
~ 1 ~

-axis

Arc length of membrane

wind

-axis

-axis
L.E

.

T.E

.

-axis

An OpenFoam Analysis

The shape of a flexible membrane airfoil in a uniform two-dimensional flow

In this paper, we are going to examine the two-dimensional case of a flexible membrane whose length is

greater than the distance between two supporting end-points. The following figure illustrates most of the

important terms and conventions.

A reference chord line passes through the leading edge (L.E.) and trailing edge (T.E.) at an angle of attack

 with respect to the direction of the oncoming wind. The leading and trailing edges are not round,

despite the dots used to identify them in the figure. They are mathematical points. They are separated by

a constant distance and held in place by some structure which is not shown in the figure.

The membrane itself is rendered in red. It is longer than the chord by some fraction , which stands for

ñthickness ratioò. This use of the word ñthicknessò is a little bit improper. Hereôs why. The membrane

itself is going to be treated as an idealized sheet, having no physical thickness at all. The red curve

represents the cross-section of that idealized sheet. I anticipate that the sheet will take on a static shape in

response to the airflow. Hopefully, the static shape will be a gentle curve, something like the curve

described by the midpoints of the line segments between the top surface and bottom surface of a classical

airfoil. For a classical airfoil, the degree of curvature of that midpoint line is captured in a parameter

called the ñcamberò of the airfoil. Mathematically, the camber is the ratio of two distances: the maximum

departure of the midpoint line from the straight line extending from the leading edge to the trailing edge,

divided by the length of the straight line segment from the leading edge to the trailing edge. A highly-

curved airfoil has a greater camber than a flatter airfoil. Camber is quite different from thickness.

Typically, the thickness of a classical airfoil is captured by another parameter, the ñthickness ratioò,

which is another ratio: the maximum vertical separation between the top and bottom surfaces, divided by

the length of the line segment from the leading edge to the trailing edge. The parameter I am calling

thickness is really the camber of the airfoil, but it makes intuitive sense in this application. If it did not

cause so much distraction, I could have called something like the ñlength ratioò or the ñslack ratioò.

The membrane is perfectly flexible, so that mechanical moments cannot be transmitted from one spot in

the membrane to its neighbors. The membrane is flexible but it is not elastic. It does not stretch.

Whatever the shape it takes on under the influence of the airflow, its surface length will always be equal

to .

I have shown two co-ordinate frames of reference in the figure. The - frame, with the capital letters, is

oriented so that the -axis is parallel to the wind direction. I will be simulating the aerodynamics using

~ 2 ~

the OpenFoam CFD package and the - frame of reference will be aligned with the length and height of

the virtual wind tunnel which encloses the membrane. The - frame, with the small letters, is fixed to

the airfoil, with its origin at the leading edge and its -axis pointing aft along the reference chord line. I

have chosen to use the same letters for the axes of both co-ordinate frames notwithstanding possible

confusion. It will be handy to be able to manipulate the shape of the airfoil as a mathematical function

using the traditional notation. On the other hand, OpenFoam and pre-processing the mesh are

also easiest if the traditional letters are used for the axes. The use of capital letters for one frame of

reference and small letters for the other seems to be the best compromise.

The overall procedure we will use is iterative. We will assume some shape for the membrane, and then

run an OpenFoam simulation to determine the distribution of forces along the membrane. The assumed

shape will remain the same throughout the OpenFoam run. After the run is completed, we will re-

calculate the shape which the membrane would take on when subjected to the forces calculated by

OpenFoam. The new shape will be shape of the airfoil assumed for the next OpenFoam run, and held

constant during that run. If and when we get to a point where the OpenFoam simulations generate force

distributions which are the same as those used to calculate the shape of the membrane, we will be done.

I have used the words ñairfoilò and ñmembraneò interchangeably. To be precise, I suppose, I could limit

use of the word membrane to the physical material and use of the word airfoil to the shape of the

membrane. Let me define the ñslackò in the membraneôs surface length as the extra length of the

membrane over and above the minimum length it needs to extend in a flat sheet from the leading edge to

the trailing edge. So long as the amount of slack is not too great, I anticipate that the membrane will have

an airfoil-like shape. With that anticipation in mind, I will continue to interchange the words airfoil and

membrane.

As a first step, letôs try to analyze the shape of the membrane when it is subjected only to a difference in

pressure between its top and bottom surfaces. The membrane may be infinitely thin, but that does not

prevent it from having a top and bottom. The forces to which pressure gives rise act perpendicularly to

the membrane at every point. A real airflow will also give rise to forces acting tangentially along the

surface(s), a consequence of the viscosity of real air, which expresses itself through phenomena like the

boundary layer. If we can succeed with the simpler case of pressure only, then we will consider the more

general case where the airflow exerts forces tangential to the membrane as well as perpendicular to it.

The shape of a flexible membrane when subjected to a given static pressure distribution

The first question is a practical one: in what form will the pressure data be provided by OpenFoam when

we need it to re-calculate the shape of the membrane? I am not referring to the difference between data in

digital form and data in analogue form (the pressure distribution is going to be in digital form) nor am I

referring to the difference between data known at discrete points and data given by closed-form

expressions (the pressure distribution is going to be in discretized form). If the spacing of the data points

does not meet our needs, then we will have to fit a curve globally or interpolate locally between the points

at which the data is available.

Instead, what I am asking is whether the pressure will be reported at points along the reference chord line,

or at points along the curved surface. When the camber of the airfoil is small, distances measured along

the reference chord line will be close to distances measured along the surface. At greater curvatures, the

difference will be greater. This difference will likely be more of a problem near the leading edge, which

is unfortunate because that region of the surface makes a disproportionate contribution to the lift. The

following figure illustrates the issue.

~ 3 ~

We will use the symbol for distances measured along the membraneôs surface from the leading edge.

The question, then, is whether the pressure distribution will be available as a function of the chord-wise

distance or as a function of the surface-wise distance . For the time being, letôs

assume it is the latter, namely, .

The pressure I am referring to is the net pressure acting on the membrane at any given point. Since the

membrane is assumed to be infinitely thin, every point on the top surface can be paired with a

corresponding point on the bottom surface which lies directly through the membrane. The absolute

pressure acting at any point on the top surface will be directly opposed by the absolute pressure acting at

the corresponding point on the bottom surface. Because the two points have the same mathematical

location, we can treat them as one and simply use the net pressure acting on them.

Letôs consider a very short piece of the membrane, having a surface length of . Since we are looking at

the two-dimensional case, we will assume that the width of the piece in the -direction, which axis points

out of the page in this instance, is one unit length long, say, one meter. Then, the area of this piece of

membrane is also given by , although it should be understood that there is an implicit multiplication by

one unit length in the orthogonal direction. If the local overpressure is , then the magnitude of the force

 acting on the piece will be equal to the pressure multiplied by the area, namely, . (I am going

to use the word ñoverpressureò in this paper for the net pressure acting upwards.) If is imagined to be

suitably short, then the piece will be an almost flat rectangle. The force due to the overpressure will act in

the direction perpendicular to this flat rectangle.

We are going to ignore the force of gravity on the membrane. Even if a real membrane is not infinitely

thin, it can still be lightweight enough that the other forces swamp the gravitational force, which is to say,

the weight.

And, indeed, there are two forces other than the overpressure which act on the piece of membrane we are

considering. The piece is pulled to the left by the rest of the membrane on the upwind side and to the

right by the rest of the membrane on the downwind side. The two dimensional case is tantamount to

considering a membrane with an infinite span, in which the distribution of the forces in each cross-section

is the same. Either assumption gives the same result: that there are no net forces acting in the -direction,

in the span-wise direction.

The following figure shows the balance of forces acting on the piece of membrane we are considering. I

have used the symbol for the force pulling the piece towards the right and for the force pulling the

piece towards the left. These two tensions, and the aerodynamic force, too, have specific directions as

well as magnitudes. They are all vector quantities and, starting with this figure, I will denote them as

such.

-axis

-axis

membrane

distance along chord

distance along surface

L.E.

~ 4 ~

Segment #

Segment #

Hinge #

Hinge #
Hinge #

-axis

I have placed a small dot at the midpoint of the line segment joining the leading and trailing edges of the

piece. Although the curvature of the membrane causes it to depart slightly from the line segment, the

departure is small and will become even smaller as we reduce the segment length . The segment length

 can be calculated by applying the Pythagorean Theorem to and , which are the run and rise,

respectively, of the line segment.

To set up the equations of motion (or absence of motion) for this bit of membrane, letôs imagine that we

first divide the total arc of the membrane into pieces, all with equal lengths . Then:

The pieces, which I will call ñsegmentsò of the membrane, are linked edge-to-edge. We will treat the

links as if they were ideal, frictionless hinges, so that each segment is free to rotate with respect to its

neighbour on the other side of the hinge. Since there are segments, there must be hinges. The

two outermost hinges are the leading and trailing edges of the whole membrane. We can number the

hinges from left to right along the -axis, with the leading edge of the membrane being numbered Hinge

and the trailing edge being numbered Hinge # . The following figure illustrates the numbering

scheme in the neighborhood of some arbitrary Segment #.

Take note: since the segment lengths are all the same, the spacing of the hinges along the -axis will

not be the same. Also note that the segments shown in this figure still have their original curvature.

Although I call them segments, they are not necessarily ñstraight lineò segments (yet). In other words,

adjacent segments meet at their shared hinge with the same geometrical tangent.

Letôs now consider the forces which any segment exerts on its neighbour through their shared hinge. I

will sometimes refer to these as ñtangential forcesò since they act in directions which are tangential to the

membrane. Of course, the force which one segment exerts on its adjacent neighbour will be equal and

opposite to the force which that neighbour exerts on the given segment. It follows that we will need to

define only one tangential force for each hinge. We can identify the tangential forces using the same

-axis

segment length

~ 5 ~

-axis

index numbers as the hinges through which they act. We are free to pick which side of the segments we

want to use for indexing purposes. Letôs pick this way: tension is the force per unit length in the -

direction which Segment # exerts on the segment immediately to its left, which is Segment # .

Since forces acting through the hinge are equal and opposite, it follows that Segment # exerts a force

equal to on Segment #.

I am going to use the symbol for the

slope of the membrane at Hinge #. This

angle describes the slope of the line-of-

action of the tension force acting through

the hinge. While this angle will be very

close to the average of the slopes of two

adjacent segments, it may not be exactly

equal to that average. The figure here

shows the configuration of the tangential

forces defined in the neighborhood of

Segment #.

The following free-body diagram shows in blue the three forces acting on Segment #. When drawing

this diagram, I used the normal convention that angle increases from left-to-right. Abiding by the

convention will ensure that the algebraic signs work out consistently. One consequence is that the lines-

of-action of the tangential forces pass beneath the midpoint of each segment. The convention does not

mean that angle must be greater than angle , or even that angle is physically greater than

angle ; it merely ensures that the equations which we develop from the figure are consistent with the

usual understanding that an angle such as become more algebraically positive when it becomes

geometrically bigger.

In this diagram, I have at last shown Segment # as a straight line segment, with the aerodynamic force

arising from the net overpressure acting perpendicular to its slope and passing through its midpoint. The

segmentôs average slope is not . and are the slopes of the membrane at the left and right edges

of Segment #, respectively, but neither is the average slope. For the time being, I will use another angle

altogether, the angle , for the slope of the segment itself.

Now, letôs resolve the three forces acting on Segment # into their components in the and directions.

~ 6 ~

The absolute value bars, when applied to a vector, signify the vectorôs magnitude, or length. The

equations have been written assuming that the magnitudes of the forces are positive when the forces act in

the directions shown in the figure.

We are also going to calculate the net mechanical moment tending to rotate Segment #. It is convenient

to use the midpoint of the segment as the rotation axis for this moment. To calculate the moment, we

need to know the distances from the midpoint to the lines-of-action of the applied forces. Since we have

already resolved the forces into their components, it is enough to make a note of the perpendicular

distances from the midpoint to the end-points of the Segment #, which are the moment arms through

which the force components exert their leverage.

I will use the convention that a moment is positive if the effect of its rotation is aligned with the positive

-axis. A positive moment therefore tends to force the leading edge of the segment downwards. The

moments due to the four components of the tangential forces are as follows.

The pressure force does not generate any moment since it acts through the rotation axis. We can now

add up the various bits to calculate the total force and moment acting on Segment #.

The sum of the forces in the -direction

The sum of the forces in the -direction

~ 7 ~

The sum of the moments in the -direction

We are going to require that the sums of the forces in both directions, and the sum of the moments, all be

zero. This will put Segment # into a static equilibrium, in which it will neither translate nor rotate. If

either of the total forces was non-zero, the piece would accelerate, and then move, in the direction of the

non-zero force. If the total moment was non-zero, the piece would be torqued into rotational motion.

Since we expect the membrane to take on a stable shape, each piece in the membrane must be at rest.

Setting the total forces and the moment equal to zero gives the following three equations.

It can be seen in the previous figure that angle is one of the acute angles in a right triangle whose short

sides have lengths and . Using the definition of tangent, we can write:

which allows us to re-write Equation as :

We can combine Equations and in a way which will isolate angle on the left-hand side.

We can also re-arrange Equation to the same end. We get:

Setting the two right-hand sides equal gives:

~ 8 ~

This is a significant result. It means that the tension all along the membrane is constant. I suspected this

might be the case but, when laying out the force diagram shown above, I did not want to begin by

assuming constant tension, as is often done.

That allows us to simplify Equation by dividing the tension out of the right-hand side

altogether. This leaves:

I have made liberal use of the identities for sine and cosine with multiple arguments, namely,

 and .

Equation is also a significant result. It means that the average slope of each segment is in fact equal

to the arithmetic average of the angles of the tangential forces at its two edges. It is a result which follows

quite naturally when the magnitudes of the tangential forces at the two edges are set equal, per Equation

. This, too, is an assumption that is often made when the force diagram is laid out.

I want to clean up the notation. Letôs define a new symbol for the (constant) tension in the membrane.

Letôs also eliminate reference to angle by using Equation . Then, the three Equations for

equilibrium can be restated as:

However, these three equations are no longer independent. The reader can verify that substituting

 from the first equation and from the second equation into the third

equation gives the identity . In other words, the third equation does not contain any information

that the first two equations do not. Furthermore, the first two equations are not independent either. The

reader can verify that multiplying the first equation by and the second equation by

 and then adding them together reduces to the identity . Philosophically, we

already used up the information in two of the equations when we derived the expressions for and .

For no particular reason, letôs pick the second expression as the sole independent one. If we assume that

 and are known, then we can calculate as follows.

~ 9 ~

To make the algebra easier to follow, letôs introduce the symbol for . It follows that

will be equal to and Equation can be written as:

This is a fourth order polynomial in , which can be put into standard form as follows.

Since Equation is of order four, it will have four roots. There will be four values for , which

generally will consist of two pairs of complex numbers and their conjugates, having the form

and , where is the imaginary number. If all four roots are strictly complex, then we will have a

problem. Or, rather, Segment # will have a problem. An absence of real roots means that Segment #

does not have an equilibrium point.

Hopefully, we will find that one of the pairs of complex roots is not strictly complex, but degenerates into

the same real number, appearing twice. If so, then that real number will be the value of (recall

that we replaced by just for convenience). The inverse cosine function is not unique, which is

to say that it is not really a mathematical function, but a ñrelationò. It will return two possible values for

the angle . We will probably be able to figure out which one is the sensible one by looking at

.

Letôs think about how we can apply this sequence of calculations to an arbitrary segment. The three

original equilibrium equations for Segment # involved six variables: , , , , and .

We used two of the equations to derive and . That left four unknowns

(, , and) but only one independent equation. If that is all we have, then we will not be able

~ 10 ~

Angle and tension just right

T.E. L.E.

Tension too low

T.E. L.E.

to obtain a unique solution for the arbitrary segment. Under some conditions, however, we can do better.

Consider the following statement, which is shown as a diagram:

I have looked at the four variables from the point-of-view of their appearance as one travels physically

along the surface of the membrane, from the leading edge on the left to the trailing edge on the right. In

order to establish equilibrium for the
st
 segment, which is immediately to the left of Segment #, one

would have needed to know or calculate three of the variables: , and . If we already know those

three variables, then we can use Equation to calculate . That would mean that we now know the

three variables needed to apply Equation to the next segment to the right, Segment # .

We can use this process to ñmarchò from the leading edge of the membrane to the trailing edge. There

might be a little trouble with the very first segment at the start of the march, since the first segment does

not have any segment to its left, but letôs put that difficulty aside for the time being.

We can march merely along until we reach the very last segment, Segment #. The angle we calculate,

which will be , will be the angle the membrane makes with the reference chord line when it arrives

at the trailing edge. Indeed, we can then use all of the previously calculated values of , for

to find out where the last hinge point is located in the - plane. We will find that we have arrived

exactly at the trailing edge, whose - co-ordinates are , right? Wrong.

If everything was perfect, we would indeed arrive exactly at the trailing edge. But getting everything

perfect requires that we take the right step at the beginning of the march. The equation we use to

calculate angle when we are at Segment # requires that we know: (i) angles and for the

preceding two segments and (ii) the tension . When we start out at the leading edge, ready to tackle

Segment #, we will not know any of these values. We will have to make guesses for them. If our

guesses are perfect, the marching process will take us to the trailing edge, and it will be at the end of the

chord, right where we want it. If our guesses are not perfect, the trailing edge will not be at the end of the

chord. However, where the trailing edge ends up will shed light on how we should revise our starting

guesses to come closer on the next attempt.

The following figures illustrate the kinds of outcomes one expects to find if the initial guesses are wrong.

If we know these, é

é then we can find this.

~ 11 ~

Angle too small

T.E. L.E.

Tension far too high

T.E. L.E.

[Subsequent note: In due course, I found that my expectations when the guessed tension is too high or too

low are reversed. Too high a guess for the leading edge tension causes the membrane to be flatter than it

should be. Too low a guess for the leading edge tension allows the pressure to wrap the membrane into a

spiral.]

The analysis in this section do not require that the overpressure be constant along the membrane. For

example, the tension in the membrane will be constant even if the overpressure varies along the chord.

When the overpressure is a constant, however, we expect that the shape of the membrane will simplify

into a circle.

Generalizing from overpressure-only to an arbitrary distribution of surface forces

In the preceding section, we examined the shape of the membrane when it was subjected to forces which

acted perpendicularly to the surface, as would be the case if there was only a difference in pressure

between the top and bottom surfaces. More generally, a membrane placed in an air flow will experience

tangential forces as well as normal forces. In this section, we will try to generalize the marching

procedure to allow arbitrary forces to be applied to each segment. Since the forces are arbitrary, it is not

worthwhile resolving them into components normal and tangential to the surface. The only constraint we

will impose here at the outset of the generalized analysis is that the forces act at the midpoints of the

segments. Letôs begin with a revised force diagram showing all of the forces acting on Segment #.

Incidentally, since the forces are arbitrary, they could include the segmentôs weight.

This free-body diagram is the same as the previous one except for the force acting at the midpoint of the

segment, which now includes components in the - and -directions. The tension vectors and are

defined as before, as are the angles , and . Like we did before, we will add up the forces in the

~ 12 ~

- and -directions and the moments around the midpoint of the segment. Since the non-tension force is

applied at the midpoint of the segment, as it was before, the moment equation does not change. It

depends only on the forces acting at the end-points of the segment, which are the tension forces. The

three equations for equilibrium (setting the sums of the forces and the moment to zero) are as follows.

A noticeable difference from before is that angle , the slope of the segment, does not appear in the first

two equations. This is because the external force is no longer required to be perpendicular to the surface.

If we approach these equations like we did before, by assuming that we have already processed the

segment to the left and therefore already know and , then we have three equations in the three

unknowns , and . The left-to-right marching process should work here, too.

Interestingly, even though the force has been generalized, the solution of the three equations is simpler

than it was before. At least, the procedure to get the solution is easier than it was. Letôs combine

Equations and in two different ways.

We intuitively expect that angle will be relatively small, if there is not too much slack in the

membrane and if it slopes nicely from the leading edge to the trailing edge. That is not always the case,

however. At the leading edge, for example, suction forces can pull upwards and forwards on the

membrane, possibly even pulling some of the membrane upwind of the leading edge. I raise this issue

because taking the inverse tangent function in Equation will not give a unique value for angle ,

but will give several periodic alternatives. We need to be definite about the quadrant in which angle

lies. Even if we use the ATAN2() function in the computer code, we will still need to ensure that the

angle is measured in the conventional counter-clockwise direction. This issue is not unrelated to the

physical requirement that the tension in the membrane always be positive.

We can confirm the quadrant of angle by referring to balance of -direction forces in Equation

. We can re-arrange Equation to be:

~ 13 ~

Since the denominator will always be positive (except in the trivial case when the membrane is hanging

loose), the algebraic sign of will be the same as the algebraic sign of the numerator. If the

numerator is algebraically positive, then the net force on the segment in the -direction is positive, the

right-hand edge of the segment is being pulled towards the right, and angle will be in the first or

fourth Quadrants. If the numerator is algebraically negative, then angle will be in the second or third

Quadrants.

Now letôs look at the second way of combining Equations and .

During the march, we first calculate angle using Equation and then calculate using

Equation . Angle is then calculated from the third equilibrium equation, re-arranged as:

I will not take the trouble to go through the algebra to express , and entirely in terms of

variables known from segments to the left of Segment #. It is enough for our purposes to use Equation

 to calculate from the variables from segments to the left, to substitute into Equation

 to calculate and then to substitute both into Equation to calculate the slope of the

segment.

There are two important differences from the earlier overpressure-only analysis.

1. the tension in the membrane will vary from the leading edge to the trailing edge, and

2. the slope of each segment will not be equal to the arithmetic average of the tension angles at its

two end-points / hinges.

The Visual Basic program for a membrane with segments

Before getting into the OpenFoam simulations, I want to describe the program which carries out the

marching process to calculate the shape of the membrane when it is subject to a known distribution of

forces. The program is written in Visual Basic 2010 Express. The program has a main form and eight

modules. The main form defines the controls and executes the tasks the user selects by clicking on

various buttons. The program is listed in Appendix ñAò. I will describe four of the eight modules here.

Module SeedAShapeWithPressureOnly

This module uses the marching process described in the first section above to calculate the shape of the

membrane when it is subject to a known constant overpressure. Since the overpressure is constant along

the membrane, the shape will be an arc of a circle. Even so, the equilibrium equations are used to

~ 14 ~

calculate the shape. (I did this non-essential work as an aid to debugging.) The parameters which must

be specified are:

 the length of the chord, in meters, (default = 3.00 meters)

 the length of the membrane, in meters, (default = 3.10 meters)

 the number of segments, (default = 100)

 the angle of attack, in degrees, (default = 15°)

 the overpressure, in Newtons per square meter, (default = 100 N/m
2
)

 starting guess for the tension, in Newtons per meter and (default = 4500 N/m)

 starting guess for the angle at the leading edge, in degrees. (default = 14°)

The OpenFoam runs which will be described below use the default parameters listed above. Note that the

membrane is quite big, being three meters from the leading edge to the trailing edge. There are 10

centimeters of slack. The airfoil is placed at a relatively high angle of attack, 15°. The particular value of

100 N/m
2
 specified for the overpressure is not really that important, since the resulting shape will be the

same arc of the same circle for any positive value of the overpressure. Certain variables are used

consistently throughout the program to hold information about the shape. They are these:

 Public X(NumSegments + 1) As Double ' X - co- ordinates o f the hinges, meters

 Public Y(NumSegments + 1) As Double ' X - co- ordinates of the hinges, meters

 Public Tension(NumSegments + 1) As Double ' Tension at the hinges, Newtons

 Public ThetaRad(NumSegments + 1) As Double ' Angles at segment edges, radi ans

 Public LambdaRad(NumSegments) As Double ' Slopes of segments, radians

 Public DeltaS As Double ' Slant height of the segments

 Public XTE As Double ' X - co- ordinate of T.E., meters

 Public YTE As Double ' Y - co- ordinate of T.E., meters

The following screenshot shows the shape of the membrane calculated by SeedAShapeWithPressureOnly.

~ 15 ~

The black line segment is the reference chord, which slopes downwards from the leading edge at the

specified angle of attack of 15°. The red arc is the membrane. The procedure was triggered when I

clicked on the button at the top left, labeled ñSeed a new shapeò. The textboxes in the upper left corner

show that the calculations converged when the tension at the leading edge was 350.6 Newtons per span-

wise meter and the angle of the tension vector at the leading edge was 25.3°. The text in the label at the

lower left lists the given parameters and a few significant facts about the ñairfoilò. The thickness ratio,

which is the maximum deviation from the chord as a fraction of the chord, is 11.2% and, as would be

expected for the arc of a circle, the point of maximum thickness is exactly at mid-chord.

A couple of things should be understood:

 The marching procedure described in the first section of this paper, based on overpressure only, is

used simply to get the overall process started. OpenFoam needs some specified shape to work

with, and a circular arc like the one that results from using overpressure only is as good a shape to

begin with as any other.

 The same GUI is used throughout the overall process. The calculated shape of the membrane will

always be shown in the plot at the upper right.

Module WriteGMeshFile

After a new shape (or the starting overpressure shape) has been calculated for the membrane, the shape

must be described in such a way that OpenFoam can simulate the airflow. In this paper, the membrane is

placed inside a virtual wind tunnel and the volume of air surrounding the membrane is meshed using the

program GMesh. Clicking on the button labeled ñWrite GMesh and OpenFoam filesò will, among other

things, write a text file containing the instructions GMesh uses to create the mesh. By default, this

module will write to a file with the name ñMembrane.geo.txtò. Since no directory is specified, the file

will be created in the /bin/D ebug/ subdirectory of the Visual Basic application.

This module writes the complete instruction file used by GMesh, not just the co-ordinates of the surface

of the membrane. Everything needed to generate the mesh is specified, including the dimensions of the

virtual wind tunnel and the characteristic lengths for the elements in the mesh.

The text file written by module WriteGMeshFile for the starting shape shown above is listed in Appendix

ñBò. I will describe certain parts of this file when I describe the OpenFoam parameters below.

Module WriteOpenFoamFunction

Clicking on the button labeled ñWrite GMesh and OpenFoam filesò also executes the principal subroutine

in this module. This module writes another text file, with the name ñOpenFoamFunction.txtò, which will

be created in the /bin/ Debug/ subdirectory of the Visual Basic application. Appendix ñCò is a listing of

this file for the starting shape shown above.

The analysis above assumes that the membrane is infinitely thin. But GMesh cannot handle an infinitely

thin membrane. It becomes confused when physical points are too close together and it tries to merge

them. Therefore, the ñMembrane.geo.txtò file instructs GMesh to create a two-sided membrane, whose

upper and lower surfaces have the same shape but are separated by a very small distance. If the infinitely

thin membrane is discretized into 100 segments, then the physical surface of the airfoil prepared by

GMesh will consist of 200 segments. We need OpenFoam to calculate the forces on each segment

separately. Often, one is interested only in the total aerodynamic force and moment acting on an airfoil

but, in this paper, we need to know the aerodynamic force at points all along the surfaces, which we will

use to calculate the shape of the membrane for the next iteration of OpenFoam.

~ 16 ~

The usual procedure for having OpenFoam calculate and write the forces is to include a function inside

the /system/controlDict file. The function typically invokes the function ñforcesò in OpenFoamôs

library ñlibforces.soò. The function ñforcesò calculates and writes the components in the three spatial

directions of the pressure and viscous forces and moments. We need to make 201 calls to function

ñforcesò, one call for the aggregate force and moment acting on the membrane (for informational

purposes only) and 200 calls for the forces and moments on the individual segments. It is the business of

the principal subroutine in this module to write out the code for these 201 function calls. The contents of

the ñOpenFoamFunction.txtò file can then be copied and pasted directly into the /system/controlDict

file.

Function ñforcesò can be used to calculate the force and moment acting on any plane surface, but

OpenFoam must have some way to identify the separate plane surfaces of interest. For this purpose, the

text file of instructions for GMesh declares each segment on the upper and lower surfaces of the

membrane as a ñPhysicalò surface and gives it a name. For convenience, the 100 segments on the upper

surface are named ñSegment.1ò through ñSegment.100ò and those on the lower surface are named

ñSegment.101ò through ñSegment.200ò. For both surfaces, the segments are indexed from the leading

edge to the trailing edge. When necessary, the segments can be addressed collectively as ñSegment.*ò.

Module RenderMembrane

The principal subroutine in this module prepares a plot of the membrane (in red) and the reference chord

(in black) which is displayed in the top right quadrant of the GUI. The line segments which make up the

membrane and reference chord are drawn on a bitmap which the main form paints as the background

image of a panel control.

The Visual Basic program has four more modules, but they are used to process data produced by an

OpenFoam run. I will defer a description of these other modules until after we talk about OpenFoam.

The setup of the OpenFoam application for steady-state, incompressible, two-dimensional flow

Letôs assume that we have calculated the shape of the membrane. We want to know the steady-state

pattern of airflow around that shape. The airspeeds of interest are low in comparison to the speed of

sound, so we can assume that the air is incompressible. We will therefore use OpenFoamôs simpleFoam

solver, which implements the equations for steady-state incompressible flow.

We want to include the effects of viscosity in our analysis, for which purpose we need to specify a

turbulence model. In this paper, we will use the Spalart-Allmaras turbulence model. It is most effective

for two-dimensional airflows, which is what we have assumed for the membrane, although it is arguably

not so accurate as other turbulence models if there is massive separation of the airflow from the surface.

We will position the membrane inside the virtual wind tunnel shown in the following figure. The origin

of the - - co-ordinate frame is placed half-way through the one millimeter thickness of the wind

tunnel. The wind tunnel can be made very thin because we are assuming that the airflow will be the same

on each - cross-sectional plane. GMesh will mesh the area of the cross-section which is located at

 meters into many little triangles. It will then extrude each triangle across the wind tunnel

to meters. The three-dimensional mesh in which OpenFoam will carry out its calculations

will therefore consist of many little prisms.

