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An Axial Coil Gun 

 

Addendum 2 – The optimal shape for the coil 

 

Reference is made to the paper titled The physics of an axial coil gun.  The coils used in that paper were 

solenoids, in which the turns were wound side-by-side in cylinders.  That may not be the best shape for a 

coil in a coil gun.  The purpose of this paper is to explore whether there is a better shape. 

 

We will approach this question as follows.  We will start with simplest coil possible – a single circular 

loop of wire.  We will then imagine adding a second loop carrying the same current.  The question we 

will ask is: where is the best place to put that second loop?  The configuration we will examine is shown 

in the following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

The -  co-ordinate frame of reference is defined as in the previous paper, with the -axis coincident with 

the central axis of the coil and pointing in the direction from which the slug approaches the coil.  The 

-axis is any ray perpendicular to the -axis.  In the previous paper, the “origin”, that is, the intersection 

between the - and -axes, was always placed at the center of the coil.  In the case at hand, the starting 

coil is only one turn of wire, which is labeled “turn #1”.  We do not know where the subsequent turns will 

be placed.  For simplicity, therefore, the origin is shown as being fixed some arbitrary distance to the right 

of the first turn, so that the -co-ordinate of the starting turn is equal to .  The radius of the starting turn 

has been set to .  It is appropriate to think of turn #1 as the “leading” turn of the coil.  As the slug is 

accelerated, it will encounter turn #1 first.   

 

Now, we add a second turn, which is labeled “turn #2” and is highlighted in red.  Rather than define this 

new turn by its absolute - and - co-ordinates, we will define its wire centerline relative to that of turn 

#1.  To be precise, we will define a length  and an angle  which describe where the top centerline of 

turn #2 is relative to the top centerline of turn #1. 

 

Note first that the new turn must be located to the right of turn #1 in the figure above.  If turn #2 was to 

the left of turn #1, then it would be the leading turn and the slug would encounter it first.  The roles of the 

two turns would be reversed.  We will require that the separation distance  be positive, so that the two 

turns cannot be coincident.  Physically, distance  cannot be less than the diameter of the wire, including 

the insulation thickness of the wire from which the turns are constructed.  Angle  is positive if turn #2 

has a bigger radius than turn #1.  Because turn #2 must be further to the right than turn #1 (or, at least, not 

to the left of turn #1), angle  must be in the range . 

 

I have made the implicit assumption that the two turns are coaxial.  Their common axis passes through the 

geometric center of the slug, and all three are centered on the -axis.  In the figure, the geometric center 
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of the slug is shown a distance  to the left of the origin.  While we are making assumptions, let us also 

make the assumption that the same current flows through both turns. 

 

Let me write down here, for ready reference later, the absolute radius  of turn #2 and the -co-ordinate 

 of its center.  In Cartesian co-ordinates: 

 

 

 

The task is to find the combination of  and , which together define the size and placement of turn #2, 

which gives the slug the maximum amount of acceleration for a given flow of current. 

 

This is too big a problem to solve analytically at one go.  The magnetic field generated by the two turns 

varies throughout the volume of the slug.  It also changes with time as the slug approaches the turns.  Let 

us attack a simpler problem, and consider only a very small volume of the slug, which I will refer to as a 

“mote”.  If the physical size of the mote is small enough, we will be able to assume that the magnetic field 

intensity is constant throughout the mote’s volume.  We will restrict the mote a little bit more, and require 

that it lie on the -axis.  We will use the symbol  for the distance of the mote from the origin.  These 

two assumptions simplify the analysis significantly. 

 

The force acting on the slug is, of course, the sum of the forces acting on all the little motes which make 

up its total volume.  It is possible that changing the size and position of the second turn increases the force 

in some places inside the slug and decreases it at others.  But, I am hoping that is not the case.  I hope that 

changing the characteristics of the second turn affects all places inside the slug in some systematic way.  

If that is the case, then what we learn about the mote will apply in general to the entire slug. 

 

The components of the magnetic field at the mote’s location, due to turn #1 only 

 

Let us begin.  We can calculate the magnetic field which the current flowing in turn #1 generates at all 

locations in space, including the location of the mote.  In another paper, titled The force on a cylindrical 

steel slug inside a finite solenoid, I set out expressions for the components of the magnetic field intensity 

generated by a solenoid, which is a collection of single turns placed face-to-face.  The magnetic field 

generated by a solenoid is radially-symmetric and has two spatial components at every point in space: an 

axial component  pointing in the direction parallel to the -axis and a radial component  pointing 

directly outwards from the solenoid’s centerline.  At any point of interest , whose positional co-

ordinates are  and , the two components of the magnetic field vector are: 

 

 

 

The outer summation is a summation over all of the layers in the winding, where  is the radius 

of the 
th
 layer in the winding from the solenoid’s centerline.  The middle summation is a summation 

over all of the turns in each layer, where  is the axial displacement from the origin to the center 

of the plane which contains the 
th
 turn in each layer.  The inner summation is a summation around the 
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circumference of the 
th
 turn in the 

th
 layer, where progress around the circumference is measured by 

angle .  In all instances, distances are measured to the centerline of the current-carrying wire.   

 

If the solenoid consists of a single turn of wire, as does our turn #1, then the two outer summations are not 

relevant.  We can simply set the radius  to the radius of the turn #1  and the displacement 

 to the axial displacement of turn #1 .  Then, Equation  reduces to: 

 

 

 

It gets even simpler.  The point  of interest to us is the center of the mote.  Since the mote lies on the -

axis, we can set  to zero.  We defined the mote’s axial distance from the origin in such a way that  is 

the same as .  With these changes, Equation  simplifies to: 

 

 

 

Of, yes, one other thing.  Equations  through  assume that point  lies in air, or in free space.  If 

point  lies inside a magnetic material, such as the mote, then these expressions for  and  must be 

multiplied by the relative permeability  of the material.  We will make this change below once we get 

the expressions for the force.  For now, we will continue to use  and  without the relative 

permeability, and continue to look at the magnetic field generated by the turn without the mote present. 

 

The remaining summations are sums around a circle.  The differentials  are small angles which, taken 

together, represent a complete circular traverse around turn #1.  In the limit, as we make the differentials 

 smaller and smaller, the summations approach the following integrals: 

 

 

 

From the point-of-view of the integration variable , the factors involving the radius  and the axial 

displacements  and  are constants, and can be removed from the integrals.  We get: 
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and 

 

 

These two integrals can be integrated by inspection.  The integral of cosine around a circle is zero.  

Physically, this means that the radial component of the magnetic field is zero, as one expects.  The other 

integral sums to  and gives the following result for the components of the magnetic field: 

 

 

 

The axial component  consists of squares and the sum of squares, so it is always algebraically positive.  

Physically, this means that  points in the direction of the positive -axis – to the left in the figure above 

– at all points along the -axis. 

 

Once we have fixed the size and position of turn #1, the only independent variable on the right-hand side 

of  is the axial displacement  of the mote.  In the analysis below, we are going to need to know how 

quickly the magnetic field strength  changes as we change the location .  This is the quantity 

measured by the derivative of  with respect to , which we can compute as follows: 

 

 

 

So long as the mote lies to the left of the center of turn #1, that is, that , this derivative will be 

algebraically negative.  Physically, this means that the strength of the magnetic field  decreases as the 

mote is moved further away from turn #1, and  increases.  This also, was to be expected. 

 

The force acting on the mote, due to turn #1 only 

 

Now, let us now consider the force which turn #1 exerts on the mote.  In the earlier paper titled The 

physics of an axial coil gun, we wrote down in Equation  therein the expression for the force per unit 

volume at any point  inside the slug.  That expression was: 

 

 

 

where  the force per unit volume at point .  The force has two components:  in the radial 

direction and  in the axial direction.  We found in the previous paper that all three terms in the radial 

component  are zero for any physical configuration which is radially-symmetric.  On the other hand, the 

three terms in the axial component  are non-zero.  (Incidentally, the relative permeability  has now 
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been added in Equation  to reflect the fact that point  is inside the mote.  One of the ’s arises from 

the magnetic field intensity and the other arises from the spatial derivatives of the magnetic field 

intensity.) 

 

The three terms in the axial component  do not make equal contributions to the net force on the slug or 

mote.  We found in the earlier paper that the first term –  – dominates the other two terms.  As 

an example, I have repeated here a graph from the earlier paper which shows how the three terms vary 

across a diameter of the face of a solenoid.  The net force per unit volume is negative, acting in the 

direction of the negative -axis and so attracting the slug or mote towards the center of the solenoid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The three terms have different magnitudes.  Term 2 is very small.  Term 3 is slightly repulsive.  Term 1, 

which is the blue curve in the figure, is by far the dominant term.  At the center of the solenoid, it is about 

14 times larger than Term 3.  The dominance of the first term should hold for a single turn of wire, which 

is just a degenerate case of a solenoid.  If we use the first term only, then we can approximate the force 

per unit volume acting on the mote as: 

 

 

 

We already have an expression for  at the mote [Equation ] and an expression for the derivative of 

the axial component of the magnetic field with respect to the axial displacement [Equation ].  

Substituting them into Equation  allows us to write the force per unit volume of the mote as: 

 

 

 

This is the force per unit volume (approximately) which turn #1 exerts on a mote of magnetic material 

located on the -axis a distance  from the origin. 
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The energy imparted to the mote by turn #1 only 

 

If the mote has a volume given by , then the total force (approximately) which turn #1 exerts on the 

mote when it is at displacement  will be equal to the force per unit volume multiplied by the volume, 

thus: 

 

 

 

If the mote is allowed to accelerate under the influence of this force, from a distance which is very far 

away (that is,  up to the center of turn #1, then the work done on the mote will be equal to the 

cumulative sum of the force multiplied by the distance through which it acts, that is: 

 

 

 

This integral can be taken in closed form, as follows: 

 

 

 

so that: 

 

 

 

The kinetic energy of the mote will be equal to this amount of work done by turn #1. The kinetic energy 

imparted to the mote is inversely proportional to the radius of turn #1.  In order to maximize the final 

speed of the mote, turn #1 should have as small a radius as possible.  (Of course, in our application, the 

mote must be able to pass through turn #1.) 

 

We ended the above integral when the mote reached the center of the coil, where .  Going further 

makes no sense.  Once the mote lies to the right of the center of turn #1, then  , the force per 

unit volume becomes algebraically positive (decelerating the mote) and the work done on the mote starts 

to decrease.   
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The analysis with two turns 

 

Now, let use repeat the analysis assuming that there is a second turn present.  For the time being, I will 

use Cartesian co-ordinates for turn #2, that is,  and , which correspond to the dimensions  and  for 

turn #1.  The magnetic fields generated by the two turns separately can be added together at any point in 

space.  Vector addition would normally be used but, since the magnetic field is entirely axial at all points 

along the -axis, scalar addition of the axial components will suffice.  We get: 

 

 

 

Taking the derivative, as before, gives: 

 

 

 

Then, the force per unit volume acting on the mote when both turns are carrying the same current can be 

found by substituting Equations  and  into Equation , with the result: 

 

 

 

We can group terms to write this as: 

 

 

 

There are four terms in the curly brackets.  The one on the first line is exactly the same as the force per 

unit volume generated by turn #1 alone, as set out in Equation .  The term on the last line has the 

same form and can be thought of as the force per unit volume generated by turn #2 in isolation.  The 

middle two terms are symmetric in the subscripts “1” and “2” and can be thought of as the additional 

force generated by turn #1 when turn #2 is present and by turn #2 when turn #1 is present.  In a sense, the 

first term corresponds to the self-inductance of turn #1, the last term corresponds to the self-inductance of 

turn #2 and the middle two terms correspond to their mutual inductance. 
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Consider what happens when we make the two turns coincide, which we can do by setting  and 

.  All four terms become identical and the force  becomes equal to four times the 

force generated by turn #1 alone.  That is exactly what happens if we double the current flowing through 

turn #1 alone: . 

 

Now, let us return to our task.  We can multiply the force per unit volume in Equation  by the volume 

of the mote to find the total force acting on the mote, and then integrate this force over distance , 

starting with the mote being far away .  Where we should finish is not so clear.  When we had a 

single turn, it was clear that things should stop when the mote got to the center of the turn.  Any further, 

and the mote would start to decelerate.  With two turns, it may or may not be advisable for the mote to 

pass through the center of the leading turn before the current is “turned off”.  Turn #2, which lies closer to 

the origin than turn #1, could continue to accelerate the mote.  Certainly, we will want to stop at or before 

the time the mote reaches the center of turn #2.  How much before is an unanswered question. 

 

Therefore, let us allow for two cases.  In the first case, called Case A, we will stop the integration when 

the mote arrives at the center of the leading turn, turn #1.  In Case B, we will allow the integration to 

continue until the time when the force per unit volume switches from negative to positive.  A positive 

force per unit volume points in the direction of the positive -axis and will start to decelerate the mote.  In 

symbolic terms, the two cases can be described as follows. 

 

 

 

The only difference between the two cases is where / when during the run we stop integration. 

 

The integrals of the four terms in Equation  cannot be taken in closed form.  Fortunately, the number 

of variables is small and all of them are distances.  Resorting to a numerical integration should not 

disguise the important results.  Let us suppose that turn #1 has a radius of 5 cm and that the separation 

distance between the centerlines of turn #1 and turn #2 is fixed at 5 mm.  We will integrate both cases for 

181 different values of angle  between  and . 

 

The results are shown in the following plot, which is a screen-shot produced by the program which 

carried out the integration.  The horizontal axis in the plot is the angle  which locates the centerline of 

turn #2 around the centerline of turn #1.   defines the configuration in which turn #2 lies wholly 

inside turn #1, and is at the left.   defines the configuration in which turn #2 exactly surrounds 

turn #1, and is at the right.   defines the configuration in which turn #2 has the same radius as turn 

#1 and follows turn #2, just like the first two turns in a classical solenoid. 

 

The vertical axis shows the work done on the mote, which equals its kinetic energy at the end of the 

“run”.  I have not shown any units for the vertical axis since the numerical routine made no effort to 

account for the variables , ,  and , which were considered to be kept the same for all runs. 
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The red line shows the work done by turn #1 alone, multiplied by four.  When there is only one turn, 

angle  is not relevant.  Hence, this line is horizontal. 

 

The black line shows the work done on the mote in Case A, where the integration is stopped as soon as 

the mote reaches the center of the leading turn, turn #1.  By travelling further under the influence of the 

force, so long as it is attractive, the mote could get a little more energy.  This is Case B, which is shown 

by the green line. 

 

Since our objective is to maximize the speed of the mote, the “best” value in the plot occurs when angle  

is , at the extreme left.  In this configuration, the top centerline of turn #2 is directly below the top 

centerline of turn #1.  The two turns lie in the same plane, but turn #2 has a smaller radius than turn #1.  

On the other hand, the “worst” value of angle  is , at the extreme right of the plot.  In this 

configuration, the top centerline of turn #2 is directly above the top centerline of turn #1.  The two turns 

lie in the same plane, as in the “best” case, but this time turn #2 has a bigger radius than turn #1 and 

surrounds turn #1. 

 

What these results suggest is that the radii of the turns are the most important factor determining the work 

done and that a smaller radius is better than a bigger radius.  We came to both of these conclusions when 

we looked at the single turn in the preceding sections.   

 

We can increase the work done by decreasing the radii of both turns.  But, there is a limit to doing this.  

Notwithstanding everything else, the coil for a coil gun must have a inner diameter which is big enough to 

accommodate both the slug (as opposed to the mote) as well as whatever guiderails hold the slug on 

course during its run.  If we set the radius of turn #1 to this minimum radius, then turn #2 cannot be 

permitted to have a smaller radius.  If we set the radius of turn #2 to this minimum radius, then turn #1 

angle  
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cannot be permitted to have a smaller radius.  In a moment or two, I will show the result from imposing 

this restriction. 

 

Before doing that, I want to point out a second observation which can be made from the plot.  It is not 

horizontally symmetric.  Consider the work done when angle , which defines the configuration 

where turn #2 is exactly the same size as turn #1 and is placed face-to-face with turn #1.  The work done 

on the mote in both Case A and Case B is slightly less than four times the work done on the mote by turn 

#1 alone.  In other words, two separate turns are never as powerful as one turn carrying twice the current. 

 

The following screen-shot shows the result of repeating the analysis with the added restriction of a 

minimum acceptable diameter.  Since turn #1 had a 5 cm radius in the numerical example above, I chose 

to set the minimum radius to 5 cm.  At all times, the radii of both turns must equal or exceed 5 cm.  For 

angles of  between  and , the radius of turn #2 will be greater than the radius of turn #1.  For 

angles between  and , the radius of turn #2 will be smaller.  The following results were obtained 

by setting the radius of the smaller turn, either turn #1 or turn #2, to the minimum value and letting the 

radius of the larger turn be determined by angle . 

 

There is no red curve in this plot.  In the former plot, the red curve was four times the work done by turn 

#1 alone.  In the new analysis, the radius of turn #1 is not the same in all the runs, so there is no single 

reference value for the work by turn #1.  As before, though, the black curve is the energy received by the 

mote up to the time it reaches the center of the leading turn, turn #1.  The green curve then shows how 

much more energy the mote receives if we let the current flow up until the instant when the force turns 

repulsive. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

angle  

 

 



~ 11 ~ 
 

The work curves are now symmetric around the angle .  The “best” turn #2 is a second turn having 

the same radius as turn #1 (so that both radii are equal to the minimum radius allowed) and located right 

“behind” turn #1 from the point-of-view of the mote.    

 

As before, it seems to be the case that minimizing the radius of turn #2 is the best strategy. 

 

It would be wrong for the reader to conclude that adding turn #2 outside of turn #1 is a bad thing.  That is 

definitely not true.  All that can really be said is that adding turn #2 outside of turn #1 does not increase 

the work done on the mote as much as adding turn #2 behind turn #1.  If have labeled point  in the plot 

above for the configuration where turn #2 exactly surrounds turn #1.  In this configuration, the final 

kinetic energy of the mote is (a relative value excluding the variables , ,  and  of) 24,297,514.  

Point  in the plot labels the configuration where turn #2 is the same size as turn #1, and is placed side-

by-side with turn #1.  In this configuration, the final kinetic energy of the mote is (a relative value of) 

26,467,661.  Both of these values should be compared to the work done by turn #1 alone, which is found 

in the previous plot and has (a relative) value of 6,666,666.  The three configurations are compared in the 

following table: 

 

Configuration Work Percentage 

4 times turn #1 alone 26,666,664   100.00% 

turn #2 behind 26,467,661     99.25% 

turn #2 outside 24,297,514     91.16% 

 

If we need to add a second turn, the ideal place to put turn #2 is right on top of, or coincident with, turn 

#1.  That is the first line of the table, in which the kinetic energy imparted to the mote is four times that of 

turn #1 by itself. 

 

If we cannot make the two turns coincident, then the next best thing to do is to make turn #2 the same size 

as turn #1 and to put it right behind turn #1.  That is the second line of the table.  That gives the mote 

99.25% as much kinetic energy as the ideal amount.  (Note that 99.25% depends on the parameters 

chosen for the numerical integration, with the numbers here based on a minimum radius of 5 cm and a 

minimum centerline separation of 5 mm.)     

 

An alternative is to make turn #2 larger than turn #1 by the minimum amount possible, and then to place 

turn #2 so the two turns lie in the same plane.  That configuration is the third line of the table.  It gives the 

mote 91.16% of the ideal amount.  While this is not as much as the “behind” configuration in the second 

line, it is still far more than the kinetic energy from turn #1 alone. 

 

The analysis for subsequent turns 

 

Now, let us add a third turn to the coil.  The third turn will be characterized by the Cartesian co-ordinates 

 and .  What size and shape will make this third turn most effective in adding kinetic energy to the 

mote, assuming that this new turn carries the same current as the first two turns?  The following figure 

shows a cross-section of the three-turn coil. 

 

The cross-sections of the first two turns are shown in red.  They have the same radius , being the 

minimum allowed, and their planes are separated by distance .  I have shown the distance  as being the 

diameter of the wire itself, since this will almost always be the cause of the minimum separation.  The 

new turn, turn #3, is shown in green.   
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Rather than consider all possible locations in which turn #3 would touch the first two turns, will we 

consider only four locations, shown as a grid of black dots.  We will place turn #3 either directly outside 

of the first two turns or directly behind turn #2. 

 

The alert reader may ask: why even consider placing turn #3 outside of the first two turns?  We have seen 

that minimizing the radius maximizes the work.  The answer is this.  All else being the same, minimizing 

the radius is helpful, but we have only confirmed that for two turns,  If we try to minimize the radius of 

the third turn, to give it the same radius as the other two, then we must place turn #3 behind turn #2, 

where it will be farther from the mote at all times than the other two turns.  It could be that the increased 

displacement from the mote is more of a disadvantage than the increased radius of placing turn #3 outside 

of turn #1.  At some point, the trade-off between radius and axial displacement from the mote should 

become the deciding issue.  We may find that it is not the third turn, but some later turn, at which this 

occurs, but the axial displacement should eventually become the deciding factor. 

 

We are not going to stop at three turns.  We are going to build the coil from an arbitrary number of turns, 

which we will add to the coil in sequence, always placing the next turn in whatever location maximizes 

the kinetic energy imparted to the mote.  The following figure shows the various positions we will allow 

for the turns.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Turn #1, shown in red, will always be placed in the lower-left corner of a square grid, shown by the black 

dots in the figure.  Turn #1 will always be the leading turn, and will have the smallest radius possible.  

When we add turn #2, or any subsequent turn, its top centerline must coincide with one of the grid points.  

The points in the grid are separated by the minimum separation  in both the axial and radial directions.   

 

For the numerical integration, I am now going to change the basic dimensions of the coil and wire so that 

they are closer to the dimensions used in the earlier paper.  I will assume that the inside diameter of the 

coil, when finished, must be 1 cm.  I will assume that the wire is #20 gauge enameled copper wire, which 
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has a radius of 0.812 mm.  The radius to the centerline of turn #1 will therefore be equal to 1.0406 cm and 

the spacing between grid points will be 0.0812 cm. 

 

To carry out the numerical integration, we must also generalize the expression for the force per unit 

volume set out in Equation .  Equation  accommodates only two turns.  It contains four terms, 

since it is the product of the magnetic field intensity (one term from each of two turns) and the derivative 

of the magnetic field intensity (also one term from each of two turns).  If the coil consists of  turns, the 

force per unit volume will contain  terms.  It is not worthwhile expanding this into closed form or even 

as a summation.  Instead, we will code the numerical routine so that it handles a growing coil in a more 

systematic way.   

 

Consider the configuration when then coil consists of  turns.  We will know the radii  and the axial 

displacement from the origin  of each turn.  To calculate the force per unit volume acting on the mote 

when it is at axial displacement , one starts by calculating the total magnetic field intensity generated 

by the coil at , by adding up the contributions to  made by each of the  turns, as follows: 

 

 

  

Rather than deal with any closed form for the derivative, we will let the program approximate the 

derivative using the ratio of differences.  We will calculate the total magnetic field intensity at an axial 

displacement slightly to the left of , say, at .  Then, the derivative can be 

approximated by the following ratio of differences.  The approximation improves, of course, as we make 

 smaller and smaller. 

 

 

 

Now that we have the total magnetic field intensity and the derivative, we can calculate the force per unit 

volume at  by multiplying them together, as per Equation  to get: 

 

 

 

We can multiply this by the volume of the mote to calculate the total force acting on the mote 

 and can have the computer program add up the products of the force and distance from a 

starting displacement far from the coil to the axial displacement at which the force per unit volume 

changes from negative (accelerating the mote) to positive (decelerating the mote) 

 

The computer program which does this is listed in Appendix #A attached hereto.  The program does not 

calculate the constant factors involving the permeabilities  and , the current  and the volume  of 

the mote.  Whatever these values are, they affect all runs by the same proportion and do not affect any 

comparison of the runs. 
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When the program has placed  turns, and prepares to place the 
st
 turn, it proceeds as follows.  It 

determines which locations in the grid are not already occupied by the first  turns.  It tries all 

unoccupied locations.  It places the 
st
 turn in each unoccupied location in turn and calculates the 

work done on the mote during a run.  It compares the work done on the mote with the 
st
 turn in the 

various unoccupied locations and it places the turn in the location which imparts the most energy to the 

mote.  Then, it proceeds to test the 
nd

 turn. 

 

As it turns out, the best size for turn #3 is the minimum radius and the best location for it is immediately 

following turn #2.  The same holds true for turns 4 through 6.  The first six turns describe a short single-

layer solenoid. The interesting thing happens at the seventh turn.  The following diagram shows the best 

size and location for turn #7. 

 

 

 

 

The seventh turn starts a second layer.  Note that the seventh turn does not surround turn #1, where it 

would be “closer to the mote”.  It surrounds turn #4, which is near the midpoint of the solenoid formed by 

the first six turns, in which location it can help accelerate the mote through the leading half of the 

solenoid. 

 

Subsequent turns, the eighth and so on, are added in either the first layer or the second layer, taking 

advantage once again of the benefits of smaller radii.  The next interesting thing happens at turn # 15.  

The following diagram shows the best size and location for turn #15. 

 

 

 

 

 

 

 

I have shown the wires in this second batch, which ends with the first turn in the third layer, in yellow. As 

before, the first turn in the third layer is located just “downstream” from the center of the solenoid, where 

it can best help accelerate the mote through the leading half of the solenoid.  The cross-section of the coil 

is roughly a triangle. 

 

The third batch ends with turn # 25 and is shown in green in the following diagram. 

 

 

 

 

 

 

 

If you follow through the sequence in which the turns were added, it will be seen that the shape being 

built is, indeed, a triangle with its apex just downstream from the axial midpoint of the solenoid.  The 

results for the next few batches are shown in the following diagrams. 

 

The fourth batch, ending at turn #39, is shown in here in blue.  A new tendency seems to be developing, 

where the solenoid is being fleshed out beneath the triangle. 
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The fifth batch, ending at turn #51, is shown here in brown. 

 

 

 

 

 

 

 

 

 

The sixth batch, ending at turn #67, is shown here in gray. 

 

 

 

 

 

 

 

 

 

 

 

The conclusions to be drawn from this analysis – maximizing the work done on the mote – are: 

1. The best coil is not a single-layer solenoid, but has a depth (outside radius less inside radius) 

which is comparable to the axial length of the coil;  

2. The outer layers of the coil will have a triangular shape and 

3. The aspect ratio of the wire assembly will depend on the relative values of the core radius and the 

wire-to-wire separation. 

 

Maximizing the work done per unit length of the coil 

 

In the previous sections, we examined where turns should be added to a coil in order to maximize the total 

kinetic energy imparted to a magnetic mote.  Maximizing the kinetic energy is an important goal for a coil 

gun, but it is not the only goal.  What we really want to do is maximize the kinetic energy of the mote per 

unit length of the coil.  For practical reasons, the length of the barrel must be kept finite.  We want to use 

the available length as effectively as possible.   

 

Let us define the length of the coil as its maximum extent in the axial direction.  For a coil consisting of a 

single turn, the axial length is the diameter of the wire.  The coil resulting from the first batch we created 

in the previous section, which had six turns side-by-side and a seventh turn in the second layer, has an 

axial length of was six wire diameters. 
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As before, we will make turn #1 the leading turn, with as small a diameter as possible.  When we add the 

second turn, it surrounds turn #1.  It has the same axial displacement as turn #1, but a radius which is just 

big enough so that turn #2 encompasses turn #1.  This makes sense.  Whether turn #2 is placed outside of 

turn #1, or behind turn #1, it will add approximately the same amount of work to the mote.  But, placing 

turn #2 behind turn #1 doubles the axial length of the coil, and causes this configuration to impart 

approximately one-half of the work per unit length as does surrounding turn #1 with turn #2. 

 

We find that turn #3 surrounds turn #2, and that turn #4 surrounds turn #3.  The turns are creating a flat 

coil, where each new turn is added around the circumference of its predecessor. 

 

This process does not stop.  No matter how many turns are in the flat coil, the best place for the next turn 

is around the circumference of its predecessor.  This will seem surprising until I point out something 

obvious.  As the radii of the turns being added to the coil gets bigger and bigger, the contribution of each 

turn to the mote’s total kinetic energy gets smaller and smaller.  But, no matter how small the extra 

contribution is, it still increases the work per unit length. Adding a turn behind turn #1, on the other hand, 

will double the length of the coil and so cut the work per unit length in half. 

 

The diameter of the finished coil will be subject to some constraints, just like its axial length.  For 

example, the outermost turns add a disproportionate amount of Ohmic resistance compared with turn #1, 

a fact that will eventually force us to stop adding layers. 

 

For the time being, let us simply limit the number of layers (for an unspecified reason) to, say, ten.  The 

following diagram shows where the first 60 turns are placed when we maximize the work done per unit 

length, subject to a maximum of ten layers. 

 

 

 

 

 

 

 

 

 

 

I have not shown the batches in color.  Inspection shows that the best positioning is obtained when the 

leading turn is surrounded by nine additional turns.  After that, the next ten best locations describe a 

second flat coil behind the first.  The next best ten locations after that describe a third flat coil behind the 

second.  And so on. 

 

The conclusions to be drawn from this analysis – maximizing the work done on the mote per unit length 

of the coil – are: 

1. Firstly, the best coil should have as many layers as other considerations permit and 

2. Secondly, the axial length of the coil can then be established by other considerations. 

 

 

Jim Hawley 

October 2012 

 

 

An e-mail setting out errors and omissions would be appreciated. 
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Appendix “A” 

 

Listing of the Visual Basic program 

 

The following is a listing of the Visual Basic program named AddTurnN.  The program was developed in 

Visual Basic 2010 Express, available as a free download from Microsoft Corporation.  The program 

consists of a single form. 

 
Option Strict On 
Option Explicit On 
 
' Add N turns - Analysis #1 
 
Public Class Form 
    Inherits System.Windows.Forms.Form 
 
    ' Number of turns to consider 
    Public N As Int32 = 67  ' Number of turns in the finished coil 
    Public M As Int32       ' Index of the last turn fixed in place 
 
    ' Dimensional variables using #20 guage wire, whose diameter = 0.812 mm 
    Public Rwire As Double = 0.000406     ' Radius of wire 
    Public Rcore As Double = 0.01         ' Core radius of coil 
    Public Rmin As Double = Rcore + Rwire ' Minimum radius of all turns 
    Public Rsep As Double = 2 * Rwire     ' Minimum separation of wire centerlines 
    Public Zlead As Double = 0.2          ' Left abscissa of the leading turn 
    Public zM As Double                   ' Displacement of mote at any time 
 
    ' Array of possible co-ordinates of the top centerlines 
    Public RArray(N) As Double     ' Radius at N x N grid points 
    Public ZArray(N) As Double     ' Axial displacement at N x N grid points 
    Public FArray(N, N) As Boolean ' True means occupied; False means unoccupied 
 
    ' Index of co-ordinates occupied by the first M turns.  For example, turn #1 has its 
    ' centerline at RArray(RIndex(1)) and ZArray(ZIndex(1)), turn #2 has its centerline 
    ' at RArray(RIndex(2)) and ZArray(ZIndex(2)), and so forth, up to the turn #M, which 
    ' has its centerline at RArray(RIndex(M)) and ZArray(ZIndex(M)). 
    Public RIndex(N) As Int32 
    Public ZIndex(N) As Int32 
 
    ' These two variables are used to reduce the size of the grid tested when adding the 
    ' M + 1st turn.  When M turns have been fixed in the coil, RMaxIndex and ZMaxIndex 
    ' maximum values of the indices Ir and Iz in the grid which have been occupied.  To 
    ' find out where the M + 1st turn should be placed, it is only necessary to examine 
    ' the rectangular grid defined by (Ir + 1) x (Iz + 1), not the full N x N grid.  That 
    ' is, the M + 1st turn will always be added so that it touches an existing turn. 
    Public RMaxIndex As Int32 
    Public ZMaxIndex As Int32 
 
    ' Results 
    Public W(N) As Double         ' Best value of work done when there are M turns 
    Public Zstop(N) As Double     ' Ending value of zM when there are M turns 
 
    ' Integration variables 
    Public delZ As Double = 0.00001 ' Integration step size 
    Public Zmax As Double = 2       ' Limits of integration 
    Public Zmin As Double 
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    Public Bz As Double             ' Some contribution to Bz 
    Public BzTotal1 As Double       ' The total of Bz contributions at z = zM 
    Public BzTotal2 As Double       ' The total of Bz contributions at z = zM + dz 
    Public dz As Double = 0.0000001 
    Public dBzdz As Double          ' Approximation of the derivative at z = zM 
    Public fzM As Double            ' Force per unit volume at z = zM 
 
    ' Temporary storage as the M + 1st turn is examined at various positions 
    Public IrTest As Int32     ' r co-ordinate being tested for turn M + 1 
    Public IzTest As Int32     ' z co-ordinate being tested for turn M + 1 
    Public WTest As Double     ' Work for the M + 1st turn being tested 
    Public ZstopTest As Double ' Ending zM for the M + 1st turn being tested 
    Public IrBest As Int32     ' Best r co-ordinate for M + 1st turn found so far 
    Public IzBest As Int32     ' Best z co-ordinate for M + 1st turn found so far 
    Public WBest As Double     ' Maximum work for M + 1st turn found so far  
    Public ZstopBest As Double ' Ending zM for best M + 1st turn found so far 
 
    Public Sub New() 
        InitializeComponent() 
        With Me 
            Name = "" 
            Text = "Add N turns - Analysis #1" 
            FormBorderStyle = Windows.Forms.FormBorderStyle.FixedSingle 
            Size = New Drawing.Size(1024, 760) 
            CenterToScreen() 
            Visible = True 
            Controls.Add(buttonExit) 
            Controls.Add(buttonRun) 
            Controls.Add(DisplayText) 
            Controls.Add(DisplayDrawing) 
            PerformLayout() 
            BringToFront() 
        End With 
    End Sub 
 
    Private WithEvents buttonExit As New Windows.Forms.Button With _ 
        {.Size = New Drawing.Size(80, 30), _ 
         .Location = New Drawing.Point(5, 5), _ 
         .Text = "Exit", .TextAlign = ContentAlignment.MiddleCenter} 
 
    Public Sub buttonExit_Click() Handles buttonExit.MouseClick 
        Application.Exit() 
    End Sub 
 
    Private WithEvents buttonRun As New Windows.Forms.Button With _ 
        {.Size = New Drawing.Size(80, 30), _ 
         .Location = New Drawing.Point(90, 5), _ 
         .Text = "Run", .TextAlign = ContentAlignment.MiddleCenter} 
 
    Private Sub buttonRun_Click() Handles buttonRun.MouseClick 
        MainProgram() 
    End Sub 
 
    Public DisplayText As New Windows.Forms.Label With _ 
        {.Size = New Drawing.Size(300, 700), _ 
         .Location = New Drawing.Point(5, 40), _ 
         .Text = "", .TextAlign = ContentAlignment.TopLeft} 
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    Public DisplayDrawing As New Windows.Forms.Panel With _ 
        {.Size = New Drawing.Size(500, 500), _ 
         .Location = New Drawing.Point(310, 40), _ 
         .BorderStyle = BorderStyle.None} 
 
    Public DisplayBitmap As New Bitmap(1000, 500) 
 
    Private Sub MainProgram() 
        ' 
        ' Specify the array of possible centerlines 
        For I As Int32 = 1 To N Step 1 
            RArray(I) = Rmin + ((I - 1) * Rsep) 
            ZArray(I) = Zlead - ((I - 1) * Rsep) 
        Next I 
        ' 
        ' Clear the array of occupied grid locations 
        For I As Int32 = 1 To N Step 1 
            For J As Int32 = 1 To N Step 1 
                FArray(I, J) = False 
            Next J 
        Next I 
        ' 
        ' Specify the location of the first turn. 
        RIndex(1) = 1 
        ZIndex(1) = 1 
        FArray(1, 1) = True 
        RMaxIndex = 1 
        ZMaxIndex = 1 
        ' 
        ' Find the work and stopping zM for the first turn. 
        IntegrateOneRun( _ 
            0, RIndex, ZIndex, _ 
            RArray(RIndex(1)), ZArray(ZIndex(1)), _ 
            W(1), Zstop(1)) 
        M = 1 
        ' 
        ' Main loop to step through the turns 2 through N 
        For Iturn As Int32 = 2 To N Step 1 
            ' 
            ' Set the initial work for the M + 1st turn 
            WBest = -1 
            ' 
            ' Sub-loop to step through the available positions in the N x N grid 
            For Ir As Int32 = 1 To (RMaxIndex + 1) Step 1 
                For Iz As Int32 = 1 To (ZMaxIndex + 1) Step 1 
                    ' Only test this position if it is unoccupied 
                    If (FArray(Ir, Iz) = False) Then 
                        ' 
                        ' Display progress on the monitor 
                        DisplayText.Text = _ 
                            "Now working on turn #" & Trim(Str(Iturn)) & vbCrLf & _ 
                            "Testing co-ordinates Ir =" & Str(Ir) & _ 
                            " and Iz =" & Str(Iz) 
                        DisplayText.Refresh() 
                        ' 
                        ' Integrate the run with the M + 1st turn at the test location 
                        IrTest = Ir 
                        IzTest = Iz 
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                        IntegrateOneRun( _ 
                            M, RIndex, ZIndex, _ 
                            RArray(IrTest), ZArray(IzTest), _ 
                            WTest, ZstopTest) 
                        ' 
                        ' If the work done is the greatest so far, then save it 
                        If (WTest >= WBest) Then 
                            IrBest = IrTest 
                            IzBest = IzTest 
                            WBest = WTest 
                            ZstopBest = ZstopTest 
                        End If 
                    End If 
                    ' 
                    ' Give other processes a chance to work 
                    Application.DoEvents() 
                Next Iz 
            Next Ir 
            ' 
            ' Ensure that some position was found 
            If (WBest < 0) Then 
                MsgBox("No position was found for turn #" & Trim(Str(M + 1)), _ 
                     MsgBoxStyle.OkOnly, "Add N turns") 
                Exit Sub 
            End If 
            ' 
            ' Store the results for the M + 1st turn 
            M = M + 1 
            RIndex(M) = IrBest 
            ZIndex(M) = IzBest 
            W(M) = WBest 
            Zstop(M) = ZstopBest 
            FArray(IrBest, IzBest) = True 
            ' 
            ' Update the bounds of the grid to be examined for the next turn 
            If (IrBest > RMaxIndex) Then 
                RMaxIndex = Math.Min(IrBest, N - 1) 
            End If 
            If (IzBest > ZMaxIndex) Then 
                ZMaxIndex = Math.Min(IzBest, N - 1) 
            End If 
            ' 
            ' Display progress 
            Dim s As String = "" 
            For I As Int32 = 1 To M Step 1 
                s = s & _ 
                    "Turn #" & Str(I) & _ 
                    " has Ir = " & Trim(Str(RIndex(I))) & _ 
                    " Iz = " & Trim(Str(ZIndex(I))) & _ 
                    " r =" & Str(RArray(RIndex(I))) & _ 
                    " z =" & Str(ZArray(ZIndex(I))) & vbCrLf 
            Next I 
            DisplayText.Text = s 
            DisplayText.Refresh() 
            Threading.Thread.Sleep(2000) 
            ' 
            ' Continue and place the next turn 
        Next Iturn 
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        ' 
        ' Display results 
        Dim ss As String = "All finished with: " & vbCrLf & _ 
            "Rcore =" & Str(Rcore) & " and Rwire =" & Str(Rwire) & vbCrLf 
        For I As Int32 = 1 To N Step 1 
            ss = ss & _ 
                "Turn #" & Str(I) & _ 
                " has Ir = " & Trim(Str(RIndex(I))) & _ 
                " Iz = " & Trim(Str(ZIndex(I))) & _ 
                " r =" & Str(RArray(RIndex(I))) & _ 
                " z =" & Str(ZArray(ZIndex(I))) & vbCrLf 
        Next I 
        DisplayText.Text = ss 
        DisplayText.Refresh() 
        ' 
        ' Render the results in DisplayBitmap.  The cross-section of the upper half of 
        ' the completed coil is shown.  Each turn is represented by circle 30 pixels in 
        ' diameter.  Inside each such circle is the index in the sequence by which that 
        ' turn is added.   
        Dim g As Graphics = Graphics.FromImage(DisplayBitmap) 
        Dim ThisPen As New Drawing.Pen(Color.Black, 1) 
        Dim ThisBrush As New Drawing.SolidBrush(Color.Black) 
        Dim ThisFont As New Font("Times New Roman", 10) 
        Dim CircleRad As Double = 15         ' Radius of rendered circle, in pixels 
        Dim SF As Double = Rwire / CircleRad ' Scale factor, in meters per pixel 
        Dim CircleMidX As Double  ' x co-ordinate of center of circle, in meters 
        Dim CircleMidY As Double  ' y co-ordinate of center of circle, in meters 
        Dim CircleLeft As Double  ' x co-ordinate of left of circle, in pixels 
        Dim CircleTop As Double   ' y co-ordinate of top of circle, in pixels 
        For Iturn As Int32 = 1 To N Step 1 
            CircleMidX = -(ZArray(ZIndex(Iturn)) - Zlead) + Rwire 
            CircleMidY = RArray(RIndex(Iturn)) - Rmin + Rwire 
            CircleLeft = (CircleMidX - Rwire) / SF 
            CircleTop = (CircleMidY + Rwire) / SF 
            ' Select color based on results of previous runs 
            If ((Iturn >= 1) And (Iturn <= 7)) Then 
                ThisBrush = New Drawing.SolidBrush(Color.Pink) 
            End If 
            If ((Iturn >= 8) And (Iturn <= 15)) Then 
                ThisBrush = New Drawing.SolidBrush(Color.Yellow) 
            End If 
            If ((Iturn >= 16) And (Iturn <= 25)) Then 
                ThisBrush = New Drawing.SolidBrush(Color.LimeGreen) 
            End If 
            If ((Iturn >= 26) And (Iturn <= 39)) Then 
                ThisBrush = New Drawing.SolidBrush(Color.SkyBlue) 
            End If 
            If ((Iturn >= 40) And (Iturn <= 51)) Then 
                ThisBrush = New Drawing.SolidBrush(Color.Tan) 
            End If 
            If ((Iturn >= 52) And (Iturn <= 67)) Then 
                ThisBrush = New Drawing.SolidBrush(Color.LightGray) 
            End If 
            g.FillEllipse(ThisBrush, _ 
                CInt((0.05 * DisplayBitmap.Width) + CircleLeft), _ 
                CInt((0.95 * DisplayBitmap.Height) - CircleTop), _ 
                CInt(2 * CircleRad), _ 
                CInt(2 * CircleRad)) 
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            g.DrawEllipse(ThisPen, _ 
                CInt((0.05 * DisplayBitmap.Width) + CircleLeft), _ 
                CInt((0.95 * DisplayBitmap.Height) - CircleTop), _ 
                CInt(2 * CircleRad), _ 
                CInt(2 * CircleRad)) 
            ThisBrush = New Drawing.SolidBrush(Color.Black) 
            g.DrawString(Trim(Str(Iturn)), _ 
                ThisFont, ThisBrush, 
                CSng((0.05 * DisplayBitmap.Width) + CircleLeft + 7), _ 
                CSng((0.95 * DisplayBitmap.Height) - CircleTop + 8)) 
        Next Iturn 
        g.Dispose() 
        ' Render the circles 
        DisplayDrawing.BackgroundImage = DisplayBitmap 
        DisplayDrawing.Refresh() 
    End Sub 
 
    '//////////////////////////////////////////////////////////////////////////////////// 
    ' Sub IntegrateOneRun is a general subroutine which integrates one run, where the 
    ' mote starts at z = zM.  The current is stopped whenever the force turns repulsive. 
    ' The coil consists of M + 1 turns, where the first M turns are fixed in position and 
    ' the run is being done to help decide where the M + 1st turn should be placed.  This 
    ' subroutine can handle the first turn, for which M = 0. 
    ' The arguments are: 
    '   M = number of turns already fixed in place 
    '   Rindex(i = 1 to M) holds the indices of the radii of the first M turns 
    '   Zindex(i = 1 to M) holds the indices of the displacements of the first M turns 
    '   rNext is the radius of the M + 1st turn 
    '   zNext is the axial displacement of the M + 1st turn 
    ' The return values, as ByRef arguments, are: 
    '   W is the work done 
    '   Zstop is the axial displacement when the current is stopped 
    Private Sub IntegrateOneRun( _ 
        ByVal M As Int32, ByVal Rindex() As Int32, ByVal Zindex() As Int32, _ 
        ByVal rNext As Double, ByVal zNext As Double, _ 
        ByRef W As Double, ByRef Zstop As Double) 
        Dim zMzturn As Double 
        Dim zMzturn_rturn As Double 
        ' Set zM to its starting value 
        zM = Zmax + delZ 
        ' Initialize the work 
        W = 0 
        Do 
            ' Increment to the next axial displacement 
            zM = zM - delZ 
            ' Calculate Bz at zM and store in BzTotal1 
            BzTotal1 = 0 
            If (M > 0) Then 
                For Im As Int32 = 1 To M Step 1 
                    zMzturn = zM - ZArray(Zindex(Im)) 
                    zMzturn_rturn = (zMzturn * zMzturn) + _ 
                        (RArray(Rindex(Im)) * RArray(Rindex(Im))) 
                    Bz = zMzturn_rturn * _ 
                        RArray(Rindex(Im)) * RArray(Rindex(Im)) * _ 
                        RArray(Rindex(Im)) * RArray(Rindex(Im)) / _ 
                        (zMzturn_rturn ^ 4) 
                    BzTotal1 = BzTotal1 + Bz 
                Next Im 
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            End If 
            zMzturn = zM - zNext 
            zMzturn_rturn = (zMzturn * zMzturn) + (rNext * rNext) 
            Bz = zMzturn_rturn * rNext * rNext * rNext * rNext / _ 
                (zMzturn_rturn ^ 4) 
            BzTotal1 = BzTotal1 + Bz 
            ' Calculate Bz at zM + dz and store in BzTotal2 
            BzTotal2 = 0 
            If (M > 0) Then 
                For Im As Int32 = 1 To M Step 1 
                    zMzturn = zM + dz - ZArray(Zindex(Im)) 
                    zMzturn_rturn = (zMzturn * zMzturn) + _ 
                        (RArray(Rindex(Im)) * RArray(Rindex(Im))) 
                    Bz = zMzturn_rturn * 
                        RArray(Rindex(Im)) * RArray(Rindex(Im)) * _ 
                        RArray(Rindex(Im)) * RArray(Rindex(Im)) / _ 
                        (zMzturn_rturn ^ 4) 
                    BzTotal2 = BzTotal2 + Bz 
                Next Im 
            End If 
            zMzturn = zM + dz - zNext 
            zMzturn_rturn = (zMzturn * zMzturn) + (rNext * rNext) 
            Bz = zMzturn_rturn * rNext * rNext * rNext * rNext / _ 
                (zMzturn_rturn ^ 4) 
            BzTotal2 = BzTotal2 + Bz 
            ' Calculate the derivative 
            dBzdz = (BzTotal2 - BzTotal1) / dz 
            ' Calculate the force per unit volume 
            fzM = BzTotal1 * dBzdz 
            ' Add the incremental work done 
            If (fzM < 0) Then 
                W = W - (fzM * delZ) 
            Else 
                Zmin = zM + delZ 
                Exit Do ' The force per unit volume has turned positive.  
            End If 
        Loop 
    End Sub 
 
End Class 
 
 
 

 


