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Exterior ballistics of a supersonic sphere 

 

In this paper, I will look at the trajectory of a sphere launched at high speed from somewhere near the 

Earth's surface.  I will assume that the sphere does not spin during flight.  The situation in the vicinity of 

the gun is shown in the following figure. 

 

The red arrow shows the velocity of the cannonball 

as it leaves the muzzle.  Its speed is .  Its launch 

direction is specified by two spherical angles.  The 

initial track is angle  north of true east and angle 

 above the local horizontal plane.  It will also be 

necessary to know the altitude of the muzzle.  I 

will reference all altitudes to mean sea level. 

 

 

 

 

 

I am going to introduce a couple of Earth-centered 

frames of reference.  The  frame of reference 

shown in the figure at the left is an inertial frame 

of reference, assumed to be fixed with respect to 

the faraway stars.  The  frame of reference is 

fixed to the Earth.  Its -axis pierces the Earth's 

surface at the Equator at the longitude of 

Greenwich, which point of intersection is marked 

by the black dot.  With respect to the  frame of 

reference, the Earth spins towards the east around 

the -axis with angular velocity .  Both of 

these frames of reference have -axes but I have 

not drawn them in the figure. 

 

I am going to locate the muzzle of the gun in the  frame of reference using spherical co-ordinates.  The 

muzzle is at longitude , latitude  and radial distance  from the center of the Earth.  I will give effect 

to the three variables in the same order as I have just mentioned them.  As a convention, I will assume 

that longitude east of Greenwich is positive and latitude north of the equator is positive.     

 

The blue dot in the figure is the location of the muzzle.  The 

sequence of transformations is this.  The  frame of 

reference is derived from the  frame by a positive rotation 

by angle  around the -axis.  The  frame of 

reference is derived from the  frame by a negative rotation 

by angle  around the -axis.  The muzzle is located 

a distance  from the origin along the -axis.     

 

Because of the way the  frame of reference has been 

derived, it happens that the -axis points directly upwards 

from the center of the muzzle.  The -axis points due east 

and the -axis points due north.  The following figure 
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shows (once again) the velocity of the sphere as it leaves the muzzle. 

 

In the figure, the distance  is the distance from 

the center of the Earth to the -  plane.  I will be 

calculating this as the sum of: (i) the mean radius 

of the Earth, (ii) the altitude of the launch site 

above mean sea level and (iii) the height of the gun 

from its base to the center of the muzzle.  One of 

the things that we need to do in preparation for the 

analysis below is to resolve the initial velocity of 

the sphere into its three components in this  

frame of reference.  Here, and below, Cartesian 

co-ordinates are listed in  order.  

 

 

 

  

The instantaneous location of the muzzle as seen in the inertial frame of reference  

 

We can write down by inspection the location of the muzzle in the  frame of reference.  It is: 

 

 

 

It is not that difficult to express the location of the muzzle in the inertial frame of reference.  It is a matter 

of multiplying standard rotation matrices in the correct order.  Let's go through the rotations one-by-one.  

In the  frame of reference, the location of the muzzle is: 

 

 

 

In the equatorial Earth-centered Earth-fixed  frame of reference, it is: 

 

 

 

Lastly, in the  frame of reference, starting at some arbitrary time  when the  and  frames are 

coincident, the location of the muzzle is: 
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The instantaneous location of the sphere as seen in the inertial fram e of reference  

 

In the previous section, I used a sequence of rotation matrices to transform the location of the gun's 

muzzle, which we knew in the  frame of reference, into the inertial frame of reference.  The procedure I 

used is certainly not restricted to the muzzle.  It is very general.  Let's introduce another Earth-centered 

frame of reference, , whose -axis always passes through the center of the sphere.  The  frame of 

reference is similar to the -frame, so I will use the symbols  and , respectively, for the sphere's 

instantaneous longitude and latitude, instead of  and , which will be reserved for the muzzle.  In the 

 frame of reference, the sphere's location is specified simply by its location along the -axis, say, 

distance  from the center of the Earth. 

 

Let's use the symbol  for the vector from the center of the Earth to the center of the sphere at any 

particular moment during flight.  The components of  can be written in the  frame of reference or, using 

successive rotation matrices for the latitude, longitude and Earth-rotation just like we did in steps  

through , in the inertial frame of reference, as follows: 

 

 

 

In our simulations, we are going to base the simulation time  on the instant when the sphere passes 

through the center of the muzzle.  The initial conditions will therefore be: 

 

 

 

The following figure shows how the radius , longitude  and latitude  correspond to the Cartesian , 

 and -axes in the -frame. 

 

The green dot is the instantaneous location of 

the sphere.  The orange dot is the projection 

of the sphere straight downwards onto the 

surface of the Earth.  From the point of view 

of the sphere,   

 

 

 

From the figure, it can be seen that the 

longitude  is the main (but not only) 

determinant of the -axis and that the 

latitude  is the main (but not only) 

determinant of the -axis.  For this reason, I 

will list the location variables in the order 

, which most-closely parallels the 

Cartesian co-ordinates . 
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The instantaneous location of the sphere as seen from the muzzle 

 

It is sometimes useful to know the instantaneous location of the sphere as straight-line distances from the 

center of the muzzle.  This is a vector, whose tail is the muzzle and whose head is the sphere.  Like all 

vectors, its components can be found by subtraction, so long as the two vectors to be compared are 

expressed in the same frame of reference.  Since the longitudes and latitudes of the muzzle and the sphere 

are defined  with respect to the Earth-fixed  frame of reference, that frame could be the easiest one to 

use for subtraction.  The vector from the muzzle to the sphere, in the -frame, is: 

 

 

 

This vector will be more useful if we transform it into the muzzle's frame of reference, which is the 

-frame, as follows: 

 

 

 

This is the vector from the muzzle to the sphere, as it would be seen by an observer standing next to the 

gun, with the three components being upwards (vertical), to the east and to the north, respectively.  This 

vector is easy to imagine for short-range, flat-Earth, trajectories.  Once the sphere drops below the 

horizon on a long-range trajectory, though, the vector will not be quite so intuitive. 
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Setting up the initial  conditions for speed 

 

Let's think about the moment when the simulation starts, at time .  Substituting the initial radius, 

longitude and latitude into Equation  shows that .  That is to be expected; at the 

starting instant, the sphere is located at the center of the muzzle.   

 

The initial velocity, or speed, of the sphere is a different matter.  I have chosen to specify the sphere's 

initial velocity as a given speed in a given direction.  A conversion is necessary to put this velocity into 

terms the numerical simulation can understand. 

 

The numerical simulation is going to be based on the sphere's three spherical variables ,  and , and 

their time-derivatives.  It is not going to be based on the rates-of-change of the Cartesian co-ordinates.  

Therefore, the initial linear speeds need to be converted into rates-of-change of radius, longitude and 

latitude. 

 

Equation  is the instantaneous location of the sphere with respect to the muzzle, in Cartesian co-

ordinates.  If we take the time-derivative of Equation , we will get the instantaneous velocity of the 

sphere with respect to the muzzle.  We get: 

 

 

 

This is the relative speed at any time during flight.  We only need to evaluate it at the starting instant, 

, when ,  and .  At the starting instant, Equation  is greatly simplified, to: 

 

 

 

In Equation , ,  and  are the initial rates-of-change of the sphere's radius, longitude and 

latitude, respectively.  Now, we already have a second expression for this velocity.  It is Equation , in 

which the sphere's initial velocity is expressed in terms of parameters of the gun.  Setting the two 

formulations equal gives: 
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This constitutes three equations in the three unknowns ,  and , which can be solved to give: 

 

 

 

The instantaneous speed and velocity of the sphere in the inertial frame of reference 

 

Suppose the sphere is moving.  The sphere's velocity is the first derivative with respect to time of its 

location.  Let's start with  in the inertial frame of reference, as given by Equation .  We can use the 

product rule to expand the derivative as: 

 

 

 

This is the velocity of the sphere, expressed in the inertial frame of reference.  The speed is the square 

root of the sum of the squares of the three components.  If  is the instantaneous speed, then: 

 

 

 

I have shown the algebra to reduce this expression in Appendix "A".  The speed simplifies to: 

 

 

 

The instantaneous speed and velocity of the sphere with respect to the undisturbed air 

 

There is nothing that requires that we calculate the speed of the sphere in the inertial frame of reference.  

We can calculate the speed in any frame of reference we wish.  One of the things we are going to want to 

know is the velocity of the sphere with respect to the undisturbed air.  The aerodynamic drag will be 

directly opposed to the sphere's velocity with respect to the air. 

 

On a calm day, the speed of the air is zero, but only in some of the various frames of reference.  It is zero 

in the muzzle's frame of reference (the -frame) and in the Earth-fixed frame of reference (the -frame).  

It is not zero in the sphere's frame of reference (the -frame) or in the inertial frame of reference (the 

-frame).   
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In Equation  above, we expressed the instantaneous location of the sphere in the muzzle's frame of 

reference.  Since the air is stationary in that frame of reference, taking the derivative of that location 

vector will give the velocity of the sphere with respect to the air.  But, we already took that derivative, in 

Equation , for the purpose of converting the initial conditions.  If we take the sum of the squares of 

the three components, we will have the square of the sphere's speed with respect to the air. 

 

 

 

Quite a bit of algebra is needed to reduce this expression.  I have relegated the details to Appendix "B".  

Here, the sphere's speed relative to the air simplifies to:                                                                                                                       

 

 

 

The instantaneous speed and velocity of the sphere with respect to the undisturbed air, once more 

 

Equation  for the speed of the sphere relative to the undisturbed air is similar to Equation  for 

the speed of the sphere relative to the fixed stars.  It took a lot of algebra in Appendices "A" and "B" to 

arrive at these two results.  That is puzzling.  Since the expressions for the speed are so simple, one would 

expect there to be some other, simpler, way to reach the same conclusion.  I am going to work through 

that other way in this section.  Let's start with Equation .   is the velocity of the sphere, 

expressed in the inertial frame of reference.  It shows how the rates-of-change ,  and  of the sphere's 

three location variables ,  and  give rise to rates-of-change along the three Cartesian axes of the 

inertial frame of reference. 

 

Let' s consider the undisturbed air in the immediate vicinity of the sphere.  This air has the same three 

location variables ,  and  as the sphere, but all three of their rates-of-change are zero.  Although these 

rates-of-change are zero, the velocity of the undisturbed air in the inertial frame of reference is not zero.  

As seen from the faraway stars, the undisturbed air is carried around the Earth's rotational axis as the 

Earth rotates.  If we set  in Equation , we will have the velocity of the undistribed air 

in the -frame.  Let's call this velocity .  We get: 

 

 

 

To find the velocity of the sphere with respect to the undisturbed air, we can take the difference between 

their velocity vectors in any frame of reference where we have expressions for them.  Since we now have 

expressions for both velocities in the inertial frame, we can do the subtraction right now.  The relative 

speed is: 
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Finding the relative speed from this equation is straightforward.  It is easy to see which terms will add 

constructively and destructively when the first two components are squared and added together.  We can 

write down by inspection: 

 

 

.   

This is the same as Equation . 

 

The instantaneous acceleration of the sphere 

 

So far, we have talked only about the location and velocity of the sphere.  Let's move on to the 

acceleration.  I will start with Equation , which is the instantaneous velocity of the sphere in the 

inertial frame of reference.  Taking another time derivative gives the acceleration. 

 

 

 

In many problems, including this one, the Earth's rotational speed  can be assumed to be constant.  The 

derivative  is therefore zero, and two of the terms in the last row of Equation  vanish. 

 

There is an advantage to our having written the acceleration of the sphere in an inertial frame of 

reference.  Only in an inertial frame of reference, which is not accelerating with respect to the faraway 

stars, can Newton's Third Law be used in its simplest  form.  In contrast, in any frame of 

reference which is itself accelerating, Newton's Third Law can only be used if additional fictional forces 

are added to counteract the acceleration of the frame. 
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If point  is the instantaneous location of the sphere (and if the sphere can be treated as a rigid body with 

point mass ), then Newton's Third Law can be written as: 

 

 

 

I am going to treat the cannonball as a point mass.  It will be subject to two forces.  There will be a 

gravitational force acting towards the center of the Earth.  And, there will be an aerodynamic drag force 

acting in the direction opposite to the sphere's velocity with respect to the undisturbed air.  Since I have 

assumed that the cannonball does not spin while in flight, there will not be a Magnus-type aerodynamic 

force arising from the spin. 

 

For the moment, I am not going to quantify these forces.  I am going to assume that we know them.  

Furthermore, I am going to assume that we know them, and can resolve them into their components, in 

the inertial frame of reference .  For the time being, I am going to assume that we can write the total net 

force acting on the sphere as follows: 

 

 

 

Substituting this into Equation  gives: 

 

 

 

where the contents of the curly brackets are the contents of the curly brackets on the right-hand side of 

Equation .  (It is not worth writing all of it down again.)  Note that Equation  is linear in the 

second derivatives of all three location variables ,  and .  We can therefore define 12 functions 

,  and so on all the way up to 

 in such a way that Equation  can be written as: 

 

 

   

The twelve coefficient functions depend on the three location variables ,  and , their derivatives and 

time .  Just so there is no confusion, I have shown the individual functions in Appendix "C".  Equation 

 can be re-arranged and re-stated as: 

 

 

 

Equation  is well-suited for a numerical integration.  When we arrive at the beginning of any 

particular time step, we will know the values of three location variables ,  and  and their derivatives 
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,  and .  They would have been calculated at the end of the preceding time step, which is coincident in 

time with the start of the present time step.  We will also know the current time , of course.  We can 

compute all twelve coefficients .  Assuming that we also know the components of the 

net force at this time, then we can solve Equation  for the three second derivatives, ,  and .  If the 

time step has duration , and if  is suitably short, then we can assume that the three second 

derivatives remain virtually constant through the time step.  If so, then the values of the three first 

derivatives at the end of this time step can be found through a simple linear integration, thus: 

 

 

 

A second integration gives the values of the three location variables at the end of this time step: 

 

 

 

Equations  and  produce the six values which are needed to begin the next time step.  In these 

equations, the subscripts " " and " " simply identify the whether the particular value is the value 

at the beginning or end of the time step being processed. 

 

The code which implements the numerical procedure, and which is listed in Appendix "D", does not 

invert the 3-by-3 coefficient matrix per se.  Instead, I have solved the three equations using Eulerian 

substitution, as described in Appendix "C".   

 

The force of gravity 

 

The magnitude of the gravitational force is simple to write down.  Since the sphere will not necessarily be 

close to the Earth's surface, I will use the Newton's more general expression for the force of gravity: 

 

 

 

In this expression,  is the universal gravitational constant ,  is the 

mass of the Earth ,  is the mass of the cannonball and  is the distance from 

the center of the Earth to the center of the cannonball.  This force always acts in the direction from the 

sphere to the center of the Earth. 

 

This is a good time to talk about the Earth's radius.  For many ballistic problems (satellites, for example), 

neither the Earth's radius nor its gravitational field can be considered to be constant.  The Earth's oblate 

shape has a small, but cumulatively adverse, impact on ballistic predictions.  The Earth's radius varies 

from  kilometers at the poles to  kilometers at the Equator.  The mean radius, which is 

arguably most appropriate for mid-latitudes, is sometimes given as  meters.  I am going 

to use this value as the radial distance to mean sea level.  I will measure all local altitudes above mean sea 

level.  If  is the instantaneous geometric altitude of the sphere, then Equation  can be written as: 
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In the sphere's own frame of reference, the  frame, the direction of gravity is easily stated.  It points 

directly down, in the direction of the negative -axis.  We can use Equation  to transform it into the 

inertial frame of reference. 

 

 

 

At the beginning of any particular time step in the numerical integration, we will know the sphere's local 

angles  and .  We will also know its then-altitude,  say, and can use Equation  to 

express the force of gravity in the inertial frame of reference. 

 

The aerodynamic drag 

 

I am going to base my calculations of aerodynamic drag on a study published by NASA in August 1993.  

The study was done by M.L. Spearman and D.O. Braswell and is titled Aerodynamics of a sphere and an 

oblate spheroid for Mach numbers from 0.6 to 10.5 including some effects of test conditions.  They tested 

spheres of various sizes up to 12 inches in diameter in various wind tunnels.  The principal result I am 

going to take over from their report is a graph which plots the coefficient of drag against a range of Mach 

numbers.  I digitized their graph and obtained a set of (  co-ordinate pairs.  The following graph 

was drawn using the digitized co-ordinate pairs.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If one knows the sphere's Mach number, the coefficient of drag is easily extracted from the graph.  In the 

numerical simulation, I use linear interpolation between adjacent co-ordinates pairs to do that.  Finding 

the Mach number is a little more of a challenge.  I handled this task by coding the U.S. Standard 

Atmosphere in a way that calculates the speed of sound, and other state variables of the air, for any given 

geometric altitude in the U.S. Standard Atmosphere.  The details of this process are described in a 

separate paper, titled Formulae and code for the U.S. Standard Atmosphere (1976), the computer code 

from which I have taken for this application over without any change. 
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Suppose we introduce the following variables: 

  (as above) is the instantaneous altitude of the sphere above mean sea level, measured in meters, 

  is the density of the air in the vicinity of the sphere, measured in kilograms per cubic meter, 

  is the speed of sound in the vicinity of the sphere, measured in meters per second, 

  is the kinematic viscosity of the air in the vicinity of the sphere, in meters squared per second,  

  is the instantaneous speed of the sphere, relative to the local air, measured in meters per second, 

  is the Mach number of the sphere's speed,  

  is the instantaneous coefficient of drag, 

  is the radius of the sphere, measured in meters,  

  is the instantaneous aerodynamic drag (force) acting on the sphere, measured in Newtons, and 

  is the instantaneous Reynolds number. 

 

The procedure is as follows.  The only input value required to invoke the standard atmosphere is the 

sphere's geometric altitude .  The subroutine which models the atmosphere converts this geometric 

altitude into its gravity-corrected geopotential altitude, calculates its way up through the layers in the 

standard atmosphere, and calculates the temperature, pressure, density, dynamic and kinematic 

viscosities, and speed of sound for the given altitude.  We only need three of these state variables, the 

local density , the local speed of sound  and the local kinematic viscosity . 

 

Next, we compute the sphere's Mach number.  This is the sphere's speed with respect to the undisturbed 

air, divided by the local speed of sound.  We will have to make sure that we use the right frame of 

reference to determine the sphere's relative speed  but, once we have it, the Mach number is: 

 

 

 

With this Mach number, we can look up the coefficient of drag  from the graph above.  The magnitude 

of the aerodynamic drag force is then calculated using the standard drag equation: 

 

 

 

The factor  is the core term in the drag (and lift) equations; it captures the force's dependence 

on density and speed.  That factor is adjusted for the frontal area of the object,  in the case of our 

sphere, and by the coefficient of drag . 

 

As a reality check on what is going on, I will also calculate the Reynolds number, which will give us 

some idea about the nature of the flow.  It should be consistent with supersonic speeds.  The definition of 

the Reynolds number for an object is: 

 

 

 

where the factor  is the characteristic length of the object, in our case being the diameter of the 

sphere. 

 

This drag force  will be directed in opposition to the sphere's velocity through the undisturbed air.  

Equation  above gives this relative velocity.  Handily, this relative velocity is already expressed in 

the inertial frame of reference.  The speed is given Equation .  This is the speed which is substituted 

into Equation  to calculate the sphere's Mach number.  With the Mach number at hand, the 
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coefficient of drag can be extracted from the graph and then the magnitude of the aerodynamic drag  

calculated using Equation .  The aerodynamic drag must now be broken down into its components.  

The components will have the same proportions as the velocity in Equation , but it will have the 

opposite direction. 

 

 

 

Some preliminary results 

 

I have attached as Appendix "D" a listing of the Visual Basic code which implements the equations 

governing the exterior ballistics set out above.  The parameters I used for this preliminary case are the 

following: 

1. The sphere is 24 inches in diameter and cast from metal with a density of 7,900 kilograms per cubic 

meter. 

2. The initial launch speed is 5,000 meters per second, at an elevation (angle ) of 60° in a direction 

(angle ) 8° north of due east. 

3. The launch site is in the northern hemisphere at latitude 32.08275°.  Since I will report the results in 

terms of distances along the ground, the longitude is arbitrary. 

4. The base of the gun is 7.26 meters above mean sea level and the muzzle is ten meters above the gun's 

base. 

5. For the purposes of ending the flight, I have assumed the sphere lands on a site where the altitude is 

29 meters above mean sea level. 

6. The duration of the time step for the numerical integration is one microsecond. 

 

The time of flight is 195.74 seconds, or about three and one-third minutes.  The following graph shows 

the altitude of the sphere above mean sea level with respect to the simulation time.  The sphere reaches a 

maximum altitude of about 43 kilometers. 
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The following graph shows the trajectory of the sphere in the vertical plane.  The distances plotted are 

stated in the  frame of reference (the muzzle's frame of reference), and represent the Cartesian co-

ordinates of the sphere relative to the muzzle.  The vertical axis of the graph is the distance of the sphere 

above the muzzle, which will increasingly diverge from the sphere's true altitude as the sphere moves 

over the surface of the Earth.  The horizontal axis is the  distance to the sphere's projection onto the 

horizontal plane passing through the muzzle.  I have scaled the graph so that distances are the same along 

both axes.  The sphere lands just over 80 kilometers from the gun. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The red line I have superimposed on the graph represents the circular surface of the Earth.  It is a cross -

section of the Great Circle passing through the launch and landing sites.  The landing site is far enough 

around the Earth that it is several hundred meters below the horizontal plane passing through the muzzle. 

 

The following graph is the ground track. 

 

 

 

 

 

 

 

 

 

 

 

 

Earth's surface 
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The  co-ordinate on this graph is the muzzle, as seen from above.  The vertical axis points due 

north; the horizontal axis points due east.  However, note that the two axes are not scaled to comparable 

lengths.  The sphere travels about 11 kilometers north and about 80 kilometers east. 

 

The following graph shows the speed of the sphere with respect to the air (the "relative" speed) as a 

function of the horizontal distance from the gun.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The initial speed of the sphere (5,000 meters per second is an extraordinarily high speed, about Mach 

14.7) is quickly reduced by aerodynamic drag.  The sphere has slowed to 1,000 meters per second (Mach 

3.39) when it is 11.13 seconds into flight, at which time it is at an altitude of 15.8 kilometers and 9.4 

kilometers downrange. 

 

At apogee, say, when the sphere is 40 kilometers downrange, its relative speed has decreased to 322 

meters per second, or Mach 1.34. 

 

As the sphere then begins to descend, it picks up speed as its potential energy is converted into kinetic 

energy.  But, once it begins to enter the thicker, lower, atmosphere, the increasing drag bleeds off energy 

and reduces the speed.  The sphere lands with a relative speed of 340 meters per second, or Mach 0.92. 

 

The landing speed is a fraction  of the launch speed, so the landing kinetic energy is a 

fraction  of the launch kinetic energy.  Clearly, a supersonic sphere is a poor way to 

transmit kinetic energy from one place to another. 
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The effect of the gun's elevation angle  

 

In the preliminary case described in the previous section, the barrel of the gun was elevated to an angle  

60° above the horizontal plane.  The following graph shows the effect of changing the elevation angle, 

while leaving all other parameters unchanged.  This is a graph of the Cartesian location of the sphere with 

respect to the muzzle.  The yellow curve is the preliminary case graphed above; the other curves show 

elevation angles from 55° to 70°.  It can be seen that the maximum range is achieved at an angle of 62.5°. 

 

 

 

 

 

 

 

 

 

 

 

length of the barrel  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following graph shows the ground tracks which correspond to these flights. 
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Since the ground tracks are similar, the landing pattern is not very clear.  The following graph is a close-

up of the landing area.  It seems that all of these flights land in a strip about 10 kilometers wide in the 

east-west direction and about one kilometer high in the north-south direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The effect of the launch speed 

 

All of the cases so far assume the 24" sphere is launched at 5,000 meters per second.  The following 

graph shows the effect of different launch speeds, from 1,000 m/s to 6,000 m/s.  In all of these cases, the 

launch elevation is kept at 60°. 
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As one would expect, a greater launch speed gives a greater range.  The following graph shows the 

relationship.  The black curve is the simulation results.  The red curve is the equation: 

 

 

 

The equation  shows that the range increases aggressively with speed, at more than the square.  This arises 

because the sphere spends more time at very high altitudes, where the aerodynamic drag is much lower. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The effect of the sphere's diameter 

 

All of the cases so far assume the sphere has a diameter of 24 inches.  The following graph shows the 

effect of changing the diameter, in the range from 6 inches to 36 inches.  All of these runs had a launch 

speed of 3,000 meters per second and a launch elevation of 60°. 
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Increasing the diameter greatly increases the range.  The following graph shows the relationship.  The 

black curve connects the simulation results.  The red curve is the equation: 

 

 

 

The equation  shows that the range increases aggressively with the diameter, closer to the cube of the 

diameter than to the square.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The energy balance 

 

As a check on the consistency of the physical model, I examined the energy of the system.  I considered 

three types of energy: (i) the kinetic energy of the sphere, (ii) the potential energy of its distance from the 

center of the Earth and (iii) the energy expended in overcoming the aerodynamic drag.  I carried out all 

energy calculations in the inertial frame of reference.  For example, if the launch speed (relative to the 

undisturbed air) is 5,000 meters per second, the speed in the inertial frame of reference is 5,205.7 meters 

per second, the increase being due to the Earth's rotation in the direction of travel. 

 

The diagram to the right shows the basis for calculating the energy 

expended in overcoming the aerodynamic drag (or any force, for that 

matter).  If the sphere is travelling with velocity  (stated in the inertial 

frame of reference) and is subject to a force  (also stated in the inertial 

frame of reference), then the instantaneous mechanical power the force 

exerts on the sphere is the vector dot product .  The energy added to 

the sphere by this force during some short period of time (say, one time step ) is .  For a 

retarding force like the aerodynamic drag, the velocity and drag force will point in almost exactly 

opposite directions.  (The velocity of the sphere relative to the undisturbed air and the drag will be in 

exactly opposite directions, but the velocity relative in the inertial frame of reference is not the same as 

the relative velocity.)  The mechanical power, and the change in energy, will therefore be algebraically 

negative. 
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The following graph shows the three components of energy for the preliminary case described above.  

The launch speed of 5,000 m/s corresponds to kinetic energy of 12.7 GigaJoules. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The graph shows cumulative "layers" of energy.  The lowest layer is the black curve, showing the kinetic 

energy (K) of the sphere.  In the second layer (the red curve), the potential energy (P) is added to the 

kinetic energy.  In the top layer (the blue curve), the cumulative drag (D) is added to the kinetic and 

potential energies.  Note that about 90% of the initial kinetic energy is dissipated by the drag force with 

the first five seconds of flight.  At mid-flight, the kinetic and potential energies have about the same 

magnitude. 

 

That the blue line, representing the total energy of the system, is constant with simulation time is 

important.  It confirms that energy in the system is conserved, as required by the physics of our universe.  

(Any material change in the calculation of the total energy of the system could be caused by arithmetic 

errors, algebraic errors, conceptual errors or numerical errors arising from the numerical integration 

process.)  The following graph shows the size of the error.  This is the percentage difference between the 

calculated sum of the three energy components at any time and the sphere's initial kinetic energy.    
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The percentage error is always less than 0.000023% ï quite good.  Almost all of it arises during the first 

few seconds of flight, when the aerodynamic drag is enormous. 

 

The length of the time step used in the numerical integration process is an important determinant of this 

error.  The numerical integration assumes that the sphere's acceleration remains constant during the whole 

of each time step.  The longer the time steps, the more time is available for that assumption to go wrong.  

The following table shows the effect of the time step.  The preliminary case was run using four different 

time steps, with the following results. 

 

Time step Time of flight  Landing latitude Landing longitude Energy error 

10ɛs 195.70 s 32.175° 35.620° 0.000226% 

5ɛs 195.70 s 32.175° 35.620° 0.000113% 

1ɛs 195.74 s 32.175° 35.620° 0.000023% 

0.5ɛs 195.74 s 32.175° 35.620° 0.000011% 

   

The energy error is directly proportional to the length of the time step.  This is a good indication that the 

source of these errors is the numerical procedure.  The time step can be made as short as one wants, 

subject to one's willingness to wait for the computer.  All the runs carried out for this paper were done on 

an old, slow, single-processor ThinkPad, and none took took longer than fifteen minutes.   

________________________________________________ 

 

A sphere is not a good projectile for supersonic guns.  On the one hand, its symmetry makes it easy to 

model.  On the other hand, it is such a blunt object that almost all of its initial energy is lost to drag.  In a 

subsequent paper, I will look at the exterior ballistics of a more conventional projectile. 
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