation  to calculate the slope  of the 

segment. 

 

There are two important differences from the earlier overpressure-only analysis. 

 

1. the tension in the membrane will  vary from the leading edge to the trailing edge, and 

2. the slope of each segment will not be equal to the arithmetic average of the tension angles at its 

two end-points / hinges. 

 

The Visual Basic program for a membrane with  segments 

 

Before getting into the OpenFoam simulations, I want to describe the program which carries out the 

marching process to calculate the shape of the membrane when it is subject to a known distribution of 

forces.  The program is written in Visual Basic 2010 Express.  The program has a main form and eight 

modules.  The main form defines the controls and executes the tasks the user selects by clicking on 

various buttons.  The program is listed in Appendix ñAò.  I will describe four of the eight modules here. 

 

Module SeedAShapeWithPressureOnly 

 

This module uses the marching process described in the first section above to calculate the shape of the 

membrane when it is subject to a known constant overpressure.  Since the overpressure is constant along 

the membrane, the shape will be an arc of a circle.  Even so, the equilibrium equations are used to 
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calculate the shape.  (I did this non-essential work as an aid to debugging.)  The parameters which must 

be specified are: 

 the length of the chord, in meters,  (default = 3.00 meters) 

 the length of the membrane, in meters,  (default = 3.10 meters) 

 the number of segments,  (default = 100) 

 the angle of attack, in degrees,  (default = 15°) 

 the overpressure, in Newtons per square meter,  (default = 100 N/m
2
) 

 starting guess for the tension, in Newtons per meter and  (default = 4500 N/m)  

 starting guess for the angle at the leading edge, in degrees. (default = 14°) 

 

The OpenFoam runs which will be described below use the default parameters listed above.  Note that the 

membrane is quite big, being three meters from the leading edge to the trailing edge.  There are 10 

centimeters of slack.  The airfoil is placed at a relatively high angle of attack, 15°.  The particular value of 

100 N/m
2
 specified for the overpressure is not really that important, since the resulting shape will be the 

same arc of the same circle for any positive value of the overpressure.  Certain variables are used 

consistently throughout the program to hold information about the shape.  They are these: 

 
 Public X(NumSegments + 1) As Double         ' X - co- ordinates o f the hinges, meters  

 Public Y(NumSegments + 1) As Double         ' X - co- ordinates of the hinges, meters  

 Public Tension(NumSegments + 1) As Double   ' Tension at the hinges, Newtons  

 Public ThetaRad(NumSegments + 1) As Double  ' Angles at segment edges, radi ans 

 Public LambdaRad(NumSegments) As Double     ' Slopes of segments, radians  

 Public DeltaS As Double                     ' Slant height of the segments  

 Public XTE As Double                        ' X - co- ordinate of T.E., meters  

 Public YTE As Double                        ' Y - co- ordinate of T.E., meters  

 

The following screenshot shows the shape of the membrane calculated by SeedAShapeWithPressureOnly. 
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The black line segment is the reference chord, which slopes downwards from the leading edge at the 

specified angle of attack of 15°.  The red arc is the membrane.  The procedure was triggered when I 

clicked on the button at the top left, labeled ñSeed a new shapeò.  The textboxes in the upper left corner 

show that the calculations converged when the tension at the leading edge was 350.6 Newtons per span-

wise meter and the angle of the tension vector at the leading edge was 25.3°.  The text in the label at the 

lower left lists the given parameters and a few significant facts about the ñairfoilò.  The thickness ratio, 

which is the maximum deviation from the chord as a fraction of the chord, is 11.2% and, as would be 

expected for the arc of a circle, the point of maximum thickness is exactly at mid-chord.   

 

A couple of things should be understood: 

 The marching procedure described in the first section of this paper, based on overpressure only, is 

used simply to get the overall process started.  OpenFoam needs some specified shape to work 

with, and a circular arc like the one that results from using overpressure only is as good a shape to 

begin with as any other.   

 The same GUI is used throughout the overall process.  The calculated shape of the membrane will 

always be shown in the plot at the upper right. 

 

Module WriteGMeshFile 

 

After a new shape (or the starting overpressure shape) has been calculated for the membrane, the shape 

must be described in such a way that OpenFoam can simulate the airflow.  In this paper, the membrane is 

placed inside a virtual wind tunnel and the volume of air surrounding the membrane is meshed using the 

program GMesh.  Clicking on the button labeled ñWrite GMesh and OpenFoam filesò will, among other 

things, write a text file containing the instructions GMesh uses to create the mesh.  By default, this 

module will write to a file with the name ñMembrane.geo.txtò.  Since no directory is specified, the file 

will be created in the /bin/D ebug/  subdirectory of the Visual Basic application. 

 

This module writes the complete instruction file used by GMesh, not just the co-ordinates of the surface 

of the membrane.  Everything needed to generate the mesh is specified, including the dimensions of the 

virtual wind tunnel and the characteristic lengths for the elements in the mesh. 

 

The text file written by module WriteGMeshFile for the starting shape shown above is listed in Appendix 

ñBò.  I will describe certain parts of this file when I describe the OpenFoam parameters below. 

 

Module WriteOpenFoamFunction 

 

Clicking on the button labeled ñWrite GMesh and OpenFoam filesò also executes the principal subroutine 

in this module.  This module writes another text file, with the name ñOpenFoamFunction.txtò, which will 

be created in the /bin/ Debug/  subdirectory of the Visual Basic application.  Appendix ñCò is a listing of 

this file for the starting shape shown above. 

 

The analysis above assumes that the membrane is infinitely thin.  But GMesh cannot handle an infinitely 

thin membrane.  It becomes confused when physical points are too close together and it tries to merge 

them.  Therefore, the ñMembrane.geo.txtò file instructs GMesh to create a two-sided membrane, whose 

upper and lower surfaces have the same shape but are separated by a very small distance.  If the infinitely 

thin membrane is discretized into 100 segments, then the physical surface of the airfoil prepared by 

GMesh will consist of 200 segments.  We need OpenFoam to calculate the forces on each segment 

separately.  Often, one is interested only in the total aerodynamic force and moment acting on an airfoil 

but, in this paper, we need to know the aerodynamic force at points all along the surfaces, which we will 

use to calculate the shape of the membrane for the next iteration of OpenFoam. 
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The usual procedure for having OpenFoam calculate and write the forces is to include a function inside 

the /system/controlDict  file.  The function typically invokes the function ñforcesò in OpenFoamôs 

library ñlibforces.soò.  The function ñforcesò calculates and writes the components in the three spatial 

directions of the pressure and viscous forces and moments.  We need to make 201 calls to function 

ñforcesò, one call for the aggregate force and moment acting on the membrane (for informational 

purposes only) and 200 calls for the forces and moments on the individual segments.  It is the business of 

the principal subroutine in this module to write out the code for these 201 function calls.  The contents of 

the ñOpenFoamFunction.txtò file can then be copied and pasted directly into the /system/controlDict  

file. 

 

Function ñforcesò can be used to calculate the force and moment acting on any plane surface, but 

OpenFoam must have some way to identify the separate plane surfaces of interest.  For this purpose, the 

text file of instructions for GMesh declares each segment on the upper and lower surfaces of the 

membrane as a ñPhysicalò surface and gives it a name.  For convenience, the 100 segments on the upper 

surface are named ñSegment.1ò through ñSegment.100ò and those on the lower surface are named 

ñSegment.101ò through ñSegment.200ò.  For both surfaces, the segments are indexed from the leading 

edge to the trailing edge.  When necessary, the segments can be addressed collectively as ñSegment.*ò. 

 

Module RenderMembrane 

 

The principal subroutine in this module prepares a plot of the membrane (in red) and the reference chord 

(in black) which is displayed in the top right quadrant of the GUI.  The line segments which make up the 

membrane and reference chord are drawn on a bitmap which the main form paints as the background 

image of a panel control. 

 

The Visual Basic program has four more modules, but they are used to process data produced by an 

OpenFoam run.  I will defer a description of these other modules until after we talk about OpenFoam. 

 

The setup of the OpenFoam application for steady-state, incompressible, two-dimensional flow 

 

Letôs assume that we have calculated the shape of the membrane.  We want to know the steady-state 

pattern of airflow around that shape.  The airspeeds of interest are low in comparison to the speed of 

sound, so we can assume that the air is incompressible.  We will therefore use OpenFoamôs simpleFoam 

solver, which implements the equations for steady-state incompressible flow. 

 

We want to include the effects of viscosity in our analysis, for which purpose we need to specify a 

turbulence model.  In this paper, we will use the Spalart-Allmaras turbulence model.  It is most effective 

for two-dimensional airflows, which is what we have assumed for the membrane, although it is arguably 

not so accurate as other turbulence models if there is massive separation of the airflow from the surface. 

 

We will position the membrane inside the virtual wind tunnel shown in the following figure.  The origin 

of the - -  co-ordinate frame is placed half-way through the one millimeter thickness of the wind 

tunnel.  The wind tunnel can be made very thin because we are assuming that the airflow will be the same 

on each -  cross-sectional plane.  GMesh will mesh the area of the cross-section which is located at 

 meters into many little triangles.  It will then extrude each triangle across the wind tunnel 

to  meters.  The three-dimensional mesh in which OpenFoam will carry out its calculations 

will therefore consist of many little prisms.   

 

 

 

 




