An OpenFoam Analysis

The shape of a flexible membrane airfoil in a uniform twedimensional flow

In this paperwe aregoing to examine the twdimensional case of a flexible membrane whose length is
greater than the distance betwé&®n supportingendpoints. The following figure illustrates most of the
important termsnd conventions

y-axis

Arc length of membrane S = (1 + t)C
Y-axis L.

wind
e —_—
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A reference chord line passes through the leading edge (L.E.) and trailing edge (T.E.) at an angle of attack
a with respect to the direction of the oncoming wind. The leading and trailing edges are not round,

despite the dots used to identify them in the figure. They are mathematical points. They are $gparated

a constantlistanceC and held in place by s@e structure which is not shown in the figure.

The membrane itself is rendered in red. It is longer than the €hoydsome fractiort, which stands for

it hi ckneTshsi sr autsieo co.f t he word fAthicknessdanbrane a | i tt
itself is going to be treated as an idealized sleaingno physical thickness at all. The red curve

represents the crosgction of tatidealized sheet. | anticipate that the sheet will take on a static shape in
response to the airflow. Hefully, the static shape will be a gentle curve, something like the curve

described by the midpoints of the line segments between the top surface and bottom surface of a classical
airfoil. For a classical airfoil, the degree of curvature of that midpiomtis captured in a parameter

call ed t he A c ambhematcallp the darhber isahie ratio @fitwo distandds the maximum
departure of the midpoint line from the straight line extending from the leading edge to the trailing edge,
divided ly the length of the straight line segment from the leading edge to the trailingAetigghly-

curved airfoil has a greater camber than a flatter airf@éémber is quite differeritom thickness

Typically, the thickness of a classical airfoiliscapmd by anot her parameter, th
which is another ratio: the maximum vertical separation between the top and bottom surfaces, divided by

the length of the line segment from the leading edge to the trailing edge. The patdragieralling

thickness is really the camber of the airfoil, but it makes intuitive sense in this application. If it did not

cause so much distraction, | could have calledmething like thé | e n g t drthefiastl iac& r at i o0

The membrane is perfectly flexiblso thatmechanicamomentscannot béransmitted from one spat
the membrane to its neighbors. The membrane is flexibli isutot elastic.It does not stretch.
Whatever the shape it takes amder the influence of the airflow, its surface lengtt always beequal
to(1+¢)C.

| have shown two cordinate frames of referenaethe figure TheX-Y frame, with the capital letters
oriented so that thg-axis is paralleto the wind direction.l will be simulating the aerodynamics using
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the OpenFoam CFD pkage and th&-Y frame of reference will be aligned with the length and height of
thevirtual wind tunneWwhich encloses the membranghe x-y frame, with the small letters, is fixed to

the airfoil, withits origin at the leadig edge and it§-axis pointing aft along the reference chord line. |
have chosen to use the same letterghferaxes of botho-ordinate frames notwithstandipgssible
confusion. It will be handy to be able to manipulate the shape of the airfoil as a mathdomattca

using the traditionay = f(x) notation. On the other hand, OpenFoam aneppreessing the mesh are
also easiedf the traditionallettersare used for thaxes. The use of capital letters for one frame of
reference and small letters for thiner seems to be the best compromise.

Theoverallprocedurewe will use is iterative.We will assumesomeshape for the membrane, and then
runan OpenFoam simulation to determine the distributidioraesalong themembrane The assumed
shape willremain the samehroughoutthe OpenFoam runAfter the run is completedaye will re-
calculate the shape which the membraweldtake on when subjected tcetforces calculatety
OpenFoam The new shape will benape of the airfoiassumedor thenext Op@Foamrun, and held
constant during that runf and whenwe get toa point wherethe OpenFoansimulations generaterce
distributions which are the same as those used to calculate theoSktia@enembraneve will be done.

I have useditl e amar disgnefimbirrafn@ ¢ i nterchangeabl y. T
use of the word membrane to the physical material and use of the word airfoil to the shape of the
me mbr ane. Let me define the fAsl|l aalemgthofthet he membr

membrane over and above the minimum lenigtieedso exter in a flat sheet from the leading edge to
the trailing edge. So long as the amount of slack is not too gesdicipate that the nmebranewill have
an airfoitlike shape.With thatanticipationin mind, I will continue to interchange the words airfoil and
membrane.

As a f i r sytto apalyzephe shape of treembranevhen it is subjected only to a difference in
pressure between itsp and bottonsurface. The menbrane may be infinitely thin, but that does not
prevent it from having a top and bottom. The forces to which pressure gives rise act perpendicularly to
the membrane at every point. A real airflow wilogive rise to forces acting tangentially along th
surface(s), a consequence of the viscosity of realvhich expresses itself through phenomena like the
boundary layer. If we can succeed with the simpler case of pressure only, then we will ¢basitme
general case where the airflow exerts ésrtangential to the membrane adlas perpendicular to it.

The shape of a flexible membrane when subjected to a givetatic pressure distribution

The first question ia practical onein what form will the pressure data pevided by OpenFoamvhen

we need it to recalculate the shape of the membraneam not referring tthe difference between data in
digital form and data imnalogue fornfthe pressure distribution is going to be in digital form) nor am |
referring to the difference between dii®wn at discrete points and data given by cldseah
expressions (the pressure distribution is going to be in dizedébrm). If the spacing of the data points
does not me our needs, then we will have to fit a curve globally or interpolate lobatlyeen the points
at whichthe data is available.

Instead, inat | amaskingis whether the pressure will be reported at points along the reference chord line,
or at points along the curved surface. Wherctmberof the airfoilis small,distance measired along

the reference chord line will be closedistancesneasurd along the surface. At greateurvaturesthe
difference will begreater Thisdifference will likely bemore of a problem near the leading edge, which

is unfortunate because thagii@n of the surface makes a disproportionate contribution to the lift. The
following figure illustrates the issue.
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We will use the symbat for distancemeasured | ong t he me mibnrtleeteadingedgeur f ac e
The question, then, is whether the pressure distribution wél/agable as function ofthechordwise

distancep = p(x) or asa function ofthe surfacewise distance = p(s). For the time beind, et 6 s

assume it is thiatter, namely,p = p(s).

The pressure | am referring to is the net pressure acting on the membrang givan point. Since the
membrane is assumed to be infinitely tlémery point on the top s@te can be paired with a
corresponding point on the bottom surface which lies directly through the membranebsthae
pressure actingt any poinbn the top surfaceill be directly opposethy the absolute pressure acting at
thecorresponding pointrothe bottom surfaceBecause the two points have the same mathematical
location, we carreat them as one and simply usenbképressurecting on them.

Letds consider a ver yhavnpacsurface lprigth @ Siocé wetate éookimgamb r a n e
the twadimensional case, we will assume that the width of the piece idhection,which axis points

out of the page in this instance, is one unit lehagsly, say, one meter. Then, the area of this piece of

membranas also given bys, although it should be understood that there is an implicit multiplication by

one unit lengthin the orthogonal directionlf the local overpressure jis then theanagnitude of théorce

F, acting on the piecwill be equal tahe pressure multiplied by the area, namgJys= pAs. (I am going

to use the word Aoverpressureo i n Asksimagnpdipber f or
suitably short, then the piece will bBeaalmost flatrectangle Theforce due to the overpressudl act in

the drection perpendicular to ihflat rectangle

We are going to ignore the force of gravity on the membrane. Even if a real membrane is not infinitely
thin, it can still be lightweight enough that théher brces swamp the gravitational force, which is to say,
the weight.

And, indeed, there are two forcether than the overpressure whichatthe pieceof membraneve are
considering.The piece ipulled to the left by theest of the membrane on the upwside and to the

right by the rest of the membrane on the downwind side. The two dimensional case is tantamount to
considering a membrane with an infinite span, in which the distributitireddrces in each crossection

is the same. Either assumptidaes the same result: that there aranatforcesactingin theZ-direction

in the sparwise direction

The following figure shows thiealance oforces acting on the piece of membrane we are considering. |

have used the symbﬁ for the force pulling the piece towards the right apdor the forcepulling the
piece towards the leffThese two tensionand the aerodynamic force, too, have specific directions as
well as magnitudes. They aa# vector quantities and, starting with this figure, | will denote them as
such.
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| have placd a small dot at the midpoint of the line segment joining the leading and trailing edges of the
piece. Although theurvature of thenembraneauses it talepart slightly from thline segment, the
departure is small and will become even smaller as weetde segment lengths. Thesegmentength

As can be calculated by applying the Pythagorean Theorédm amdAy, which are the run and rise,
respectively, of the line segment.

To set up the equations of motion (or absence of motionhifobito f me mbr ane, | et 6s
first divide thetotal arcof the membranél + t)C into N pieces all with equal lengthds. Then:

As = 1+60)C S "
s=—xy =5 @
TheN pieceswhi ch | segmdntt ¢ fl 1 h @ arelimked edgeredge. We will treat the
links asif they wereideal, frictionless hinges, so that each segment is free to rotate with respect to its
neighbaur on the other side of the hing8ince there ar segments, there must e+ 1 hinges. The

two outemosthinges are the leading and trailing edges ofwmle membrane. We can number the
hinges from lefto right along thex-axis with the leading edgef the membranbeingnumberedHinge

#1 and the trailing edge beimyumbereddinge #V + 1. The following figure illustrates the numbering
scheme in the neighborhoodseimearbitrary Segmentj#

Segment #
Hinge#j

Hinge#j + 1

Yji-1 33 Yi+1

X-axis
Xj—1 Xj Xj+1

Take notesince the segment lengths are all the saméhe spacingf the hinges alonthe x-axis will
not be the sameAlso note that theegmentshownin this figurestill havetheir original curvature

Alt hough | call them s e gstraightinedsegindntyet). b oteer womld, necess

adjacent segmeniseet atheir shared hingeith the same geometrical tangent.

L e tndnsconsiderthe forces whiclanysegment exerts on its neighloghrough their shared hingé.
will sometimes refer to these @&sngential forcedsince they adn directionswhich are tangerl to the
membrane. Of coursdhe forcewhich onesegment exgs on its adjacent neightowill be equal and
opposite to the forcerhich that neighbair exerts on the given segment. It follows thatwill need to
defineonly onetangential forcdor each hinge We canidentify thetangentiafforcesusing the same
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index numbes as thehinges through which they act. We are free to pick whidh of the segments we
want to use for indexi n@siopﬁjistlpedoscefs unitlengtlein thes p i c k

direction which Segmentj#xerts on the segment immediately to its, iattich isSegment #— 1.
Since forces acting through the hireyeequal and opposite, it follows that Segmeit-# exerts a force

equal to—T, on Segment j#

I am going tause the symba; for the
slope of the membrane at Hingg # his
angledescribes the slope of thime-of-
action of thetensionforce acting through
the hinge. While this angle will be very
close to the average of the slopes of two
adjacent segments,riay not beexactly
equal tathataverage. The figurkeere

shows the configation of the tangential Yi-1 33 Vj+1 2-axis
forcesdefinedin the neighborhood of >
Segment # Xj-1 Xj Xj+1

The following feebodydiagram shown blue the three forces acting on Segment Whendrawing

this diagram, | used the normal convention that afAglecreases from lefio-right. Abiding by the
convention will ensure that the algebraic signs work out consistedtig. consequence is thhe lines
of-action of theangentiaforces pass beneath the midpoint of each segmdm.convention does not
mean that anglé;,,; must be greater than anglg or even that angl@,. , is physicallygreater than
angled;; it merelyensures that the equations which we develop from the figure are consistent with the
usual understanding that an angle such ascome more algebraically positive when it becomes
geometrically bigger.

Fq

— Xirq — X;
-T, ""7 """"" J*L Vit1 — Yj

In this diagram, | havat last showrsegment #as astraightline segment, with theerodynamic force

arising from the net overpressure actiggpendicular to its slope dpasmg through its midpoint.The
segment 6s av ed. 4 aqd;, s arotipeslopessohermerhbrane at the left and right edges

of Segment # respectively, but neither is the average slope. For the time being, | will use another angle

altogetheytheangley;, for theslope of the segment itself.

No w, rkseltedhs three forcesting on Segmentj#nto their components in thieandy directions.

t



E, = —|Fa)| siny; X + |Fa)| cosy; § (24)
Tyr = |T]+1| cos b1 X + |T]+1| sinf;,1y (2B)
—T; = —|T;| cosf; X — |T;| sing; y 20)
The absolutevalue ar s, when applied to a vectorThe signify t

equations have been written assuming that the magnitudes of the forces are positive whessthetfin
the directions shown in the figure.

We are also going to calculate thetmechanical moment tending to rotate Segmgntitis convenient
to use the midpoint of the segment as the rotation axisifomtiment. To calculate the momewg

need to knovthe distances from the midpoint to theesof-action of the applied forces. Since we have
already resolved the forces into their components, it is enough to make a note of the perpendicular
distances from the midpoint to teadpoints d the Segment j# which are the moment arms through
which the force componengxert their leverage

distance to right distance above
E;: 0 0
1 1
Tt 50041 — ) ;i =)
1 1
T =505 -x) 50— w)
I will use the convention that a moment is positive if the effect of its rotation is aligned with the positive

Z-axis. A positive moment therefore tends to force the leading edge of the segment downwards. The
moments due to the foaomponents of the tangential forces are as follows.

due to ﬁ’lx M, = —%(yjﬂ - y])lﬁl €0s 041

due to m|y: M, = +%(x]-+1 — %)|Ty41| sin 644
dueto=T|; M, = —Xpus—yTlcosey [ O
due to — T]’|y: M, = +%(xj+1 - x})|T])| sin 6;

The pressuredrcefa’ does not generate any moment since it acts through the raatsiwWe can now
add up the various bits to calculate the total force and moment acting on Segment #

The sum of the forces in thedirection

ZFx :E|X+H|x_f|x
= —|E;| siny; + |ﬁ| cosbjyq — |TJ)| cosf; (4)

The sum of the forces in thedirection

B =Rl +Ta), -7,

= |F,| cos; + |Tj41|sin6;41 — |T| sin6; (5)




Thesum of the moments in tifedirection

S, - {—%(ym Tl costy + leose] +)

1 = | s
ot 2(%541 = %) [| T4 | sin 641 + [T sin 6]
We are going to regjre that the sums of the forces in both directions, and the sum of the moatidigs,
zero. This will putSegment #into a staticequilibrium,in whichit will neither translate nor rotate. If
either of the total forces was narro, the piece wouldccelerateand then moveén the direction of the
non-zero force. If the total moment was rpero, the piece would be torqued into rotational motion.

Since we expect the membrane to take on a stable shape, each piece in the membrane must be at rest.
Setting the total forces artie momentequalto zero gives the following three equations.

—|Fa)| siny; + |ﬁ:| cosbjyq — |TJ)| cosf; =0 (74)
|Fa| cosy; + |TJ+1| sinfj,, — |TJ)| sinf; =0 (7B)
Vjs1 = ¥)(|Ty+1| cos Oj4q + |Ty| cos 6)) = -

— 7 (70)
= (01 = %) ([T 1] sin 41 + [Ty sin 6))

It can be seen in the previous figure that aggles one of the acute angles in a right triangle whose short
sides have lengthg,; — y; andx;,; — x;. Using the definition of tangent, we can write:

Vi+1 —Yj
tany; = 2—
Yj+1 =%

= (Va1 —yj) cosyy = (x40 — x;) sinyp;  (8)
which allows us to revrite Equation(7C) as :
siny; (|T]—+1’| cosbjyq + |T;| cos HJ-) = cosy; (|ﬁ| sinfj,, + |T])| sin Gj) 9

We can combin&quationg(74) and(7B) in a way which will isolate anglg; on the lefthand side.
We can also rarrangeEqguation (9) to the same endWe get:

|E| siny; |ﬁ| cosbjyq — |T])| cos; (74)

|| cos; B ~|T;+1| sin ;41 + |T|sing; (7B)
siny; B |T]—+1’| sinf;,, + |T;| sin 6;

= 2 - 9’
cosy; |T]+1| cosBjyq1 + |7}| cos 0; ©)
Setting the two righhand sides equal gives:
|ﬁ| cosbjyq — |T])| cos 6; _ |ﬁ| sinfj,, + |T])| sin 6;
—|m| sinfj,, + |T])| sin 6; |ﬁ| cosbiyq + |T])| cos 6;
— 2 2 — .2 =2 .
> |Tj41| cos? ;41 —|T)| cos?; = —|T)41| sin? 6,4 + |T)| sin?6;
— 2 2
- Tal = [T (10)



This is a significant result. It means that the tension all along the membrane is constant. | suspected this
might be the case but, when laying out the force diagram shown afabh@eiot want to begiby
assuming constant tension, as is often done.

That|T}+,| = |T}| allows us to simplify Equatiot®”) by dividing the tension out of the righand side
altogether. This leaves:

siny;  sin6j,q +sing;

cosy;  cosBjq + cosb;
siny; cos 6,1 — cosy;sinb;, 4 = sinb; cosy; — cosb; siny;
sin(y; — 641) = sin(6; — ;)
Yj =0+ =6 -
¥ =5(601+6)) (11)

Ll

I have made liberal use of the identities for sine and cosine with multiple arguments, namely,
sin(A + B) = sinA cosB * cos Asin B andcos(A + B) = cosAcosB F sinAsinB.

Equation(11) is also a sigificant result. It means that the average slope of each segment is in fact equal
to the arithmetic average of the angles of the tangential forces at its two edges. It is a result which follows
quite naturally when the magnitudes of the tangential fat#se two edges are set equal, per Equation

(10). This, too, is an assumption that is often made when the force diagram is laid out.

I want to clean up t he nbforthe (constant) tendioa in thes methlerdné. n e  a
Letos al so el i miyypkytusng Eqeatici¥1ll Ther, the tree &quatib(e) for
equilibrium can be restated as:

—|Fal sin |2(8}41 + 6;)] + T cos 6, — T cos; = 0 (124)
|F,| cos E(Bjﬂ + 9]-)] +Tsinfj,; —Tsing; =0 (12B)

sin [%(9141 + 9]-)] (cos )14 + cosb;) = cos [%(Hjﬂ + 9]-)] (sin6,, +sin6;) (12C)

However, these three equations are no longer independent. The reader can verify that substituting
sin[2(6;.1 + 6;)] from the first equation ancbs[X(6;., + 6;)] from the second equation into the third
equation give the identityl = 1. In other words, the third equation does not contain any information
thatthe first two equations do noEurthermorethe first two equations are not independent either. The
reader can verify that multiplying the first equationdog[2(6;.1 + 6;)] and the second equation by
sin[2(6;.+1 + 6;)] and then adding them together reduces to the idehtity). Philosophically, we
already used up thieformationin two of the equationwhen wederival the expressions fof andy;.

For no particule r eas on, | et 6 s pi c koletindependent ondfnve assumepthiae s s i o n
T and#; are knownthen we can calculatg,; as follows.

|F; | cos E(ef“ + Hj)] + T(sinB;4, —sin;) =0

- 1 1 1 .1 =3 1 1 =~ .
A (cosEHjH c0s26; — sin-6;,4 sin 591') +T (2 SUEI coszajﬂ) —Tsing; =0 (13)



To make the algebra easterfollow, | e ¢ddce the spnibal for cos26;,,. It follows thatsin>6;.,
will be equal tov1 — A2 and Equatior{13) can be written as:

|y (2cos36; — V1 22sin26;) + 27241 = 22 = T sing; = 0

- \/1—AZ<2/1 |a| )- | |/1<:osl9+51n9-

(1-2%) 4)12—4)1@sin§9j+|%|sin21- =

2°]
ﬁ
—2
E
=@/12c05219]-— | |/1cos 9 sin 6; + sin®
TZ 2
42 4A| | —8 +|a| sm219+
- ---—4A4+4/13|—£‘|sin19-—12@51n219-+--- =0 (14
T g T? 2]
.2
---—M/l cos —9 +2| |/1cos 9 sin 6; — sin? 6,
\ T2 T 7)

This is a fourth order ggnomial inA, which can be put into standard form as follows.

2

At )L3|a|51n 0+/12 &—1 +
AT?2

=0 (15)

Rl
. 1
TZSII’I2 50]

| al (sm ~6; — —COS%HJ- sinHJ-) + %sin2 6; — 7

\

SinceEquation(15) is of order four, it will have four rootsThere will befour values forl, which
generally will consist of two pairs of complex numbansl their conjgates, having the form, + ib,
anda, t ib,, wherei is the imaginary numberlf all four roots are strictly complex, then wél have a
problem. Or, rathelSegment #will havea problem. An absence of real roots means that Segghent #
does not have an equilibrium point.

Hopefully, we will find that one of the pairs of complex roots is not strictly complex, but degenerates into
the same real number, appearing twitfeso, then that real number will be the valueas>6;.,, (recall

that we replacedos 26, by 1 just for convenience)The inverse cosintinctionis not unique, which is

to say that it is not really mathematicafunction, but &irelatiord. It will return two possible values for

the amgle 8;,,. We will probably le able to figure out which ais the sensible one by looking at

sin6;.4

Letds think about how we can apply thitresequence
original equilibrium equatios for Sigment # involved six variables|T, 4|, |T;|, 6;+1, 6;, 6;—1 andi;.

We used two of the equations to deff¥g, | = |T| andy; = (6;,, + ;). That left four unknowns

(7, 8;+1, 8; andd;_,) butonly one independent equation. If that is all we have, then we will not be able
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to obtain a unique solution for the arbitrary segment. Under some conditions, however, we can do better.
Consider the following statementhich is shown as a diagram:

fweknow th ¢ l l
IT| 641 6 6;-

T é then we ca

I have looked at thiour variables from the poirtf-view of their appearance as anavelsphysically
along the surface of thmembrane, from the leading edge the leftto thetrailing edgeon the right In
order toestablish equilibrium for the— 1% segment, which is immediately to the left@¥gment # one
would have needed to know or calculate three of the varidBles; and6;_,. If we already know thse
three variablesghen we can usequation(15) to calculated; ;. That would mean that we now know the
three variables needed to apply Equatibh) to the next segment to the right, Segmgnt#.

We can use this processitana r ¢ h 0 fdmgeuge bfthe mdmérane to the trailing edge. There
might be a little trouble with the very first segment at the start of the march, since the first segment does

A

not have any segment to its | eft, but | etbés put

We @anmarchmerely along until we reach the very last segment, SegmeniTiie angle we calculate,
which will beéy, 1, will be the angle the membrane makes with the reference chord line when it arrives
at the trailing edge. Indeed, warctheruse all of the previoly calculated valuesf 6;, fori = 1,2 ...N

to find out where the last hinge point is located inittfeplane. We will find that we have arrived

exactly at the trailing edge, whosey co-ordinates aréC, 0), right? Wrong.

If everything was perfectye would indeedarrive exactly at theailing edge. But getting everything
perfectrequires that we take the right step at the beginning of the marcheqliagonwe useto
calculate angl@;,,; when we are at Segmentréquires that we know: (i) anglé; and6;_, for the

preceding twosegmerg and (i) the tensioff. When we start out at the leading edge, ready to tackle
Segment #, we will not knowany of these valuesWe will have to make guesses for thethour
guesssareperfect,the marching process will takes tothe trailing edgeand it will be at the end of the
chord, right where we want itlf our guesssarenot perfectthe trailing edge will not be at the end of the
chord. However, where the trailing edge ends up will shed light on how we shdaklgaw starting
guesses to come closer on the next attempt.

The following figures illustratethe kinds of outcomesneexpecs to find if the initial guesses are wrong.

A~ ~

y y

A A

v
=
]
v
=

L.E. T.E. L.E. T.E.
Angle and tension just rigt Tension too low
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v
=

L > X L
L.E. T.E. LE. ~___~ T.E.

Angle too small Tension far too high

[Subsequent note: In due course, | found that my exti@atavhen theguessedensionis too high or too
low arereversed Too high aguess for théeading edgéension causes the membrane to b#dl than it
should be. To low a guess for thieading edgeension allows the pressure to wrap the membnatoecai
spiral.]

Theanalysidn this section do not require that the overpressure be constant along the membrane. For
example, the tension in the membrane will be constant even if the overpressure varies along the chord.
When the overpressure is a consthowever, we expect that the shape of the membrane will simplify
into a circle.

Generalizing from overpressureonly to an arbitrary distribution of surface forces

In the preceding section, we examined the shape of the membrane when it was suljerctes which
acted perpendicularly to the surface, as woelthb case if there was only a differemecgressure
betweenhe top and bottom surfacellore generallya membrane placed in an air flovillvexperience
tangential forces as weds normal dérces In this section, we will try to generalize thmarching
procedure to allow arbitrary forces to be applied to each segment. Since teaaferaebitrary, it iaot
worthwhile resolving them into components normal and tangential to the surfaeanly constraint we
will impose here at the outset of theneralizedanalysis is that the forces act at the midpoints of the

segmentsL et 6s begin with a revised attogorSegnegntja gr am s how
I ncidentally, since the forces are arbitrary, t he

-1, '"'7 """"" Xi+1 = Xj Yi+1 —Yj

This freebody diagram is the same as the previous one except for the force acting at the midpoint of the

segment, which now includes components intthendy-directions. The tension vectorg andT}: are
definedas before, aarethe angles);, 6, andé, . Like we did before, wavill add up the forces in the
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X- andy-directions and the moments around thidpuint of the segment. Since the Aension force is
applied at the midpoint of the segment, as it was before, the moment equation does notlthange.
depends only on the forces acting at the-oidts of the segment, which are the tension fordée.

three equations for equilibrium (setting the sums of the forces and the moment to zero) are as follows.

0= ZFx: Fej+ |Tj+1| cos841 — || cos8; =0 (164)
0= ZFx: Fyj +|Tjsa|sin6,, — |T|sin6; =0  (16B)

0= ZMZ : {tan ¥; (|m)| cosBj4q + |T])| cos 9]-) = .. (160

= ([Tl singy.s + [F]sin)

A noticeable difference from before is that angjethe slope of the segment, does not appear in the first
two equations.This is because the external force idomer equired to be perpendicular to the surface.

If we approach these equations like we did before, by assuming that we have already processed the
segment to the left and therefore already kﬂ_}’)andej, then we have three equations in the three

unknowrs |T]—+1’| 6;+1 andy;. The leftto-right marching process should work heieo.

Interestingly, even though the force has been generalizedolhon of the three equations is simpler
than it was before. At least, the procedure talye solution is easierthanitwdset 6 s combi ne
Equationg164) and(16B) in two different ways.

First way: (164) sin 6., — (16B) cos 8,4

Fyjsinfj,, — Fyjcosfj,q — |T;| cos®;sinb;, 4 + |T;| sin6; cos ;1 =0
sin 6,1 (Fy; — |T)| cos 8;) — cos 8,4 (F,; — |T}| sing;) = 0
Fy; = |T)| sin§;

tan;,, = =
T Ey = [T cost,

(174)

We intuitively expect that angl@;., will be relatively smallif thereis not too much slack in the

membrane and it slopes nicely from the leading edge to the trailing edge. That is not always the case,
however At the leading edge, for example, suctiorcés can pull upwards and forwaaisthe

membrane, possibly eveulling some of the membrane upwind of the leading etlgaise this issue
becauseaking the inverse tangent function in Equat{@@A) will not give a uniquealue for anglé;, ;,

but will give several periodic alternative§Ve need to be definite about the quadrant in which #hgle

lies. Even if we use the ATANRfunction in the computer code, well still need to ensure that the

angle is measured indltonventionakounterclockwise direction. Thigsueis not unrelated to the

physical requirement that the tension in the membrane always be positive.

We can confirm thejuadrant ofingled;..; by referring to balance df-direction forces in Equation
(16A4). We can rearrange Equatio(i164) to be

—Fyj + |TJ)| cos b;
T4

cosjyq = (164"
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Since the denominator will always be positiegdept in the trivial case when the membrane is hanging
loosg, the algebraic sigof cos 8;,; will be the same as the algebraic sign of the numerator. If the
numerator is algebraically positive, thidre net force on the segment in fhdirection is positive, the
right-hand edge of the segment is being pulled towardsght and anglé, ., will be in the first or

fourth Quadrants. If the numerator is algebraically negative, then @ngl@ill be in the second or third
Quadrants.

No w lloektatttresecond way of combining EquatiofisvA) and(16B).
Second way: (16A) cos6;,1 + (16B) sin 6,4
FyjcosBjyq + Fyjsinf,, + |T]+1| - |T;| cosB;cos b1 — |T;| sinf;sinf;,, =0
|Ty+1| + Fyj cos 641 + Fy;sin6j41 = |T,|(cos 8; cos 6,1 + sin 6, sin6;,)

|T/+1| + Fyj cos 841 + Fysin6,1 = |T| cos(8j,1 — 6;)
|ﬁ| = |T;| cos(0j+1 - HJ-) - (Fx]- cosbj,q + Fy;sin 9j+1) (17B)

During the march, we first calculate angjg, using Equatior{17A4) and then calculathﬁ| using
Equation(17B). Angley; is then calculated from the third equilibrium equatioram@ange as:

B |T,+1|sin 6,1 + |Tj| sin

t A =
any |T,41| cos 641 + |T;| cos 6;

(170)

I will not take the trouble to go through the algebra to ex@gss |ﬁ’| andy; entirely interms of
variablesknownfrom segments to the ledf Segment # It is enough for our purposes to use Equation
(174) to calculated; ., from the variables from segments to the left, to substitytginto Equation

(17B) to calculatdT)., | andthento substitute both into Equatig7C) to calculate the slopg; of the
segment.

There are two important differences from the eadienpressureonly analysis.

1. the tension in the membrandl vary from the leading edge to theilirey edge, and

2. theslope of each segment will not be equal to the arithmetic average of the tension angles at its
two endpoints / hinges

The Visual Basic programfor a membrane with N = 100 segments

Before getting into the OpenFoam simulations, hirta describe the program which carries out the
marching process to calculate the shape of the membtaereit is subject to a knowdistribution of
forces. The program is written in Visual Basic 2010 Express.piidgram has a main form and eight
modues. The main form defines the controls and executes thethaslser selects by clicking on
various buttonsTheprogramisil st ed i n Alpill descdbie four &f fé eight modules here.

Module SeedAShapeWithPressureOnly

This module usede marching process described in the first section above to calculate the shape of the
membraneavhen it is subject to a knowsonstant overpressure. Since the overpressure is constant along
the membrane, the shape will be an arc of a circle. Even sequiidorium equations are used to
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calculate the shapd! did this nonessential work as an aid to debugginghe parameters which must
be specified are:

o the length of the chordn meters, (default = 3.00 meters)
o the length of the membran@& meters (default = 310 meters)
o the number of segments (default = 100)

. the angle of attackn degrees, (default = 15°)

o the overpressurén Newtons per square meter, (default = 100 N/f)

o startingguess for the tensigrin Newtons per meter and  (default =4500 N/m)

[ ]

starting guess for thengle at the leding edge, in degrees.(default = 14°)

TheOpenFoam runs which will be described below use the default parameters listed above. Note that the

membrane is quite big, being three meters from the leadiregtedye tailing edge. There are 10

centimeters of slack. The airfoil is placed at a relatively high angle of attack, 15°. The particular value of

100 N/nf specified for the overpressure is not really that important, since the resulting shapelvell be t
same arc of the same circle for any positive value of the overpressure. Certain variables are used
consistentlythroughout the program to hold information about the shape. Thélyeme

. Public X(NumSegments + 1) As Double 'X - co-ordinates o f the hinges, meters
. Public Y(NumSegments + 1) As Double "X - co- ordinates of the hinges, meters

. Public Tension(NumSegments + 1) As Double ' Tension at the hinges, Newtons

. Public ThetaRad(NumSegments + 1) As Double ' Angles at segment edges, radi ans
. Public LambdaRad(NumSegments) As Double ' Slopes of segments, radians

. Public DeltaS As Double ' Slant height of the segments

. Public XTE As Double "X - co- ordinate of T.E., meters

. Public YTE As Double 'Y -co-ordinate of T.E., meters

The following screenshot shows the shape of the membrane calcul&@eddShapeWithPressureQnly

Shape of 2D membrane in an airflow Q@@

[ Seed a new shape

[ Read OpenFoam forces

=
a

Tension (N/m) | 350.58608810
ec

o

Angle (deg] 25.331520592

Dec

Calculate once

Automatic convergence ” Halt

Exit

[ Wite GMesh and OpenFoam files

Parameters:
Chord length = 3m
Membrane length = 3.1 m

Num of segments = 100
Angle of attack = 15 deg
Pressure = 100 N/m"2

X(LE)=0m
Y(LE)=0m

Results:
Tension = 350.586088110 N/m
Slope at L.E. = 25.078205500 deg
Slope at T.E. = -25.078182941 deg
X at max thickness = 1.500000010 m
Y at max thickness = 0337037965 m
Percent thickness = 11.236538834%
X at max thickness = 50.000000320%
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The black line segment is the reference chord, which slopes downwards from thg &=l at the

specified angle of attack of 15°. The red arc is the membrane. The procedure was triggered when |
clicked on the button at the t op inlthedpperefidomdrel ed @S
show that the calculations convethwhen the tension at the leading edge was 350.6 Newtons per span

wise meter and the angle of ttemsion vectoat the leading edge was 25.3°. The tathe labekt the

lowerl eft | ists the given par amet eorisl da.nd Tah ef etwh iscikgnnei
which is the maximum deviation from the chord as a fraction of the chord, is 11.2% and, as would be

expected for the arc of a circle, the point of maximum thickness is exactly-ahonid.

A couple of things should be undtrsd:

o The marching procedure described in the first section of this paper, based on overprdgsisre
used simply to get the overall process started. OpenFoam needs some specified shape to work
with, and a circular arc like the one that results fr@ng overpressurenly is as good a shape to
begin with as any other.

o The same GUI is used throughout the overall proc€hks. calculated shape of the membrane will
always be shown in the plot at the upper right.

Module WriteGMeshFile

After a new sha@ (or the starting overpressure shape) has kaenlated for the membranie shape
must be described in such a way that OpenFoam can simulate the airflow. In this paper, the membrane is
placed inside a virtual wind tunnel and the volume of air sudiogrthe membrane is meshesing the

program GMesh. Clicking on the button | abeled AW
things, write a text file containing the instructions GMashgo create the mesh. By default, this
module willwritet o a f il e with the name @ Megpdified,theflegeo. t xt 0

will be created in théwin/D ebug/ subdirectory of the Visual Basic application.

This module writes the complete instruction file used by GMesh, not just ihrelic@tes of the surface

of the membrane. Everything needed to generate the mesh is specified, including the dimensions of the
virtual wind tunnel and the characteristic lengths for the elements in the mesh.

The text file written by modulgvriteGMeshFilgfor the starting shapghown abovés listed in Appendix
iBo. I will describe certain parts of this file

Module WriteOpenFoamFunction

Clicking on the button | ab e lalsokxeuttthdptineipal@udrewsine and O
in this modul e. This module writes another text
be created in thiin/ Debug/ subdirectory of the Visual Basic applicationpAd endi xlisth@€a i s a
this file for the sarting shapshown above

The analysis above assumes that the membrane is infinitelyBbtrGMesh cannot handle an infinitely

thin membrane. It becomes confused when physical points are too close togetheresnit merge

them. Ther ef adweemb rtamee .eo. t xt 0 f i | e -sidedsnembracet vise GMe s h t
upper and lower surfaces have the same shape but are separated by a very smallltiisndnitely

thin membrane is discretized into 100 segments, thephyscal surfae of the airfoilprepared by

GMesh willconsist of 200 segments. WeedOpenFoam to calculate the forces on each segment

separately. Often, one is interested only in the total aerodynamicftdamomenacting on an airfoil

but, in this paper, we nddo know the aerodynamic foret pointsall along the surfaces, which we will

use to calculate the shape of the membrane for the next iteration of OpenFoam.
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The usuaprocedurdor having OpenFoam calculate awdte the forces is to include a functiomside
the/system/controlDict file. The function typically invokes t
l'i brary AMhkef duoes i smnoAforcesodo calcul ates and wri
directions of the pressure and viscous forecesrmoments. We nedd make201 calls to function

iforcesd, one call f oractingoetheanemgbrang(f@rtinformbtiomalc e and mo
purposes only) and 200 calls for the forces and moments on the individual segments. It is the business of

the principal subroutine in this module to write out the code for these 201 function calls. The contents of

t he AOpenFoamFu thenbd copied andpagied directlyantodsgstam/controlDict

file.

Function Afor ces o0 thedorce dndmomaaketidgon any ptarelswiace, aut e

OpenFoam must have some way to identify the separate plane surfaces of interest. For this purpose, the

text file of instructions for GMesh declares each segment on the upper and lower surfaces of the

membrane asf@®Ph y si ¢c al 0 giwas it dhame.eForaondenience, the 100 segments on the upper
surface are named ASegment. 10 through ASegment. 10
ASegment . 1010 through @ Se gsegmentsarg i6dexed from theoleadingot h s u
edge to the trailing edge. When necessary, the s

Module RenderMembrane

Theprincipalsubroutine in this module prepaiplot of the membrangn red)andthereference chord

(in black)which isdisplayed irthetop right quadrandf the GUI. The line segments which make up the
membrane and reference chord are drawn on a bitmap which the main form paints as the background
imageof a panekontrol.

The Visual Baie program has four more modules, but they are used to prdatsproduced by an
OpenFoam run. | will defer a description of these other modules until after we talk about OpenFoam.

The setup of the OpenFoam applicatiorfor steady-state, incompressibletwo-dimensional flow

Let 6 s as s u maelculatechthe shage ofthaemigrane. Wevant to know thesteadystate

pattern of airflow around that shape. The airspeeds of interest are low in comparison to the speed of

sound, so we can assume thataher i s i ncompressi bl e. We will ther
solver, which implements the equations for stesidye incompressible flow.

We want to include the effects of viscosity in our analysis, for which purpose we need to specify a
turbulen@ model. In this paper, we will use thgpalartAllmaras turbulence modellt is most eféctive

for two-dimensionahirflows, which is what wénave assumed for the membrane, although it is arguably
not so accurate as other turbulence models if theragsine separation of the airflow from the surface.

We will position the membrane insitlee virtual wind tunnelshown in the following figure The origin

of theX-Y-Z co-ordinate frame is placed haifay through the one millimeter thickness of the wind

tunnel. The wind tunnel can be made very thin because we are assuming that the airflow will be the same
on eachX-Y crosssectional plane. GMesh Wwihesh the area of the cressction which is located at

Z = —0.0005 meters into many little triangles. It will then extrude each triangle across the wind tunnel

toZ = +0.0005 meters. The thredimensional mesh in which OpenFoam will carry out its calimria

will therefore consist of many little prisms.
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