Exterior ballistics of a supersonic sphere

In this paper, | will look at the trajectory of a sphere launched at high sppeeddmewhereearthe
Earth's surface. | will assume that the sphere does not spin during flight. The situation in theo¥icinity
the gun is shown in the following figure.

Local vertical True north The red arrow shows the velocity of the cannonball
A

as it leaves the muzzle. Its speelis Its launch
direction is specified by two spherical angles. The
initial track is anglex, north of true east and angle
B, above the local horizontplane It will alsobe
necessary to know the altitude of the muzzle. 1
will referenceall altitudes tameansea level.

Trueeast

Altitude AMSL

| am going to introduce a couple of Eadbntered
frames of reference. THerame of reference
shown in the figurat the leftis an inertial frame

of reference, assumed to be fixed with respect to
the faraway starsTheE frame of reference is
fixed to the Earth Its Xz-axis pierces the Earth's
surface at th&quator at the longitude of
Greenwich which point of intersection is marked

> Xp by the black dotWith respect to thé frame of
reference, th&arth spins towards the east around
the 2z, = 2z-axiswith angular velocityw. Both of

XE these frames of reference hgiraxesbut | have

not drawn them in the figure.

| am going to locate the muzzle of the gun infHeame of referencesing spherical cordinates. The
muzzle is at longitudg,, latitudel, and radial distancey from the center of the Earth. | will give effect
to the three variables in the same orddrles/e just mentioned themAs a convention, | will ssume

that longitude east of Greenwich is positive and latitude north of the equator is positive.

21 = ﬁE
A

The blue dot in the figure is the location of the muzzle. The
sequence of transformations is this. THeame of

reference is derived from tii&frame by a positive rotation

by angley), around the?; = 2;-axis. The2 frame of
reference is derived from tHeframe by a negative rotation
by anglel, around they, = y,-axis. The muzzle is located
a distance;, from the originalong thex,-axis.

Because of the way theframe of reference has been
derived, it happens that tlig-axis points directly upwards
from the center of the muzzle. THgaxis points due east
and thez,-axis wints due north. The following figure
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shows (once again) the velocity of the sphere as it leaves the muzzle.

Local vertical ~ TTue north In the figure, the distanag is the distance from
X, 22 the center of the Earth to tlfg-Z, plane. | will be
A calculating this ase sum of: (i) the mean radius

of the Earth, (ii) the altitude of the launch site
above mean sea level and (iii) the heighthe gun
from its base to the center of the muzzlne of
the things that weeed to do in preparation for the
analysis below iso resolve thenitial velocity of

the spherénto its three components in ttls
— Trueeast frame of referenceHere, and below, Cartesian
P, co-ordinates are listed ifx, y, z) order.

To
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The instantaneouslocation of the muzzle as seen in the ingal frame of referencel

We can write down by inspectiohet location othe muzzle in th& frame of referencelt is:
To
0

It is not that difficult to express élocationof the muzzlén the inertial frame of reference. It is a matter
of multiplying standard rotation matrices in the corder. Let's go through the rotations dyeone.
In the frame of referencehe location of the muzzis:

" Ty COS A,
O]:[ 0 ] 3)

cosdy, O —sinlol
0 75 Sin g

Mlz[ 0 1 0
sinl, 0 cosA,

In theequatoriaEarthcentered Eartfixed £ frame of reference, it is:

Ty COS A Ty COS Ay cos Y,
0 ] = [ro cos A4 sin 11)0] 4)
79 Sin 4, 79 Sin i,

. cosy, —sinyp, O
Mg = [sin Yo cosyy O]
0 0 1

Lastly, in thel frame of referencestarting at some arbitrary tinte= 0 when thef and/ frames are
coincident the location of the muzzle is:

sinwt coswt 0|7y cosdysinyy
0 0 1 75 Sin 4,
cos Ay cos(Py + wt)
=1y | cos Ag sin(Py + wt) (5
sin 4,

_ coswt —sinwt 0][7o oSy cosyy
MI =
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The instantaneous location of the spheras seen in the indial fram e of referencel

In the previous section, | usedsequence abtation matrices to transform the location of the gun's
muzzle, which v knewin the2 frame of referencento the inertial frame of reference. The procedure
usedis certainly notrestricted to the muzzlelt is very general Let's introduce anothétarth-centered
frame of referenc&, whoset,-axis always passes through the center of the sphiée3 frame of
reference is similar to thiaframe,so | will use the syimolsy and, respectively, for the sphere's
instantaneous longitude and latitude, insteaglodnd4,, which will be reserved for the muzzlén the

3 frame of reference, the sphere's location is specified simply by its location aldhgakis, say,
distancer from the center of the Earth.

Let's use the symb@lfor the vector from the center of the Earth to the center of the sphaamg at

particular momenduring flight. The components Sfcan be written in thd frame d reference or, using
successive rotation matrices for the latitude, longitude and-Ezegtion just like we did in steg®)
through(5), in the inertial frame of reference, as follows:

cosAcos(y + wt)
cosAsin(y + wt)
sinA

T
5}:[0] - S =r (6)
0

In our simulations, we are going to base the simulation {im¥e 0) on the instant when the sphg@asses
through the center of the muzzl&he initial conditions will therefore be:

r(t=0)=r,
YiE=0)=vor ()
At =0) =1,

The following figure shows how the radiuslongitudey andlatitudeA correspond to th€artesiarks;,
95 andz;-axes in th&-frame.

. PR The green dot is the instantaneous location of
23 EL ! the sphere. Aeorangedot is the projection

of the sphere straight downwaraigto the
surface of the Earth. From the point of view
of the sphere,

X5 points straight up (vertical)
V5 points due east
Z, points due north

From the figure, it candbseen that the
longitudey is the main (but not only)
determinant of thg;-axis and that the
latitude is the main (but not only)
determinant of thé;-axis. For this reason, |
will list the location variables in the order
(r,, ), which mostclosely parallels the
Cartesiarco-ordinates(x, y, z).




The instantaneous location of the spheras seerirom the muzzle

It is sometimes useful fnowthe instantaneous location of the spresstraightline distancegrom the
centerof the muzzle. This is a vector, whose tail is the muzzle and whose head is the sphere. Like all
vectors, its components can be found by subtraction, so long as the two vectors to be compared are
expressed in the same frame of referer&iace the longitudesnd latitudes of the muzzle and the sphere
are defined with respect to the Eafitted £ frameof reference, that frame could be the easiest one to
use forsubtraction The vector from the muzzle to the sphere, infHeame, is:

MS; =Sy — Mg
[cosy —siny O0]fcosA 0 —sinAjr Ty COS Ay COS Yy
=|siny cosy 0” 0 1 0 “0]—[1’0coslosinlp0]
[ 0 0 1llsinA 0 cosy |10 1y sin g
[T cosA cosy Ty COS Ag cOS Y
= |rcosAsin 1/)] - [ro cos 4 sin 1/)0]
rsini 1y Sin A,
[T cOSA coSY — 1y COS Ay cos Yy
= |rcosAsiny — 1y cosdysiny,
rsind —rysini,

®)

This vectorwill be more useful if waransform it intathe muzzle's frame of reference, which is th
2-frame, as follows:

[ cosdg 0 sindg][ cosy, siny, O]
MS, = 0 1 0 —siny, cosp, O|MSg
|—sindy, 0 cosdpgll 0 0 11
[ cosdg 0 sindg][ cosyp, siny, 0][rcosAcosy —1,C0sA,cosyy
= 0 1 0 —siny, cosyp, O [r cosAsiny —rycos i, sinl/)()]
[—sind, 0 cosAdgll 0 0 11 rsind —rysin i,
[ cosdy, 0 sinAy][rcosAcosy cosygy —1ycosdy + rcosAsiny siny,
= 0 1 0 —rcosAcosysinyy + rcosAsiny cosy ]
[—sind, 0 cosAgll rsind —rysin i,
cosdy, 0 sindy([rcosAcos(p —hy) — 1y cos iy
= 0 1 0 rcosAsin(y — )
[—sind; 0 cosAyl | rsind —rysin
[—1, + 7 cos A cos( — Py) cos Ay + 7 sin Asin 4,
= rcosAsin(y — ) 9
—r cos A cos(y —Pgy) sin Ay + rsindcos g

This is the vector from the muzzle to the sphere, as it would be seen by an observer standing next to the
gun, with the three components being upwards (vertical), to the east and to the north, respectively. This
vector is easyo imagine for shortange, flatEarth, trajectories. Once the sphere drops below the

horizon on a longange trajectorythough,the vector will not be quite so intuitive.



Setting up theinitial conditions for speed

Let's think about the moment e the simulation starts, at time= 0. Substituting the initial radius,

longitude and latitude into Equati¢f) shows thaliS,(t = 0) = 0. That is to be expected; at the
starting instant, the sphereligated at the center tie muzzle.

The initial velocity, or speed, of thelsere is a different matter. | have chosen to specify the sphere's
initial velocity as a given speed in a given directidnconversion is necessary to put this velocity into
terms the numerical simulation canderstand

The numerical simulation is gog to be based on tisphere'shreesphericalvariablesr, 1 and4, and

their timederivatives. It is not going to be based onrtitesof-change of th€artesian cardinates

Thereforethe initial linear speeds need to be converted into-Htebange of radius, longitude and
latitude.

Equation(9) is the instantaneous location of the sphere with respect to the muzzle, in Cartesian co
ordinates. If we take the tinderivative of Equatior9), we will get the instantaneous velocity of the
sphere with respect to the muzzle. We get:

7 cosAcos(P —Py) cosdy + 7sinAsindy + -+
-+ —7rAsinAcos(P —Py) cosdy +rAicosAsindy + -
- —7r1f cos Asin(y — 1P,) cos A,
7 cosAsin(yY — ) + -+
o —rAsinAsin(y — Pg) + -+ (10)
-+ 711 cos A cos(P — Py)
—1 cosAcos(y —Py)sindy + 7sindcosAy + -+
-+ rAsinAcos(y —Py)sindy + rAcosAcosdy + -
-+ 1P cosAsin(y — P,) sin A,

dMS, _
dc

This is the relative speed at any time during flight. We only need to evaluate it at the starting instant,
t =0, whenr =r,, Y =y, andA = 4,. At the starting instant, Equatigh0) is greatly simplified, to:

[ 71g cos® Ag + 7o sin® g — rOA|0 sin A, cos Ay + r0/1|0 cos Ay sin A,

dl:fz rolj)|0 cos 4,
0 | 7o cos A sin Ag + 7| sin A cos Ao + rO)'L|0 sin? 2, + rO)'L|0 cos? 4,
7o
— [roi], cos A (11)
r0/1|0

In Equation(11), #|,, 1/)|0 and/'1|0 are the initial ratesf-change othe sphere's radius, longitude and

latitude, respetively. Now, wealreadyhave a second expression for this velocity. It is Equ&tignin
which the sphere's initial velocity is expressed in terms of parameters of the gun. Setting the two
formulations equal gives:



cosBycosagy| = 7”0‘/)|0 cosdo|  (12)
cos fBp sin ay r0,1|
0

sin 3, Tlo
v ]

This constitutes three equations in theéunknowns|,, 1[)|0 and)1|0, which can be solved tawg:

rlo = Vysinpy
: _ Vycos By cosag
1,l)|0 © 1ycosi, (13)
. _ VpcosBysinag
i, = 0

The instantaneous speed and velocity of the spherethe inertial frame of reference

Suppose the spheige moving. The sphere'selocity is the first derivativevith respect to timef its

location Let's start witl§ in the inertial frame of referencas given by Equatiof6). We can use the
product rule taexpand the derivative as

—AsinAcos(¥ + wt) — (Y + w) cos Asin(y + wt)
+ 71| -AsinAsin(y + wt) + (1/) + w) cosAcos(yp + wt)| (14)
AcosA

—— =7|cosAsin(y + wt)

d§, [coslcos(lp + wt)
dt sin A

This is the velocity of the sphere, expressethe inertial frame of reference. The speed is the square
root of the sum of the squares of the three componenisis ithe instantaneous speed, then:

[# cos A cos(p + wt) —rAsmAcos( + wt) — (1Y + w) cosA sy + a)t)]2 + -
Vi =14 [7" cos Asin(y + wt) — ridsin Asin(y + wt) + T'(l/) + a)) cosAcos(y + a)t)]z + ... (@15)
R [7'” sind 4 ri cos)L]2

I have shown the algebra to reduce this expression in AppendixXTi¢.speedimplifies D:

V= \/1‘#2 +7r22 +7r2(¢P + w)z cos21  (16)

The instantaneous speed and velocity of the sphere with respect to the undisturbed air

There is nothing that requires that we calculate the spietbe spherén the inertial frane of reference.

We can calculate the speed in any frame of reference we wish. One of the things we are going to want to
know isthe velocity of the sphere with respect to tinelisturbedair. The aerodynamic drag will be

directly opposed to the sphex&elocity with respect to the air.

On a calm day, the speed of the air is zero, but only in some of the various frames of reference. It is zero
in the muzzle's frame of reference (h&rame) and in the Eartfixed frame of reference (thé-frame).

It is not zero in the sphere's frame of reference3tframe) or in the inertial frame of reference (the

I-frame).



In Equation(9) above, we expressed the instantaneous location of the sphere in the muzzle's frame of
reference. Sirethe air is stationary in that frame of reference, taking the derivative of that location
vector will give the velocity of the sphere with respect to theBiirt, we already took that derivative, in
Equation(10), for the purpose of converting the iaitconditions. If we take the sum of the squares of
the three components, we will have the square of the sphere's speed with respect to the air.

7 cosAcos(yP —Py) cosAy + 7 sindsindgy + - 2

- —7rAsinAcos(P —Py) cos Ay + rAcosAsindg + | +
- — 11 cos Asin(y —1,) cos A,
7 cosAsin(y —y) + -
Vi 2 = 4 ot | —rAsinAsin@ — o) + | + - L (17)
-+ 11 cos A cos(ip — )
—1cosAcos(yp —P,)sindy + 7sindcosdy + -+
4+ |-+ rdsinAcos(P — Py) sin Ay + rAdcosAcos Ay + -
-+ 1P cos Asin(y — 1P,) sin A,

2

2

Quite a bit of algebra is needed to reduce this expresklmane relegated the details to Appendix "B".
Here, thesphere'speedelative to the aisimplifies ta

Vierz = \/1*2 + 1212 + r2p2 cos2 1 (18)

The instantaneous speed and velocity of the sphere with respect to the undisturbed, aince more

Equation(18) for the speed of the sphere relative todhdisturbedhir is similar toEquation(16) for
thespeed of the sphere relative to the fixed strmok a lot of algebra in Appendices "A" and "B" to
arrive at these two results. Thapiszzling Since theexpressiongor the speeare so simple, awould
expect there to be some other, simpler, way to reach the same conclusion. | am going to work through
that other way in this section. Let's start with Equafibt). d§‘,/dt is the velocity of the sphere,
expressed in the inertial frame of reference. It shows how theafatsinge*, A andy) of the sphere's

three location variables 4 andy give rise to ratesf-change along the thr&zgartesanaxes of the

inertial frame of reference.

Let' s consider the undisturbaitin the immediate vicinity of the sphere. This air has the same three
location variables, 1 andy as the sphere, but all three of their raiéshange are zero. Althohghese
ratesof-change are zero, the velocity of the undisturbed air in the inertial frame of reference is not zero.
As seen from the faraway stars, the undisturbed air is carried around the Earth's rotational axis as the
Earth rotates. If we sét= 1 = = 0 in Equation(14), we will have the velocity of the undistribed air

in thel-frame. Let's call this velocityff,/dt. We get:

djl —sin(y + wt)
o e cosA[ cos(y + wt) (19)
‘ 0

To find the velocity othe sphere with respect to thedisturbedhir, we can take the difference between
their velocity vectors in any frame of referenageere we have expressions for them. Since we now have
expressions for both velocities in the inertial frame caredo thesubtraction right now. The relative
speed is:
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., dS, dA,

T

[ cos A cos(y + wt) — risinAcos(yp + wt) — rip cos Asin(P + wt)

= |7 cos Asin(y + wt) — risinAsin(y + wt) + ry cos A cos(y + wt)

| 7sind +ridcosA

'(7" cos A — risin /1) cos( + wt) — ri cos Asin(y + wt)

= |(# cosA — rAsin2) sin(¥ + wt) + rp cos A cos(Y + wt) (20)

7sind + ricos A

Finding the relative speed from this equation is ghtfdrward. It is easy to see which terms will add
constructively and destructively when the first two components are squared andoagdeer \We can
write down by inspection:

V2, =(FcosA—ri sin/l)z + (¢ cos /1)2 + (Fsind + 7l cosA)2
72 cos? A — 27risinAcos A + r2A%sin? A + -
= o4+ 1r2P? cos? A+ -
472 sin? 1 4 27risin A cos A + r24% cos? 1
=72 + 1212 + r?3)? cos? A (21)

This is the same as Equati(i8).
The instantaneousaccelerationof the sphere

So far, we have talked only about the location and velocity of the sphere. Let's move on to the
acceleration. | will start with Equatiq(14), which is the instantaneous velocity of the sphere in the
inertial frame of referencelaking another time derivative gisthe acceleration.

( —AsinAcos( + wt) — (Y + w) cos Asin(y + wt)

—AsinAsin(y + wt) + (Y + w) cos A cos(®Y + wt)
Acos A

cos Asin(y + wt) | + 27 + -

cos Acos(y + wt)
7.; |:
sinA

228 —Asin A cos(y + wt) — A% cos A cos(y + wt) + /1(1/) + a)) sin A sin(y + wt)
dtZI = =+ 71| =AsinAsin( + wt) — 12 cos Asin(y + wt) — A(P + w) sin A cos(P + wt) |+ 22)
AcosA— A%sinA

—(§ + &) cos Asin( + wt) + Ay + w) sin Asin(W + wt) — (Y + )" cos 1 cos( + wt)

T (¥ + @) cos A cos( + wt) — (Y + w) sin A cos(P + wt) — (Y + a))z cos Asin(y + wt)
\ 0

In many problems, including this one, the Earth's rotational spexsh be assumed to be constant. The
derivativew is therefore zero, ansvo of the terms inthe last row of Equatior§22) vanish.

There is an advantage to our having written the acceleratite spherén an inertial frame of
reference.Only in an inertial frame of reference, which is not accelerating with respect to the faraway
stars, can Newton's Third Law be used in its simpgfestma form. In contrast,m ary frame of

reference which is itselfcaelerating, Newton's Third Law can only be used if additional fictional forces
are added to counteract theceleratiorof the frame.



If point§, is the instantaneous locatiohthe sphere (and if the sphere can be treatedigsd body vith
point massn), then Newton'J hird Law can bewritten as

,a
m% = Net force acting onmassm (23)

| am going to treathe cannonball as point mass. It will be subject to two forces. There will be a
gravitational force acting towards the center of the Earth. And, there will be an aerodynamic drag force
acting in the direction opposite to the sphere's velwodgily respect to thandistubedair. Since | have
assumed that the cannonball does not spin while in flight, there will not be a Mggewserodynamic
forcearising from the spin

For the moment, | am not goingdoantifythese forces. | am going to assume that we know them.
Furthermore, | am going to assume that we know tteemcan resolve them into their components, in

the inertial frame of referende For the time being, | am going to assume that we can write the total net
force acting on thephereas follows:

(24)

e
Il
o ST o

Substituting this into Equatiof23) gives:
1 F
—|F| ={RHS 22y} (25)
m
F;

where the contents of the curly brackets are the contents of the curly brackets on-thendgitie of
Equation(22). (It is not worth writing all of it down again.Note that Equatio22) is linear in the
second derivates of all three location variablési andy). We carthereforedefine12 functions

a1 = a, (0,7, 4,4, 1), ar, = ay,(r, A, 9,7, 4,1, t) and so on all the way up to

azs = a34(r, A, Y, 7, 4,3, t) in such a way that Equati@@5) can be written as:

1 .. .
m B =ayt + apd+ ayh +aze|  (26)

E, 17 + @A + a3 + ag,
y
azq7 + azA + azzyP + asy

!

Thetwelve coefficient functions depend on the three location variahlésaindy, their derivaives and
timet. Just so there is n@nfusion, | have shown the individual functions in Appendix "Etuation
(26) can be rearranged ande-stated as:

d11 Q12 Q3] [F 1 | a4
A1 Gz Gaz||A|=—|F|—|%4| (27)
31 A3z Asz]ly m E, A34

Equation(27) is well-suited for a numerical integration. When we arrive at the beginning of any
particular time step, we will know the values of three location variableandiy and their derivatives



, A andi. They would have been calculated at the end of the preceding timevktep is coincidenin
time with the start of the present time stéf¥e will alsoknowthe current time, of course. We can
compute altwelve coefficients, 1, a;,, a13 - az4. Assuminghat we also knowhe components of the
netforce at this time, then we can solve EquatipR) for the three second derivativés 1 andiy. If the
time step has duratiokl’, and ifAT is suitably short, then we can asmithat the three second
derivatives remainirtually constant through the time step. If so, then the values of the three first
derivatives at the end of this time step can be found through a simple linear integaton,

Tena = Tstart T TAT
Aena = Astare + AAT (28)
Yena = Ystare + YAT

A second integration gives the values of the threation variables ahe end of this timetep:

Tena = Tstart T TstartAT + Y%AT?
Aena = Astart + /istartAT + YAAT? (29)
Yena = Ystart + YstartAT + 1/2¢AT2

Equationg28) and(29) produce the six values which are needed to begin the next timdrstigse
equations, the subscriptstart” and 'end" simply identify the whether the particular value is the value
at the beginning or end of the time step being processed.

The code which implements the numerical procedure, and which is listed in AppBhddoes not
invert the 3by-3 coefficient matrixper se Instead| have solvedhe three equations using Eulerian
substitution as described in Appendix "C".

The force of gravity

Themagnitude of thgravitational force is simple to write dow&ince the sphere will not necessarily be
close to the Earth's surface, | will use the Newton's more general expffesstanforce of gravity:

Mrm
Eg:G 2 (30)

In this expression; is theuniversalgravitational constar@ = 6.673 x 101 Nm?/kg?, My is the
mass of the EartM; = 5.97219 x 10%* kg, m is the massf the cannonball and s thedistarce from
the center of the Eartio the center of the cannonballhis forcealways actsn the direction from the
sphere to the center of the Earth.

This is a good time to talk about the Earth's radius. For many ballistic problems (satellites, fdegxamp
neither the Earth's radius nor its gravitational field can be considered to be constant. The Earth's oblate
shape has a small, but cumulatively adverse, impact on ballistic prediclioag€arth's radius varies

from 6,353 kilometers at the polds 6,384 kilometersat the Equator The mean radius, which is

arguably most appropriate for rdtitudes, issometimegjiven ask; = 6,356,766 meters.l am going

to use this value abe radial distance to mean sea level. | will meaalilecal alttudes above mean sea
level. If H is the instantaneous geometric altitudehef$phere, theEquation(30) canbe written as:

Mgm

B vy OV
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In the sphere's own frame of reference dtime, the direction of gravitis easily stated. It points

directly down, in the direction of the negatitigaxis. We can use Equatig6) to transformit into the
inertial frame of reference.

Mgm

—G—= cosAcos(y + wt)
S 2 S Mym
Fos= (Rg + H) > Fy = —G% cosAsin(y + wt)| (32)
0 sin

At the beginningof anyparticulartime step in the numerical integration, we will know the sphere's local
anglesigiqre aNdgeqre. We will also know its theraltitude,H,, .-+ Say,and can use Equatiq@?2) to
express the force of gravity in the inertial frame of reference.

The aerodynamicdrag

I am going to base my calculations of aerodynamic drag on a study published by NASgust A893.
The study was done by M.L. Spearman and D.O. Braswell and isAglediynamics of a sphere and an
oblate spheroid for Mach numbers from 0.6 to 10.5 ilialy some effects of test conditiorhey tested
spheres of various sizes up to 12 ie€in diameter in various wind tunnels. The principal result | am
going totake over from their report esgraphwhich plots thecoefficient of dragagainst a range déflach
numbers.| digitized their grapfand obtained a set of {, Mach) co-ordinate pairs. The following graph
was drawrusingthe digitizedco-ordinate pairs.

Coefficient of drag of a supersonic sphere

1.2
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0.8 [
0.6 l

0.4
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0.0

Coefficient of drag CD

0] 2 4 6 8 10 12

Mach number

If one knowsthe sphere's Mach number, the coefficient of drag is easily extracted from the graph. In the
numerical simulatio, | use linear interpolation between adjacerbtinates pairs to do that. Finding

the Mach number is a little more of a challenge. | handled this task by coding the U.S. Standard
Atmosphere in a way that calculates the speed of s@mbother stateariables of the airfpor ary given
geometric altitudén the U.S. SandardAtmosphere Thedetailsof this process are described in a

separate paper, titldebrmulae and code for the U.S. Standard Atmosphere (18¥&omputercode
fromwhich | have akenfor this applicatiorover without any change.
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Suppose we introduce the following variables:

e H (as abovejs the instantaneous altitude of the sphere above mean sea level, measured in meters,
*  p.ir IS the density of the air in the vicinity dfeé sphere, measuredkitiograms per cubic meter,

e (. IS the speed of sound in the vicinity of the sphere, measured in meters per second,

e v, is the kinematic viscositgf the airin the vicinty of the sphere, in meters squared per second,
e V.. isthe instantaneous speed of the sphere, relative to the locaéasuredn meters per second,
e  Mach is the Mach number of the sphere's speed,

e () is the instantaneous coefficient of drag,

®  Rgpnere is the radius of the sphe, measured in meters,

e F, is the instantaneousraelynamic dragforce)acting on the sphere, measured in Newtans!

e Reisthe instantaneous Reynolds number.

The procedure is as follows. The only ingatuerequired to invoke the standardretsphere is the
sphere's geometric altitude The subroutine which models the atmosphere converts thisetyan
altitude into its gravitycorrected geogential altitude, calculates its way up through the layers in the
standard atmosphere, and caloegathe temperature, pressure, density, dynamic and Kicema
viscositiesand speed of sourfdr the given altitude. We only nedaréeof these state variables, the
local densityp,;,, the local speed of souny;, and thdocal kinematic ¥scosityv;;..

Next, we compute the sphere's Mach number. This is the sphere's speed with respect to the undisturbed
air, divided by the local speed of sound. We will have to make sure that we use the right frame of
referencdo determine the sjgie's relative spedd,; but, once we have it, the Mach number is:

v,
Mach =& (33)

air

With this Mach number, we can look up the coefficient of digdrom the graph above. The magnitude
of the aerodynamic drag forggethen calculated using tlstandard drag equation

F, =Cp X 1/2pairVr2el X T[Rszphere (34)

The factor¥sp,;, V%, is thecoreterm in the drag (and lift) equatigriscaptureghe force's depemce
on density and speed. That factor is adjusted for the frontal area of the qztﬂé;,;ere in the case of our
sphere, and by the coefficient of drég

As a reality check on what is going on, | will also calculate the Reynolds number,withigive us
someidea about the nature of the flow. It should be consistent with supersonic speeds. The definition of
the Reynolds numbdor an objecis:

e = Vrel X 2Rsphere (35)

Vair

where the facto2R;,n.re is the characteristic length of the objeatpur case being thdgiameterof the
sphere.

This drag forcd, will be directed in opposition to the sphere's velocity through the undisturbed air.
Equation(20) above gives this relative velocity. Hangithis relativevelocityis already expressed in
the inertial frame of reference. The speed is given Equé2ibn This is the speed which is substituted
into Equation(33) to calculate the sphere's Mach number. With the Mach number at hand, the
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coefficient of drag can be extractedin the gaph and then the magnitude of the aerodynamic Brag
calculated using Equatiai34). The aerodynamic drag must now be broken down into its components.
The components will have the same proportions as the velocity in Eq2@iprbut it will have the
opposite direction.

—

= V
Fa,I = Vrel,l F, (36)
rel,l

Some preliminary results

| have attached as Appendix "D" a listing of the Visual Basic code which implements the equations
governing the exterior ballistics set out above. The parameters | used for this prelimstmayethe
following:

1. The sphere is 24 inches in diameter and cast from metal with a density of 7,900 kilograms per cubic
meter.

2. Theinitial launch speed is 5,000 meters per second, at an elevationfpafjEd° in a direction
(anglea) 8° norh of due east.

3. The launch site is in the northern hemisphere at latitude 32.08275°. Since | will report the results in
terms of distances along the ground, the longitude is arbitrary.

4. The base of the gun is 7.26 meters above mean sea level anazitie imten meters above then's
base.

5. For the purposes of ending the flight, | have assumed the spheretaaditevhere the altitude is
29 meters above mean sea level.

6. The duration of the time step for the numerical integration is one reod.

The time of flight is 195.74 seconds, or about three andhireminutes. The following graph shows
the altitude of the sphere above mean sea level with respect to the simulation time. The sphere reaches a
maximum altitude of about 43 kilomesger

Altitude vs simulation time (24" 5000m/s Beta=60deg)
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The following graph shows the trajectory of the sphere in the vertical plane. The distances plotted are
stated in th@ frame of reference (the muzzle's frame of reference), and represent the Cartesian co
ordinates of the spherelative to the muzzle. The vertical awisthe graphs the distance of the sphere
above the muzzle, which will increasingly diverge from the sphere’s true altittitke sghere moves

overthe surface of the Earth. The horizontal axis isdisane to thespherés projecion onto the

horizontal plane passing through the muzzleave scaled the graph so that distances are the same along
both axes. The sphere lands just over 80 kilometers from the gun.

Altitude vs ground distance (24" 5000m/s Beta=60deg)
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The red line have superimposed on the graph represents the circular surface of the Earth. It is a cross
section of the Great Circle passing through the launch and landing sites. The landing site is far enough
around the Earth that it is several hundred meters k&keworizontal plane passing through the muzzle.

The following graph is the ground track.

Ground track (24" 5000m/s Beta=60deg)
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The (0, 0) co-ordinate on this graph is the muzzle, as seen from above. The vertical axis points due
north; the horizontal axis points due east. Haverote that the two axes are not scaled to comparable
lengths. The sphere travels abolikilometers north and about 80 kilometers east.

The following graph shows the speed of the sphere with respect to the air (the "relative" speed) as a
function ofthe horizontal distance from the gun.

Relative speed vs ground distance (24" 5000m/s Beta=60deg)
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The initial speed of the sphere (5,000 meters per second is an extraordinarily higlalspeddach
14.7) is quickly reduced by aerodynamic drale sphere has slowed to 1,000 meters prmsk(Mach
3.39)when it is11.13 seconds into flighat which timeit is at an altitude of 15.8 kilometers and 9.4
kilometersdownrange

At apogee, sawhen the sphere is 40 kilometers downrangeglative speed has decreased to 322
meters per secanor Mach 1.34.

As the spherghenbegins to descend, it picks up speed as its potential energy is cornneriddetic
energy. But, once it begins to enter the thicker, lower, atmosphere, the increasing drag bleeds off energy
and reduces the speeithe sphere lands with a relative speed of 340 meters per second, or Mach 0.92.

The landing speed is a fractiBd0/5000 = 0.068 of the launch speed, so the landing kinetic energy is a

fraction0.0682 = 0.0046 of the launch kinetic energy. Clearly, a stgpnic sphere is a poor way to
transmit kinetic energy from one place to another.
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The effect of the gun's elevation anglg

In the preliminary case described in the previous section, the barrel of the gun was elevated to an angle
60° above the horizontal plane. The following graph shows the effect of changing the elevation angle,
while leaving all other parameters unchadg This is a graph of the Cartesian location of the sphere with
respect to the muzzle. The yellow curve is the preliminary case graphed above; the other curves show
elevation angles from 55° to 70°. It can be seen that the maximum range is ach@vadglie of 62.5°.

Altitude vs ground distance (24" 5000m/s)
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The following graph shows the ground tracks which correspond to these flights.
Ground track (24" 5000m/s)
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Since the ground tracks are similar, the landing pattern is not very clear. The followingsgrapbe-
up of the landing aredt seems that all of these flights land in a strip about 10 kilometers wide in the
eastwest direction and about one kilometer high in the nsaotith direction.

Landing pattern (24" 5000m/s)
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The effect of thelaunch speed

All of the case so far assume the 24" sphere is launched at 5,000 meters per second. The following
graph shows the effect of different launch speeds, from 1,000 m/s to 6,000 m/s. In all of these cases, the
launch elevation is kept 80°.

Altitude vs ground distance (24" Beta=60deg)
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As ore would expect, a greater launch speed gives a greater range. The following graph shows the
relationship. The black curiethe simulation results. The red curve is the equation:

Range = 12,000 + (0.000075 X Speed?*?)

The equationshows tlat the range increases aggressively with speed, at more than the square. This arises
because the sphere spends more timergthigh altitudes, where the aerodynamic dragiishlower.

Range vs launch speed (24" Beta=60deg)
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The effect of thesphere's diameter

All of the cases so far assume the sphere has a diameter of 24 inches. The following graph shows the
effect of changing the diametén the range from 6 inches to 36 inchdsl of these runs had a launch
speed of 3,000 meters per second aladiachelevation of60°.

Altitude vs ground distance (3000m/s Beta=60deg)
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Increasing the diameter greatly increases the range. The following graph shows the relationship. The
black curve connects the simulation results. The red curve is the equation:

Range = 6000 + (7 x Diameter?®1)

The equation shows that the range increases aggressivehaidiametercloser to the cube of the
diameter than to the square

Range vs sphere's diameter (3000m/s Beta=60deg)
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The energy balance

As a check on the consistency of the physical model, | examined the energyystéhe sl considered

three types of energy: (i) the kinetic energy of the sphere, (ii) the potential energy of its distance from the
center of the Earth and (iii) the energy expended in overcoming the aerodynamic drag. | carried out all
energy calculatianin the inertial frame of reference. For example, if the launch ¢psative to the
undisturbed airjs 5,000 meters per second, the speed in the inertial frame of referéiR@5S meters

per second, the increase being due to the Earth's roiatioa direction of travel.

The diagramo the rightshows the basis for calculating the energy
expended in overcoming the aerodynamic drag (or any force, for that
matter). If the sphere is travelling with velocity (stated in the inertial
frame of reference) and is subject to a fd?dalso stated in the inertial
frame of reference), then the instantaneous mechanical power the force
exerson the sphere is the vector dot prodﬁeﬁ. The energy atkd to

the sphere by thforce during some short period of time (say, one time&mRps F - VAT. For a
retarding force like the aerodynamic drag, the velocity and drag force will point in almost exactly
opposite directions(The vebcity of thespheraelative to the undisturbed and the drag will be in
exactly opposite directions, but the veloci#yative in the inertial frame of referenisenot the same as
the relative velocity.)Themechanical power, and tisbange in rergy,will therefore be algebraically
negative

<!

T
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The following graph shows the three components of energy for the preliminary case described above.
Thelaunch speed of,600 m/s corresponds to kinetic energylaf7 GigaJoules.

System energy (24" 5000m/s Beta=60deg)
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The graph shows cumuieg "layers" of energy. The lowest layer is the black curve, showing the kinetic
energy (K) of the sphere. In the second layer (the red curve), the potential energy (P) is added to the
kinetic energy. In the top layer (the blue curve), the cumulatag (D) is added to the kinetic and
potential energies. Note thdiaut 90% of the initial kinetic energy is dissipated by the drag force with

the first five seconds of flightAt mid-flight, the kinetic and potential energies have about the same
magnituc.

That the blue line, representing the total energy of the system, is constant with simulation time is
important. It confirms that energy in the system is conserved, as required by the physics of our universe.
(Any material change in the calculationtbé total energy of the system could be caused by arithmetic
errors, algebraic errors, conceptual errors or numerical errors arising from the numerical integration
process.) The following graph shows #ee of the error This is the percentage difence between the
calculated sum of the three energy componardsy time and the sphere's initial kinetic energy.

Error in energy calculation (24" 5000m/s Beta=60deg)
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The percentage error is always less than 0.B8%0 quite good. Almost all of it arises during the first
few seconds of fijht, when the aerodynamic drag is enormous.

The length of the time step used in the numerical integration process is an important determinant of this
error. The numerical integration assumes that the sphere's acceleration remains constant durirg the whol
of each time step. The longer the time steps, the more time is availablat &ssthmption to go wrong.

The following table shows the effect of the time step. The preliminary case was run using four different
time steps, with the following results.

Time step | Time of flight Landing latitude | Landing longitude | Energy error
10¢s 195.70 s 32.175° 35.620° 0.000226%
5¢s 195.70 s 32.175° 35.620° 0.000113%
les 195.74 s 32.175° 35.620° 0.000023%
0. 5¢ 195.74 s 32.175° 35.620° 0.000011%

The energy error is directly proportional to the length of the time step. This is engaadion that the

source of these errors is the numerical procedure. The time step can be made as short as one wants,
subject to one's willingness to wait for the computer. All the runs carried out for this paper were done on
an old, slow, singkprocessorThinkPad, and none took took longer than fifteen minutes.

A sphere is not a good projectile for supersonic guns. On the one hand, its symmetry makss it eas
model. On the other hand, it is steblunt object thadlmostall of its initial energy is lost to drag. Ina
subsequent paper, | will look at the exterior ballistics of a more conventional projectile.

Jim Hawley
© March 2015

If you found this description helpful, please let me knofwol spot any errors or omissions, please send
an email. Thank you.
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