
~ 1 ~

Interior ballistics: The effect of holes in the web

In an earlier paper, titled Interior ballistics of a large naval gun or artillery piece, I assumed that the

grains of propellant were solid cylinders with original unburned diameter and length . Burning takes

place from the outside inwards, so the surface area being burned at any instant of time is . This

surface area decreases as the grain is consumed.

The effective rate at which propellant is consumed (at comparable pressures) can be changed by adding

holes to the web. The following figure shows the same grain with seven holes. This particular

configuration of holes was very common in the British, American and Japanese navies. The German

navy preferred tubular grains, with a single hole at the central axis of the grain.

The holes burn from the inside outwards, so their burning surface increases as the grain is consumed.

This offsets the decrease with time in the outer surface area of the cylinder, giving a more uniform rate of

consumption to the whole. On large grains, the holes were typically one-tenth the diameter of the grain.

On small grains, the holes were mere pinholes.

The volume of a propellant grain during the initial phase of burning

The figure to the right shows a cross-section

of a grain of propellant before it starts

burning. All seven holes have the same

radius, say, before burning starts. The six

small holes in the middle ring are equally

spaced around the grain. It is important that

the two distances be equal. As we will

see, setting these distances equal will cause

the grain to remain intact as it burns until the

burning surfaces make contact with each

other and the grain breaks into 12 pieces,

each being roughly a triangular cylinder.

Note that the distance is not necessaily

related to the size of the interior holes. It is

possible to have smaller holes and larger 's,

or vice versa.

~ 2 ~

The situation after the propellant has burned

for a time is shown in this figure. The solid

lines are the burning surfaces; the dotted

lines are the original surfaces.

During this period of burning, the radius of

the unburned grain decreased from to

and the radii of the holes, including the

substance burned, increased from to . If

we assume that all surfaces burned at the

same rate (an important assumption), then

the change in radii must be the same:

We can calculate the volume of unburned

propellant at the start and end of this period

of burning. The calculation is easier if we

ignore burning at the end faces of the grain,

just like we did in the original analysis. If

so, then the length of the grain remains constant at .

The volume of the original propellant is:

The volume of unburned propellant at the end is:

The decrease in volume (an algebraically positive number) during this period of burning is:

Assume that this period of burning has a duration and that the burning rate throughout the period is

constant. Since the burning rate is the rate at which the burning surface eats down into the unburned

surface, we can say that:

This can be re-arranged to give:

We can substitute these expressions into Equation to express the decrease in volume in terms of

quantities which exist at the start of the period of burning. We get:

~ 3 ~

The mass of propellant burned during this period of burning is this volume multiplied by the density of

the propellant, thus:

When does the initial phase of burning come to an end?

It will end when the radius of the outer surface of the grain is equal to three times the radius of the

interior holes .

Equation holds at all times during the initial phase, including the instant at the end of this phase.

Substituting Equation into Equation gives:

When the initial phase of burning is complete, the holes will have grown to a size

where they touch each other and the grain falls into pieces. There will be 12 pieces.

The figure at the left shows there will be six inner "triangles" (rendered in red) and

six outer "triangles (rendered in black). In the second phase of burning, all 12 of

these "triangles" will burn. But, the red "triangles are smaller, and will be

consumed first. After they have been consumed, there will be a third phase of

burning, in which only the remnants of the six outer "triangles" will be left burning.

The volume of one of the inner "triangles" during the second phase of burning

Consider three circles with radius which are

mutually tangent. The following figure shows

the arrangement. Think of as the radius of

the holes in the web when the burn depths have

just reached the point when a grain of

propellant ceases to be a single entity and

separates into 12 triangular prisms. Therefore,

 will be equal to as calculated

in Equation . The orientation of the three

circles is arbitrary, so I have laid them out with

two of them side-by-side horizontally, with the

origin of this two-dimensional plane at the

center of the hole on the left.

Inner triangle when

radius is .

#1 #2

#3

~ 4 ~

Now consider the circles (holes) at some later time, when their radii have increased from to . There

are now six points of intersection among the three circles. Three of them – , and – are the three

vertices of the inner triangle, but we are going to need all six points to calculate the surface area.

.

The equations of these three circles are:

The two points of intersection between circles #1 and #2

Setting and common to circles #1 and #2 gives:

Now substituting this value of into the equation for circle #1 gives:

and the co-ordinates of the two points of intersection are:

The two points of intersection between circles #1 and #3

Setting and common to circles #1 and #3 gives:

 Inner triangle when

radius has grown to

#1 #2

#3

~ 5 ~

Now substituting this value of into the equation for circle #1 gives:

and the co-ordinates of the two points of intersection are:

The two points of intersection between circles #2 and #3

Setting and common to circles #2 and #3 gives:

Now substituting this value of into the equation for circle #2 gives:

and the co-ordinates of the two points of intersection are:

~ 6 ~

The angle subtended by two vertices of an inner triangle

The following figure shows angle centered at the center of circle #1. Angle is the angle subtended by

two vertices of the inner triangle.

Using the spatial co-ordinates we have already calculated, we can write the following angles:

And, from these, we can write the desired angle as:

The lengths of the arc and line segment between points and

The length of arc is proportional to angle :

The length of line segment can be calculated using the Pythagorean Theorem:

The area of the straight-sided equilateral triangle

Consider the equilateral triangle with straight sides having length . We can

write its area as:

#1 #2

#3

~ 7 ~

The area of one of the circular segments

Consider the segment of a circle, rendered in red in this figure, which impinges on one side of triangle

.

The cross-sectional area of one of the inner "triangles" of a propellant grain

Now we have the data needed to calculate the cross-sectional area of one of the inner "triangles" of

propellant. That is the cross-section of the triangular star which is not shaded in red in the figure. It is

equal to the area of straight-sided triangle less the area of three of the red segments.

How do we apply all this information to our problem?

Our goal is to calculate the mass (or volume) of propellant of an inner "triangle" which is burned during

one time step. Here's what we will know at the start of a time step when we are ready to make the

calculation.

 The duration of the upcoming time step

 The effective radius of the inner holes at the end of the previous time step

 As before, assume the ends of the grain do not burn, so the length of the grain remains constant at

 The burn rate for the upcoming time step will be

 The radius when the grain disintegrated into 12 "triangles"

Step #1: Calculate angle at the start of the time step.

Step #2: Calculate the length of line segment at the start of the time step.

~ 8 ~

Step #3: Calculate the cross-sectional area of the "triangle" at the start of the time step.

Step #4: Calculate the volume of the "triangle" at the start of the time step.

Step #5: Calculate the depth down into the surface which will be burned during this time step.

Step #6: Calculate the effective radius of the inner holes at the end of this time step .

Step #7: Calculate angle at the end of this time step.

Step #8: Calculate the length of line segment at the end of this time step.

Step #9: Calculate the cross-sectional area of the "triangle" at the end of this time step.

Step #10: Calculate the volume of the "triangle" at the end of this time step.

Step #11: Calculate the reduction in volume during this time step.

~ 9 ~

When is the burning of the inner "triangles" complete?

Burning will be complete when points , and are coincident. Setting the -values of points and

equal gives:

The outer "triangles" will continue to burn even after the inner "triangles" have been totally consumed.

The volume of one of the outer "triangles" during the second and third phases of burning

I will start this analysis back at the end of phase 1, when the radius of the holes is equal to

. The following figure shows four circles. The three smaller, complete, circles are the same

ones considered in the previous section, whose intersection defines a typical inner "triangle". In this

figure, a portion of a fourth circumscribing circle, labeled circle #4, is also shown. Its intersection with

circles #2 and #3 defines a typical outer "triangle".

.

All of these circles represent the burning surface at the instant when the propellant grain ceases to be a

single entity and separates into 12 roughly triangular prisms. At this moment, the inner circles (that is,

the holes) have radius and the circumscribing circle #4 has radius .

Now consider these same circles at some later time, when the radii of the holes has increased from to .

During this time, the radius of the circumscribing circle will have decreased by the same amount, .

I have identified six points of intersection. Two of them – points and – are the same as were defined

in the previous section. Three of the points – points , and – are the three vertices of one of the outer

"triangles".

Inner "triangle" when

radius is .

#1 #2

#3

Outer "triangle" when

radius is . #4

~ 10 ~

.

The equations of three of the circles of interest are:

Note the radius of the circumscribing circle. As the radius of the smaller circles increases from to ,

the radius of the large circle decreases by distance from its starting value to .

The two points of intersection between circles #2 and #4

Setting common to circles #2 and #4 gives:

Now substituting this value of into the equation for circle #2 gives:

and the co-ordinates of the two points of intersection are:

The two points of intersection between circles #2 and #3

Setting and common to circles #2 and #3 gives:

Inner "triangle" when

radius has grown to .

#1 #2

#3 #4

Outer "triangle" when

radius has grown to .

~ 11 ~

Now substituting this value of into the equation for circle #2 gives:

and the co-ordinates of the two points of intersection are:

The angle subtended by two vertices of an outer "triangle"

The following figure shows angle centered at the center of circle #1, which is also the center of circle

#4. Angle is the angle subtended by vertices and of the outer "triangle".

The dotted line bisects angle . Since circles #2 and #3 are two of the six circles arranged symmetrically

around the center of the grain, the dotted line will have a slope of 30°. We can express angle as

follows:

~ 12 ~

The angle subtended by two other vertices of an outer "triangle"

The following figure shows angle centered at the center of circle #2. Angle is the angle subtended by

vertices and of the outer "triangle".

When we calculated the co-ordinates of points and above, we expressed them with respect to the

origin at point . These co-ordinates can be restated with respect to origin by reducing the -co-

ordinate by as follows:

Angle can then be calculated using straight-forward trigonometry:

The lengths of arc segments and

The length of arc is proportional to angle and the radius of circle #4:

The length of arc is proportional to angle and the radius of the small circles:

~ 13 ~

The area enclosed between an arc segment and a straight line segment

I will do this calculation for the generalized situation, as drawn at the left. The

area between arc and line segment is shaded in blue. The radius and

subtended angle are also labeled, as and , respectively. The lengths of the

two segments can be written down using the same relationships from above:

The area of the wedge-shaped pie segment is given by:

The area of straight-sided triangle is given by:

The blue-shaded area is the difference:

The cross-sectional area of an outer "triangle" of a propellant grain

A typical outer "triangle" has vertices , and , as shown in the figure below. Its cross-sectional area is

equal to: (i) the area of the straight-sided triangle , (ii) plus the area of the green circular segment

shown below, and (iii) less the areas of the two purple circular segments. The areas of the circular

segments have been determined using Equation with the appropriate central angles and radii.

In order to complete the calculation, we need to find the area of the straight-sided triangle . I will do

that with the aid of the following figure.

~ 14 ~

The "base" of triangle is line segment , whose length can be calculated using Equation as:

The length of line segment can be found in a similar way, as:

The length of line segment can be calculated directly using the Pythagorean Theorem, as:

The "height" of triangle is line segment , whose length can be found by subtraction, as:

Then, the area of triangle can be calculated as:

How do we apply all this information to our problem?

Our goal is to calculate the mass (or volume) of propellant in an outer "triangle" which is burned during

one time step. Here's what we will know at the start of a time step when we are ready to make the

calculation.

 The duration of the upcoming time step

 The effective radius of the inner holes at the end of the previous time step

~ 15 ~

 As before, assume the ends of the grain do not burn, so the length of the grain is

 The burn rate for the upcoming time step will be

 The radius when the grain disintegrated into 12 "triangles"

Step #1: Calculate angle at the start of the time step.

Step #2: Calculate angle at the start of the time step.

Step #3: Calculate the lengths of certain straight line segments at the start of the time step:

Step #4: Calculate the cross-sectional area of the outer-bulge green segments at the start of the time step.

Step #5: Calculate the cross-sectional area of the inner-bulge violet segments at the start of the time step.

Step #6: Calculate the cross-sectional area of the "triangle" at the start of the time step.

Step #7: Calculate the volume of the "triangle" at the start of the time step.

Step #8: Calculate the depth down into the surface which will be burned during this time step.

Step #9: Calculate the effective radius of the inner holes at the end of this time step .

Step #10: Repeat Steps #1 through #7 at the end of this time step, to get .

~ 16 ~

Step #11: Calculate the reduction in volume during this time step.

When is the burning of the outer "triangles" complete?

Burning will be complete when points , and are coincident. Setting the -values of points and

equal gives:

__

The following figure illustrates the effect of holes in the web of the propellant grain I used in the earlier

paper, which had an initial outer diameter of 6.9 millimeters. Note that these curves use a constant

burning rate of 50 millimeters (into the surface) per second. This is simply a test to compare the rate at

which the propellant is consumed. The blue curve represents the burning when the grain has no holes, as

was assumed in the earlier paper. For the black curve, the holes have a diameter one-tenth that of the

grain. For the red curve, the holes are smaller, with a diameter only one-twentieth of the grain diameter.

For the green curve, it is one-fiftieth. In each case, the fraction burned is plotted with respect to time.

~ 17 ~

In order to make sure that burning processes illustrated in the graph are comparable, I adjusted the axial

length of the grains to ensure that each grain contained the same volume of propellant.

It is clear that the existence of holes causes the burning to take place more quickly. Even so, the starting

size of the holes has surprisingly little effect on the time it takes to consume the propellant. The very fact

that there are holes seems to be much more important than the holes' actual size, although larger holes do

result in slightly faster consumption.

There are two small black squares on the curves which represent the burning when there are holes. The

first (earlier in time) square is the moment when the grain separates into 12 "triangular" cylinders. The

later square is the moment when the inner "triangular" cylinders have been consumed and only the six

outer "triangles" remain. These two later phases arise only in the last 20% or less of the process.

Bear in mind that I have assumed that there are seven holes in the grain, six holes arranged in a circle

around a central one. This is a common configuration, particularly for very large naval guns, but it is not

the only configuration. If a grain has fewer holes, then the burning rate will lie somewhere between the

blue and green curves above. An easy way to control the rate of burning, and thus to control the power of

the resulting shot, is to use propellant with a different number of holes.

Results from the Base Case simulation

As a Base Case, I used holes with a diameter one-twentieth the diameter of the grains. I avoided the use

of artificial viscosity by setting the viscosity coefficient to zero. The following graph shows the

results. The speed of the shell along the barrel is the blue line, to be referenced to the vertical axis on the

right-hand side. The pressure at three points along the active chamber are plotted against the left-hand

vertical axis. They are the pressures at the breech (element #1), halfway along (element #1000) and next

to the shell (element #2000).

The pressure peaks at about 9,000 atmospheres and the shell reaches a speed of about 920 meters per

second. The addition of holes has dramatically increased the pressure and speed compared with the

unpierced grains we looked at in the earlier paper. The following graph shows the fraction of propellant

burned with respect to time, both at the breech and right behind the shell. Not only is all of the propellant

~ 18 ~

consumed (unlike the unpierced grains), but it is entirely consumed long before the shell reaches the end

of the barrel.

In fact, things are now happening too fast. For this gun, the pressure should peak at about 4,000

atmospheres and the shell should reach an exit speed of about 750 meters per second. In the earlier paper,

burning took place too slowly. Now, it takes place too quickly. The only difference is the number of

holes in the web. A tentative conclusion could be drawn that seven holes is two or three too many.

The following surface chart shows the pressure (the vertical axis) through time (the horizontal axis) all

along the active chamber (the depth axis). There is a little evidence of discontinuities in the pressure, but

no real shock waves.

~ 19 ~

Progressive ignition

Up to this point, I have always assumed that combustion starts at the same time everywhere in the

chamber. That is not so. Combustion starts at the breech and then propagates through the propellant

down towards the shell. As each bit of propellant starts to burn, it heats up and ignites a neighbouring bit.

A really thorough analysis could capture this. It would track the temperature of each element. Only when

the temperature reached the flash point temperature would the neighbouring element begin to burn.

I have used a slightly simpler model for ignition. I have assumed that the ignition point moves from the

breech towards the shell at a constant speed. I have used the speed of sound, 343.2 meters per second, for

this constant speed. Since the chamber is approximately one meter long, element #2000 (situated right

next to the shell) does not start burning until about three milliseconds after element #1 (situated right next

to the breech) starts burning. The effects are dramatic; significant shock waves develop. In order to carry

through the numerical integration, I had to invoke artificial viscosity. I set the two viscosity coefficients

to and . The following graph shows the pressure (the vertical axis) through time (the

horizontal axis) all along the active chamber (the depth axis).

Introducing progressive ignition, rather than instantaneous ignition, did not do what I had anticipated it

might do. I had thought (hoped) that delaying the time at which elements were ignited would, through

overlapping burning cycles, lead to an overall reduction in the peak pressure experienced. That is

definitely not the case. The development of shock waves has led to peak pressures much higher than

before. That can be seen more clearly in the following graph, which shows the shell's speed (right-hand

vertical axis) and the pressure at three element locations in the active chamber (left-hand vertical axis).

~ 20 ~

The peak pressure has increased to more than 15,000 atmospheres
1
. The effect of the shock waves has

even carried over into the shell's "jerk". (The jerk is the rate-of-change of the shell's acceleration. The

discontinuities in the curve of the shell's speed with respect to time are periods of non-zero jerk.)

The following graph shows how quickly the burning progressed at the breech end and next to the shell.

1
 Unlike the previous graph of this type, the legend lists two series for the maximum pressure, two series for the

pressure at the breech, and so on. There is no significance to this. Excel limits the number of data points per series

to 32,000. Since there were more than 32,000 data points, more than one series needed to be defined in order to

construct the graph. Excel gives each series its own line in the legend.

~ 21 ~

The following graph shows the location (in meters from the breech) of the element having the highest

pressure in the active chamber. This is one way to represent the shock waves as they bounce back and

forth between the breech and the shell. I have overlaid on the graph a red line segment whose slope is the

343.2 meter per second speed at which the ignition point propagates through the original bags of

propellant. It seems that the initial peak pressure lags the ignition point at about one half of this speed.

In order to determine if the use of artificial viscosity has a significant effect on the results obtained from

the numerical integration, I made another run (Case #3). The only difference from Case #2 was that I

increased the amount of artificial viscosity used, by setting the first viscosity coefficient to fifty, .

The following graph shows the pressures and shell speed with respect to time. These curves are almost

identical to those obtained with . Conclusion: artificial viscosity does not have any meaningful

impact on the results of the integration.

~ 22 ~

Averaging pressure over surface area and time

I have stated already that the pressures being calculated are unrealistically high. I have also stated my

belief that this occurs because the propellant grains for this gun should not have seven holes, but some

lesser number, perhaps four or six. Before re-doing the analysis for a lesser number of holes, though, I

want to look into a different issue.

The pressure-data for this gun that I have been looking at was recorded shortly after World War II. I

suspect that the pressure sensors used were some type of mechanical analogue devices. I have no idea

how quickly they could respond to rapid changes in pressure, such as the passage of a shock wave. Like

all sensors, their use would have introduced some degree of averaging over time and averaging over area

(the size of the sensor's intake port).

In this section, I want to take a look at how "big", physically and temporally, the peak pressures in the

graphs above really are.

Discretization of distance

In the numerical simulation, the chamber was discretized into 2000 elements. Since the chamber is

approximately one meter long, the elements start off being one-half millimeter long. By the time the shell

reaches the end of the barrel, the active length of the gas region is about seven meters and the average

element length has increased to about 3½ millimeters. The highest pressures are not experienced when

the shell is in either of these extreme locations; it is experienced when the shell is between a third and a

half of the way down the barrel, when the element lengths are about two millimeters.

Discretization of time

In the numerical simulation, the integration time steps are variable. They are shortest at times when the

rates-of-change of pressure are highest, which happen to be the very times when the pressures are passing

through their highest peak values. The results of the simulation show that, a those times, the time step

gets down to 100 picoseconds.

What we can conclude from the discretization parameters is that the peak pressures shown in the graphs

above represent the highest values which occur within distances of two millimeters and time periods of

100 picoseconds.

Peak pressures measured on such small scales of distance and time could turn out to be localized events,

and not representative of the pressures in their neighbourhoods in space and time. In order to gauge how

representative the reported peaks are, I ran the Case #3 simulation again, with modifications to report

each element's "pressure" in a different way. In the modified version, an element's pressure (call this the

"central" element) at any time step is defined as the average of the pressures inside certain elements at

certain times. To determine which pressure values would be included in the average, the routine looked

backwards in time (from the given time step) by five microseconds and forwards in time by five

microseconds. At each time step during that 10 microsecond period, the routine looked through the

locations of all 2000 elements. If any element was within a distance of five millimeters of the central

element at that time, its pressure was added to the average. In short, the pressure for each element at each

time is an average of the pressures which exist within five millimeters and five milliseconds.

The following graph shows the pressures measured in this way with respect to the simulation time and the

element's index number.

~ 23 ~

This is a nice-looking graph; the averaging process highlights the sharpness of the shock waves. The

peak pressures are certainly not localized phenomena. They are significant on the scale of a centimeter

and ten microseconds – large and long enough to burst a barrel. The peak value shown here, after the

averaging process, is just slightly less than 15,000 atmospheres. Compare this to the peak pressure (stated

on the usual per-element basis) shown in the previous line graph for Case #3. There, the peak pressure

was just slightly more than 15,000 atmospheres. Averaging over time and space did not materially affect

the values.

I have attached as Appendix ""A" a listing of the VB2010 Express code used for the Case #2 simulation.

Jim Hawley

© March 2015

If you found this description helpful, please let me know. If you spot any errors or omissions, please send

an e-mail. Thank you.

~ 24 ~

Appendix "A"

Listing of the VB2010 code for the Case #2 simulation

The program consists of a Windows Forms application (Form1) and three modules: Variables, Procedures

and HoleCalculations.

Windows Form application Form1
Option Strict On
Option Explicit On

Public Class Form1
 Inherits System.Windows.Forms.Form

 Public Sub New()
 InitializeComponent()
 With Me
 Text = "Holes in the propellant grains"
 FormBorderStyle = Windows.Forms.FormBorderStyle.None
 Size = New Drawing.Size(1000, 700)
 CenterToScreen()
 MinimizeBox = True
 MaximizeBox = True
 FormBorderStyle = Windows.Forms.FormBorderStyle.Fixed3D
 With Me
 Controls.Add(buttonSimulateWithHoles)
 buttonSimulateWithHoles.BringToFront()
 Controls.Add(buttonSimulateNoHoles)
 buttonSimulateNoHoles.BringToFront()
 Controls.Add(buttonExit) : buttonExit.BringToFront()
 Controls.Add(labelResult) : labelResult.BringToFront()
 End With
 Visible = True
 PerformLayout()
 BringToFront()
 End With
 End Sub

'//
'//
'// Controls for MainForm.

 Private WithEvents buttonSimulateWithHoles As New Windows.Forms.Button With _
 {.Size = New Drawing.Size(120, 30), _
 .Location = New Drawing.Point(5, 5), _
 .Text = "Simulate with holes", .TextAlign = ContentAlignment.MiddleCenter}

 Private WithEvents buttonSimulateNoHoles As New Windows.Forms.Button With _
 {.Size = New Drawing.Size(120, 30), _
 .Location = New Drawing.Point(5, 40), _
 .Text = "Simulate - No holes", .TextAlign = ContentAlignment.MiddleCenter}

 Private WithEvents buttonExit As New Windows.Forms.Button With _
 {.Size = New Drawing.Size(120, 30), _
 .Location = New Drawing.Point(5, 75), _
 .Text = "Exit", .TextAlign = ContentAlignment.MiddleCenter}

~ 25 ~

 Public labelResult As New Windows.Forms.Label With _
 {.Size = New Drawing.Size(950, 600), _
 .Location = New Drawing.Point(125, 5), _
 .Text = "", .TextAlign = ContentAlignment.TopLeft, .Visible = True}

'//
'//
'// Handlers for controls for MainForm.

 Private Sub buttonSimulateWithHoles_Click() Handles _
 buttonSimulateWithHoles.MouseClick
 SimulateWithHoles = True
 RunCompleteSimulation()
 End Sub

 Private Sub buttonSimulateNoHoles_Click() Handles _
 buttonSimulateNoHoles.MouseClick
 SimulateWithHoles = False
 RunCompleteSimulation()
 End Sub

 Private Sub buttonExit_Click() Handles buttonExit.MouseClick
 Application.Exit()
 End Sub

End Class

Module Variables
Option Strict On
Option Explicit On

Public Module Variables

 ' Treatment of holes in grain
 ' Set SimulateWithHoles to False to simulate without holes
 Public SimulateWithHoles As Boolean = True

 ' Simulation parameters:
 ' NE = Number of gas elements
 ' MaxSimTime = Maximum length of simulation, in seconds
 ' deltaT = Initial duration of a time step, in seconds
 ' Time = Simulation time, in seconds
 ' deltaTSave = Time interval between writes to output text files
 ' TimeOfNextSave = Time of next write to output text files
 ' deltaNESave = Spatial interval between gas elements which will be saved
 Public NE As Int32 = 2000
 Public MaxSimTime As Double = 0.05
 Public deltaT As Double = 0.0000001
 Public Time As Double
 Public deltaTSave As Double = 0.00001
 Public TimeOfNextSave As Double
 Public deltaNESave As Int32 = 20

 ' Variables used to calculate the length of a time step
 ' MaxChangeAllowed = If per-step change in Pi() or RHOi() exceeds this, reduce TS
 ' MinChangeAllowed = If per-step change in Pi() and RHOi() are less, increase TS

~ 26 ~

 ' DecreaseInTS = Fraction to decrease time step if pressure change is too high
 ' IncreaseInTS = Fraction to increase time step if pressure change is too low
 ' MaxPressure = Maximum of pressure in all elements, for display purposes only
 ' MaxPressureIndex = Index of element with maximum pressure, for display only
 Public MaxChangeAllowed As Double = 0.001
 Public MinChangeAllowed As Double = 0.00025
 Public DecreaseInTS As Double = 0.9
 Public IncreaseInTS As Double = 1.01
 Public MaxPressure As Double
 Public MaxPressureIndex As Int32

 ' Important times:
 ' TimeOfShellStart = Time at which the shell starts to move
 ' TimeOfShellExit = Time at which the shell leaves the barrel
 Public TimeofShellStart As Double
 Public TimeOfShellExit As Double

 ' Physical parameters of the gun:
 ' Lchamber = Length of chamber
 ' Lbarrel = Shell travel distance
 ' Abarrel = Area of open barrel
 ' Mshell = Mass of the shell
 ' Pengband = Engraving band pressure
 Public Lchamber As Double = 1.03 ' meters
 Public Lbarrel As Double = 5.97 ' meters
 Public Abarrel As Double = 0.0127 ' square meters
 Public Mshell As Double = 31.8 ' kilograms
 Public Pengband As Double = Val("4E7") ' Newtons per square meter

 ' Physical parameters of the propellant:
 ' Mcharge = Total mass of propellant
 ' Dgrain = Diameter of a grain of propellant
 ' Lgrain = Original length of a grain of propellant
 ' RHOgrain = Crystalline density of solid propellant
 ' RHOLoad = Loading density of solid propellant
 ' Q0 = Heat released from burning one kilogram of propellant
 Public Mcharge As Double = 8.85 ' kilograms
 Public Dgrain As Double = 0.0069 ' meters
 Public Lgrain As Double = 0.012 ' meters
 Public RHOgrain As Double = 1660 ' kilograms per cubic meter
 Public RHOLoad As Double = 680 ' kilograms per cubic meter
 Public Q0 As Double = 3430000 ' Joules per kilogram

 ' Physical parameters for the holes in the grains of propellant:
 ' Rgrain = Original radius of a grain of propellant
 ' Rholes = Original radius of the holes in the webbing
 ' RholesEndPhase1 = Hole radius when grain disintegrates
 ' RholesEndPhase2 = Hole radius when inner "triangles" stop burning
 ' RholesEndPhase3 = Hole radius when outer "triangles" stop burning
 ' LgrainEff = Effective length of one grain, per element
 ' AgrainEff = Effective cross-sectional area of one grain, per element
 Public Rgrain As Double = Dgrain / 2 ' meters
 Public Rholes As Double = Rgrain / 20 ' meters
 Public RholesEndPhase1 As Double = (Rgrain + Rholes) / 4
 Public RholesEndPhase2 As Double = 2 * RholesEndPhase1 / Math.Sqrt(3)
 Public RholesEndPhase3 As Double = RholesEndPhase1 * (28 - (6 * Math.Sqrt(3))) / 13
 Public LgrainEff As Double
 Public AgrainEff As Double

~ 27 ~

 ' Physical parameters of the gas:
 ' StoichRatio = Moles of gas produced per kilogram of propellant
 ' Ridc = R, the Ideal Gas Constant
 ' C1, C2 = Artificial viscosity coefficients
 ' Cfr = Mass compensation coefficient for frictional forces
 ' Bcovolume = Basic ideal gas co-volume correction "b"
 Public StoichRatio As Double = 40 ' moles per kilogram
 Public Rigc As Double = 8.31446 ' Joules per mole-degK
 Public C1 As Double = 5 ' Artificial viscosity coefficient #1
 Public C2 As Double = C1 / 10 ' Artificial viscosity coefficient #2
 Public Cfr As Double = 0.167 ' Mass compensation for frictional forces
 Public Bcovolume As Double = 0.00095 ' cubic meters per kilogram

 ' Initial conditions of the ambient air inside the barrel:
 ' Patm = Atmospheric pressure
 ' Tatm = Temperature inside the chamber
 ' AirMW = Molecular weight of dry air
 ' AirNi = Number of moles of original air inside each element
 ' AirMi = Mass of original air inside each element
 Public Patm As Double = 101300 ' Newtons per square meter
 Public Tatm As Double = 100 ' degC
 Public AirMW As Double = 0.02897 ' kilograms per mole
 Public AirNi As Double ' moles
 Public AirMi As Double ' kilograms

 ' Ignition parameters
 ' IgnitionShockWaveSpeeed = Propagation speed of ignition shock wave
 ' Use 343.2 m/s for ignition wave
 ' Use Val("+1E+20") for simultaneous start all along chamber
 Public IgnitionShockWaveSpeed As Double = 343.2

 ' Gas element variables:
 ' Values for all elements and for two consecutive time steps are stored
 ' in the following variables.
 ' MiT = Total mass of propellant inside element #i (constant)
 ' MiP0 = Original mass of propellant inside element #i
 ' MiP(NE) = Mass of unburned propellant inside element #i at time T
 ' MiG(NE) = Mass of propellant gas inside element #i at time T
 ' Ni(NE) = Total moles of gas inside element #i at time T
 ' Xi(NE) = Location of boundary faces at time T (At breech, Xi(0)=0 always)
 ' Vi(NE) = Speed of boundary faces at time T-deltaT/2 (Vi(0)= 0 always)
 ' Pi(NE) = Static pressure inside element #i at time T
 ' Wi(NE) = Artificial viscosity inside element #i at time T
 ' VOLi(NE) = Total volume of element #i at time T
 ' VOLGasi(NE) = Gas volume of element #i at time T
 ' BCoVoli(NE) = Co-volume correction inside element #i at time T
 ' Ti(NE) = Temperature inside element #i at time T
 ' Ui(NE) = Internal energy of element #i at time T
 ' RHOi(NE) = Density inside element #i at time T
 ' GAMMAi(NE) = Ratio of specific heats inside element #i at time T
 ' Si(NE) = Speed of sound inside element #i at time T
 ' deltaQi(NE) = Heat added to element #i during one time step
 ' deltaNi(NE) = Moles of gas added to element #i during one time step
 Public MiT As Double ' kilograms
 Public MiP0 As Double ' kilograms
 Public MiP(NE), MiP_previous(NE) As Double ' kilograms
 Public MiG(NE), MiG_previous(NE) As Double ' kilograms
 Public Ni(NE), Ni_previous(NE) As Double ' moles

~ 28 ~

 Public Xi(NE), Xi_previous(NE) As Double ' meters
 Public Vi(NE), Vi_previous(NE) As Double ' meters per second
 Public Pi(NE), Pi_previous(NE) As Double ' Newtons per square meter
 Public Wi(NE), Wi_previous(NE) As Double ' Newtons per square meter
 Public VOLi(NE), VOLi_previous(NE) As Double ' cubic meters
 Public VOLGasi(NE), VOLGasi_previous(NE) As Double ' cubic meters
 Public BCoVoli(NE), BCoVoli_previous(NE) As Double ' cubic meters
 Public Ti(NE), Ti_previous(NE) As Double ' degK
 Public Ui(NE), Ui_previous(NE) As Double ' Joules
 Public RHOi(NE), RHOi_previous(NE) As Double ' kilograms per cubic meter
 Public GAMMAi(NE), GAMMAi_previous(NE) As Double
 Public Si(NE), Si_previous(NE) As Double ' meters per second
 Public deltaQi(NE), deltaQi_previous(NE) As Double ' Joules
 Public deltaNi(NE), deltaNi_previous(NE) As Double ' moles

 ' Propellant variables:
 ' Values for all elements and for two consecutive time steps are stored in the
 ' following variables.
 ' Bi(NE) = Burn rate inside element #i at time T
 ' Rgraini(NE) = Radius of grains in element #i at time T
 ' Rholesi(NE) = Radius of holes in element #i at time T
 ' PropVOLi(NE) = Volume of propellant in element #i at time T
 ' deltaMi(NE) = Mass of propellant burned during one time step
 ' fi(NE) = Fraction of propellant burned in element #i at time T
 Public Bi(NE), Bi_previous(NE) As Double ' meters per second
 Public Rgraini(NE), Rgraini_previous(NE) As Double ' meters
 Public Rholesi(NE), Rholesi_previous(NE) As Double ' meters
 Public PropVOLi(NE), PropVOLi_previous(NE) As Double ' cubic meters
 Public deltaMi(NE), deltaMi_previous(NE) As Double ' kilograms
 Public fi(NE), fi_previous(NE) As Double

 ' Projectile variables:
 ' Values for the projectile for two consecutive time steps are stored in the
 ' following variables.
 ' Pshell = Pressure on rear face of shell at time T
 ' Xshell = Location of rear face of shell at time T
 ' Vshell = Speed of shell at time T-deltaT/2
 ' ACCshell = Acceleration of shell at time T
 ' CanShellMove is True when the shell has broken free from its band
 Public Pshell, Pshell_previous As Double ' Newtons per square meter
 Public Xshell, Xshell_previous As Double ' meters
 Public Vshell, Vshell_previous As Double ' meters per second
 Public ACCshell, ACCshell_previous As Double ' meters per second^2
 Public CanShellMove As Boolean

 ' Text file processing
 Public ThisDirectory As String = FileSystem.CurDir.ToString
 Public TextOutputFileName As String = "Naval_gun_simulation_"
 ' Log of screen display
 Public FileWriterMaster As System.IO.StreamWriter
 ' Gas element variables
 Public FileWriterMiP As System.IO.StreamWriter
 Public FileWriterMiG As System.IO.StreamWriter
 Public FileWriterNi As System.IO.StreamWriter
 Public FileWriterXi As System.IO.StreamWriter
 Public FileWriterVi As System.IO.StreamWriter
 Public FileWriterPi As System.IO.StreamWriter
 Public FileWriterWi As System.IO.StreamWriter

~ 29 ~

 Public FileWriterVOLi As System.IO.StreamWriter
 Public FileWriterVOLGasi As System.IO.StreamWriter
 Public FileWriterBCoVoli As System.IO.StreamWriter
 Public FileWriterTi As System.IO.StreamWriter
 Public FileWriterUi As System.IO.StreamWriter
 Public FileWriterRHOi As System.IO.StreamWriter
 Public FileWriterGAMMAi As System.IO.StreamWriter
 Public FileWriterSi As System.IO.StreamWriter
 Public FileWriterdeltaQi As System.IO.StreamWriter
 Public FileWriterdeltaNi As System.IO.StreamWriter
 ' Propellant variables
 Public FileWriterBi As System.IO.StreamWriter
 Public FileWriterRgraini As System.IO.StreamWriter
 Public FileWriterRholesi As System.IO.StreamWriter
 Public FileWriterPropVOLi As System.IO.StreamWriter
 Public FileWriterdeltaMi As System.IO.StreamWriter
 Public FileWriterfi As System.IO.StreamWriter
 ' Projectile variables
 Public FileWriterShell As System.IO.StreamWriter

End Module

Module Procedures
Option Strict On
Option Explicit On

' List of subroutines:
' InitializeForSimulation()
' RunFullSimulation()
' ExecuteOneTimeStep()
' ShiftAllValuesToPreviousVariables()
' FindMaximumPressure()
' OpenAllOutputTextFiles()
' CloseAllOutputTextFiles()
' WriteHeadersToAllOutputTextFiles()
' WriteDataRowToAllOutputTextFiles()

Public Module Procedures

 Public Sub InitializeForSimulation()
 ' This subroutine sets all quantities to their initial values, so
 ' everything is ready to start the first time step.
 '
 ' --
 ' Deal with the ambient air in the chamber prior to firing
 Dim TotalVolumeOfAir As Double = _
 Mcharge * ((1 / RHOLoad) - (1 / RHOgrain))
 Dim TotalMolesOfAir As Double = _
 Patm * TotalVolumeOfAir / (Rigc * (Tatm + 273.15))
 Dim TotalMassOfAir As Double = AirMW * TotalMolesOfAir
 AirNi = TotalMolesOfAir / NE
 AirMi = TotalMassOfAir / NE
 ' --
 '
 ' Set the initial MASS of propellant inside each element
 MiP0 = Mcharge / NE

~ 30 ~

 MiT = MiP0 + AirMi
 For J As Int32 = 1 To NE Step 1
 MiP(J) = MiP0
 MiG(J) = 0
 Next J
 '
 ' Set the initial VOLUME of propellant inside each element
 For J As Int32 = 1 To NE Step 1
 PropVOLi(J) = MiP(J) / RHOgrain
 Rgraini(J) = Rgrain
 If (SimulateWithHoles = True) Then
 Rholesi(J) = Rholes
 Else
 Rholesi(J) = 0
 End If
 Next J
 '
 ' Set the effective area and length of grains in each element
 ' This is done for the sole purpose of calculating the volume of propellant
 If (SimulateWithHoles = True) Then
 AgrainEff = Math.PI * ((Rgrain ^ 2) - (7 * (Rholes ^ 2)))
 Else
 AgrainEff = Math.PI * (Rgrain ^ 2)
 End If
 LgrainEff = ((Mcharge / NE) / RHOgrain) / AgrainEff
 '
 ' Set the unburned fractions
 For J As Int32 = 1 To NE Step 1
 fi(J) = 1
 Next J
 '
 ' Set initial locations of boundary faces
 Xi(0) = 0
 For J As Int32 = 1 To NE Step 1
 Xi(J) = Lchamber * J / NE
 Next J
 Xshell = Lchamber
 '
 ' Set the initial speeds
 For J As Int32 = 1 To NE Step 1
 Vi(J) = 0
 Next J
 Vshell = 0
 '
 ' Set the initial pressure, volume, density and number of moles of air
 For J As Int32 = 1 To NE Step 1
 Pi(J) = Patm
 VOLi(J) = Abarrel * (Xi(J) - Xi(J - 1))
 RHOi(J) = AirMi / (VOLi(J) - PropVOLi(J))
 Ni(J) = AirNi
 Next J
 '
 ' Set the internal energies
 For J As Int32 = 1 To NE Step 1
 Ui(J) = (Ni(J) * Rigc * (Tatm + 273.15)) / (1.333 - 1)
 Next J
 End Sub

~ 31 ~

 Public Sub RunCompleteSimulation()
 Form1.labelResult.Text = "Starting simulation ..."
 Form1.labelResult.Refresh()
 '
 ' Initialize the vectors
 InitializeForSimulation()
 '
 ' Open the text output files
 OpenAllOutputTextFiles()
 WriteHeadersToAllOutputTextFiles()
 '
 ' Save the starting values
 Time = 0
 WriteDataRowToAllOutputTextFiles()
 TimeOfNextSave = Time + deltaTSave
 '
 ' Set the control parameters
 CanShellMove = False
 Dim ScreenUpdateInterval As Int32 = 250
 Dim ScreenUpdateCounter As Int32 = 250
 Do
 Time = Time + deltaT
 ' Test to see if the simulation has timed out
 If (Time >= MaxSimTime) Then
 Exit Do
 End If
 ' Shift the present variables into their "previous" variants
 ShiftAllValuesToPreviousVariables()
 ' Run one time step
 ExecuteOneTimeStep()
 ' Find the change in maximum pressure
 FindMaximumPressure(MaxPressure, MaxPressureIndex)
 ' Test to see if it is time to write to the output text files
 If (Time >= TimeOfNextSave) Then
 WriteDataRowToAllOutputTextFiles()
 TimeOfNextSave = Time + deltaTSave
 End If
 ' Test to see if the shell can start moving
 If ((CanShellMove = False) And _
 (Pi(NE) >= Pengband)) Then
 CanShellMove = True
 TimeofShellStart = Time
 Form1.labelResult.Text = Strings.Right(_
 Form1.labelResult.Text & vbCrLf & _
 "Shell starts moving at time = " & Trim(Str(Time)), 6000)
 Form1.labelResult.Refresh()
 FileWriterMaster.WriteLine(_
 "Shell starts moving at time = " & Trim(Str(Time)))
 Threading.Thread.Sleep(2000)
 End If
 ' Test to see if the shell has left the barrel
 If (Xshell > (Lchamber + Lbarrel)) Then
 TimeOfShellExit = Time
 Form1.labelResult.Text = Strings.Right(_
 Form1.labelResult.Text & vbCrLf & _
 "Shell exits at time = " & Trim(Str(Time)), 6000)
 Form1.labelResult.Refresh()
 FileWriterMaster.WriteLine(_

~ 32 ~

 "Shell exits at time = " & Trim(Str(Time)))
 ' Write the final values to the output text files
 WriteDataRowToAllOutputTextFiles()
 Exit Do
 End If
 ' Update the screen display
 ScreenUpdateCounter = ScreenUpdateCounter + 1
 If (ScreenUpdateCounter >= ScreenUpdateInterval) Then
 Form1.labelResult.Text = Strings.Right(_
 Form1.labelResult.Text & vbCrLf & _
 "T(us)= " & FormatNumber(Time * 1000000, 2) & _
 " dT(us)= " & FormatNumber(deltaT * 1000000, 6) & _
 " MaxP= " & FormatNumber(MaxPressure, 0, , TriState.True) & _
 " MaxPindex= " & Trim(Str(MaxPressureIndex)) & _
 " P1= " & FormatNumber(Pi(1), 0, , , TriState.True) & _
 " Pne= " & FormatNumber(Pi(NE), 0, , , TriState.True) & _
 " Bne= " & FormatNumber(Bi(NE), 4) & _
 " fne= " & FormatNumber(fi(NE), 5) & _
 " f1= " & FormatNumber(fi(1), 5) & _
 " Vs= " & FormatNumber(Vshell, 2) & _
 " Wne= " & FormatNumber(Wi(NE), 0, , , TriState.True), _
 6000)
 Form1.labelResult.Refresh()
 ' Save the new line to the Master text output file as well
 FileWriterMaster.WriteLine(_
 "Time= ," & Trim(Str(Time)) & _
 ", with deltaT= ," & Trim(Str(deltaT)) & _
 ", MaxP= ," & Trim(Str(MaxPressure)) & _
 ", MaxPIndex= ," & Trim(Str(MaxPressureIndex)) & _
 ", P1= ," & Trim(Str(Pi(1))) & _
 ", Pne= ," & Trim(Str(Pi(NE))) & _
 ", Wne= ," & Trim(Str(Wi(NE))) & _
 ", Une= ," & Trim(Str(Ui(NE))) & _
 ", Bne= ," & Trim(Str(Bi(NE))) & _
 ", fne= ," & Trim(Str(fi(NE))) & _
 ", f1= ," & Trim(Str(fi(1))) & _
 ", Xs= ," & Trim(Str(Xshell)) & _
 ", Vs= ," & Trim(Str(Vshell)))
 ScreenUpdateCounter = 0
 End If
 ' Based on change in maximum pressure, change the time step if necessary
 ' Equation (U)
 Dim lRelChangeInP As Double
 Dim lMaxRelChangeInP As Double
 Dim lRelChangeInRHO As Double
 Dim lMaxRelChangeInRHO As Double
 lMaxRelChangeInP = Val("-1E+20")
 lMaxRelChangeInRHO = Val("-1E+20")
 For J As Int32 = 1 To NE Step 1
 lRelChangeInP = _
 Math.Abs((Pi(J) - Pi_previous(J)) / Pi_previous(J))
 lRelChangeInRHO = _
 Math.Abs((RHOi(J) - RHOi_previous(J)) / RHOi_previous(J))
 If (lRelChangeInP > lMaxRelChangeInP) Then
 lMaxRelChangeInP = lRelChangeInP
 End If
 If (lRelChangeInRHO > lMaxRelChangeInRHO) Then
 lMaxRelChangeInRHO = lRelChangeInRHO

~ 33 ~

 End If
 Next J
 If ((lMaxRelChangeInP > MaxChangeAllowed) Or _
 (lMaxRelChangeInRHO > MaxChangeAllowed)) Then
 deltaT = DecreaseInTS * deltaT
 End If
 If ((lMaxRelChangeInP < MinChangeAllowed) And _
 (lMaxRelChangeInRHO < MinChangeAllowed)) Then
 deltaT = IncreaseInTS * deltaT
 End If
 Loop
 ' Close the output text file
 CloseAllOutputTextFiles()
 End Sub

 Public Sub ExecuteOneTimeStep()
 ' This subroutine advances the simulation from time t to time t+deltaT once the
 ' speeds of the boundary faces at time t+deltaT/2 have been calculated.
 ' For example, Vi(j) is the speed of boundary face #j at time t+deltaT/2
 ' Pi(j) is the pressure in element #j at time t+deltaT
 ' If the Boolean flag CanShellMove is False, then the shell, and the RHS
 ' boundary face of element #NE, are not permitted to move.
 '
 ' Step #1: Equation (A)
 Xi(0) = 0
 For J As Int32 = 1 To (NE - 1) Step 1
 Xi(J) = Xi_previous(J) + (Vi(J) * deltaT)
 Next J
 If (CanShellMove = True) Then
 Xi(NE) = Xi_previous(NE) + (Vshell * deltaT)
 Else
 Xi(NE) = Xi_previous(NE)
 End If
 Xshell = Xi(NE)
 '
 ' Step #2: Equation (B)
 For J As Int32 = 1 To NE Step 1
 VOLi(J) = (Xi(J) - Xi(J - 1)) * Abarrel
 Next J
 '
 ' Step #3: Burning equations
 For J As Int32 = 1 To NE Step 1
 If ((IgnitionShockWaveSpeed * Time) >= Xi_previous(J)) Then
 ' Equation (C)
 Bi(J) = Math.Exp((_
 (0.046696597 * ((Math.Log(Pi_previous(J) / Patm)) ^ 2)) + _
 (0.34808898 * Math.Log(Pi_previous(J) / Patm)) + _
 -0.572295873)) / 1000
 Else
 Bi(J) = 0
 End If

 ' ///
 ' // Use different routines to calculate the mass of propellant burned
 ' ///
 If (SimulateWithHoles = True) Then
 VolumeOfPropellantBurned_WithHoles(_
 Rgraini_previous(J), _

~ 34 ~

 Rholesi_previous(J), _
 Bi(J), _
 deltaT, _
 Rgraini(J), _
 Rholesi(J), _
 PropVOLi(J))
 Else
 VolumeOfPropellantBurned_NoHoles(_
 Rgraini_previous(J), _
 Bi(J), _
 deltaT, _
 Rgraini(J), _
 PropVOLi(J))
 Rholesi(J) = 0
 End If

 Dim DecreaseInVolume As Double = PropVOLi_previous(J) - PropVOLi(J)
 deltaMi(J) = RHOgrain * DecreaseInVolume
 '
 ' Check that burning does not consume more than 100% of the remaining mass
 If (deltaMi(J) > MiP_previous(J)) Then
 Rgraini(J) = 0
 PropVOLi(J) = 0
 deltaMi(J) = MiP_previous(J)
 End If
 ' Equation (E)
 MiP(J) = MiP_previous(J) - deltaMi(J)
 MiG(J) = MiG_previous(J) + deltaMi(J)
 fi(J) = MiG(J) / MiP0
 Next J
 '
 ' Step #4: Equation (F)
 For J As Int32 = 1 To NE Step 1
 deltaQi(J) = Q0 * deltaMi(J)
 Next J
 '
 ' Step #5: Density
 For J As Int32 = 1 To NE Step 1
 'Equation (G)
 VOLGasi(J) = VOLi(J) - (MiP(J) / RHOgrain)
 ' Equation (H)
 RHOi(J) = (MiG(J) + AirMi) / VOLGasi(J)
 Next J
 '
 ' Step #6: Co-volume correction
 For J As Int32 = 1 To NE Step 1
 ' Equation (I)
 BCoVoli(J) = Bcovolume * (MiG(J) + AirMi) / (1 + (2 * RHOi(J) / 500))
 ' Equation (J)
 deltaNi(J) = 40 * deltaMi(J)
 ' Equation (K)
 Ni(J) = Ni_previous(J) + deltaNi(J)
 Next J
 '
 ' Step #7: Adiabatic Index
 For J As Int32 = 1 To NE Step 1
 ' Equation (L)
 GAMMAi(J) = 1.333 + (0.567 * RHOi(J) / 1200)

~ 35 ~

 Next J
 '
 ' Step #8: Internal energy and pressure
 For J As Int32 = 1 To NE Step 1
 Dim MaxNumOfIterations As Double = 1000
 Dim NumOfIterations As Double = 0
 ' Starting guess
 Pi(J) = Pi_previous(J)
 ' Loop
 Do
 ' Equation (M)
 Si(J) = Math.Sqrt(GAMMAi(J) * Pi(J) / RHOi(J))
 ' Carry out the relative speed test
 Dim deltaV As Double
 If (J = 1) Then
 deltaV = -Vi(J)
 Else
 deltaV = Vi(J - 1) - Vi(J)
 End If
 ' Equation (N)
 If (deltaV > 0) Then
 Wi(J) = RHOi(J) * (_
 (C1 * deltaV * deltaV) + _
 (C2 * Si(J) * Math.Abs(deltaV)))
 Else
 Wi(J) = 0
 End If
 ' Equation (O)
 Dim lFactor1 As Double
 Dim lFactor2 As Double
 lFactor1 = Pi(J) + Wi(J) + Pi_previous(J) + Wi_previous(J)
 lFactor2 = VOLi(J) - VOLi_previous(J)
 Ui(J) = Ui_previous(J) + deltaQi(J) - (0.5 * lFactor1 * lFactor2)
 ' Equation (P)
 Dim lFactor3 As Double
 Dim P_New As Double
 lFactor3 = VOLGasi(J) - BCoVoli(J)
 P_New = (GAMMAi(J) - 1) * Ui(J) / lFactor3
 ' Test for negative pressure
 If (P_New <= 0) Then
 MsgBox("Error: Negative pressure. Reduce time step.")
 Exit Sub
 End If
 ' Test for convergence
 If (Math.Abs((P_New - Pi(J)) / Pi(J)) < 0.000000001) Then
 Pi(J) = P_New
 Exit Do
 End If
 ' Restrict the per-iteration adjustment in pressure
 Dim MaxAbsChange As Double
 MaxAbsChange = Math.Min(0.1 * Pi(J), Math.Abs(P_New - Pi(J)))
 If (P_New > Pi(J)) Then
 Pi(J) = Pi(J) + MaxAbsChange
 Else
 Pi(J) = Pi(J) - MaxAbsChange
 End If
 ' Test for too many iterations
 NumOfIterations = NumOfIterations + 1

~ 36 ~

 If (NumOfIterations > MaxNumOfIterations) Then
 MsgBox("Error: Too many iterations.")
 Exit Sub
 End If
 Loop
 Next J
 '
 ' Step #9: Temperature
 ' Equation (Q)
 For J As Int32 = 1 To NE Step 1
 Ti(J) = Pi(J) * (VOLGasi(J) - BCoVoli(J)) / (Ni(J) * Rigc)
 Next J
 '
 ' Step #10: Acceleration of the shell
 ' Equation (R)
 Dim EffectiveMshell As Double = Mshell / (1 - Cfr)
 Pshell = Pi(NE)
 ACCshell = (Pshell - Patm) * Abarrel / EffectiveMshell
 '
 ' Step #11: Advance the speeds
 ' Equation (S)
 For J As Int32 = 1 To (NE - 1) Step 1
 Dim lFactor1 As Double
 lFactor1 = Pi(J + 1) + Wi(J + 1) - Pi(J) - Wi(J)
 Vi(J) = Vi_previous(J) - (deltaT * lFactor1 * Abarrel / MiT)
 Next J
 ' Equation (T)
 If (CanShellMove = True) Then
 Vshell = Vshell_previous + (ACCshell * deltaT)
 Else
 Vshell = 0
 End If
 Vi(NE) = Vshell
 End Sub

 Public Sub ShiftAllValuesToPreviousVariables()
 ' This subroutine is called at the end of every time step. It moves the values
 ' just calculated into their "previous" variants, in preparation for the next
 ' time step.
 Xi_previous(0) = Xi(0)
 For J As Int32 = 1 To NE Step 1
 ' Gas element variables
 MiP_previous(J) = MiP(J)
 MiG_previous(J) = MiG(J)
 Ni_previous(J) = Ni(J)
 Xi_previous(J) = Xi(J)
 Vi_previous(J) = Vi(J)
 Pi_previous(J) = Pi(J)
 Wi_previous(J) = Wi(J)
 VOLi_previous(J) = VOLi(J)
 VOLGasi_previous(J) = VOLGasi(J)
 BCoVoli_previous(J) = BCoVoli(J)
 Ti_previous(J) = Ti(J)
 Ui_previous(J) = Ui(J)
 RHOi_previous(J) = RHOi(J)
 GAMMAi_previous(J) = GAMMAi(J)
 Si_previous(J) = Si(J)
 deltaQi_previous(J) = deltaQi(J)

~ 37 ~

 deltaNi_previous(J) = deltaNi(J)
 ' Propellant variables
 Bi_previous(J) = Bi(J)
 Rgraini_previous(J) = Rgraini(J)
 Rholesi_previous(J) = Rholesi(J)
 PropVOLi_previous(J) = PropVOLi(J)
 deltaMi_previous(J) = deltaMi(J)
 fi_previous(J) = fi(J)
 Next J
 ' Projectile variables
 Pshell_previous = Pshell
 Xshell_previous = Xshell
 Vshell_previous = Vshell
 ACCshell_previous = ACCshell
 End Sub

 Public Sub FindMaximumPressure(_
 ByRef MaxP As Double, ByRef MaxPIndex As Int32)
 ' This function is called at the end of every time step. It looks through the
 ' current values of the pressure in all elements. It returns the maximum value
 ' and the index of the element with the maximum pressure.
 MaxP = Val("-1E+20")
 For J As Int32 = 1 To NE Step 1
 If (Pi(J) > MaxP) Then
 MaxP = Pi(J)
 MaxPIndex = J
 End If
 Next J
 End Sub

 Public Sub OpenAllOutputTextFiles()
 ' Log of screen display
 FileWriterMaster = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "Master.txt")
 ' Gas element variables
 FileWriterMiP = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "MiP.txt")
 FileWriterMiG = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "MiG.txt")
 FileWriterNi = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "Ni.txt")
 FileWriterXi = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "Xi.txt")
 FileWriterVi = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "Vi.txt")
 FileWriterPi = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "Pi.txt")
 FileWriterWi = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "Wi.txt")
 FileWriterVOLi = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "VOLi.txt")
 FileWriterVOLGasi = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "VOLGasi.txt")
 FileWriterBCoVoli = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "BCoVoli.txt")
 FileWriterTi = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "Ti.txt")
 FileWriterUi = New System.IO.StreamWriter(_

~ 38 ~

 ThisDirectory & "\" & TextOutputFileName & "Ui.txt")
 FileWriterRHOi = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "RHOi.txt")
 FileWriterGAMMAi = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "GAMMAi.txt")
 FileWriterSi = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "Si.txt")
 FileWriterdeltaQi = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "deltaQi.txt")
 FileWriterdeltaNi = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "deltaNi.txt")
 ' Propellant variables
 FileWriterBi = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "Bi.txt")
 FileWriterRgraini = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "Rgraini.txt")
 FileWriterRholesi = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "Rholesi.txt")
 FileWriterPropVOLi = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "PropVOLi.txt")
 FileWriterdeltaMi = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "deltaMi.txt")
 FileWriterfi = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "fi.txt")
 ' Projectile variables
 FileWriterShell = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "Shell.txt")
 End Sub

 Public Sub CloseAllOutputTextFiles()
 ' Log of screen display
 FileWriterMaster.Close()
 ' Gas element variables
 FileWriterMiP.Close()
 FileWriterMiG.Close()
 FileWriterNi.Close()
 FileWriterXi.Close()
 FileWriterVi.Close()
 FileWriterPi.Close()
 FileWriterWi.Close()
 FileWriterVOLi.Close()
 FileWriterVOLGasi.Close()
 FileWriterBCoVoli.Close()
 FileWriterTi.Close()
 FileWriterUi.Close()
 FileWriterRHOi.Close()
 FileWriterGAMMAi.Close()
 FileWriterSi.Close()
 FileWriterdeltaQi.Close()
 FileWriterdeltaNi.Close()
 ' Propellant variables
 FileWriterBi.Close()
 FileWriterRgraini.Close()
 FileWriterRholesi.Close()
 FileWriterPropVOLi.Close()
 FileWriterdeltaMi.Close()
 FileWriterfi.Close()
 ' Projectile variables

~ 39 ~

 FileWriterShell.Close()
 End Sub

 Public Sub WriteHeadersToAllOutputTextFiles()
 ' Log of screen display
 FileWriterMiP.Write("Time, ")
 ' Gas element variables
 FileWriterMiG.Write("Time, ")
 FileWriterNi.Write("Time, ")
 FileWriterXi.Write("Time, ")
 FileWriterVi.Write("Time, ")
 FileWriterPi.Write("Time, ")
 FileWriterWi.Write("Time, ")
 FileWriterVOLi.Write("Time, ")
 FileWriterVOLGasi.Write("Time, ")
 FileWriterBCoVoli.Write("Time, ")
 FileWriterTi.Write("Time, ")
 FileWriterUi.Write("Time, ")
 FileWriterRHOi.Write("Time, ")
 FileWriterGAMMAi.Write("Time, ")
 FileWriterSi.Write("Time, ")
 FileWriterdeltaQi.Write("Time, ")
 FileWriterdeltaNi.Write("Time, ")
 ' Propellant variables
 FileWriterBi.Write("Time, ")
 FileWriterRgraini.Write("Time, ")
 FileWriterRholesi.Write("Time, ")
 FileWriterPropVOLi.Write("Time, ")
 FileWriterdeltaMi.Write("Time, ")
 FileWriterfi.Write("Time, ")
 ' Projectile variables
 FileWriterShell.WriteLine("Time, Xshell, Vshell, ACCshell, Pshell")
 For K As Int32 = 0 To (NE - 1) Step deltaNESave
 Dim ElementIndex As Int32
 If (K = 0) Then
 ElementIndex = 1
 Else
 ElementIndex = K
 End If
 ' Gas element variables
 FileWriterMiP.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterMiG.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterNi.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterXi.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterVi.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterPi.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterWi.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterVOLi.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterVOLGasi.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterBCoVoli.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterTi.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterUi.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterRHOi.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterGAMMAi.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterSi.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterdeltaQi.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterdeltaNi.Write(Trim(Str(ElementIndex)) & ", ")
 ' Propellant variables

~ 40 ~

 FileWriterBi.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterRgraini.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterRholesi.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterPropVOLi.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterdeltaMi.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterfi.Write(Trim(Str(ElementIndex)) & ", ")
 Next K
 ' Gas element variables
 FileWriterMiP.WriteLine(Trim(Str(NE)))
 FileWriterMiG.WriteLine(Trim(Str(NE)))
 FileWriterNi.WriteLine(Trim(Str(NE)))
 FileWriterXi.WriteLine(Trim(Str(NE)))
 FileWriterVi.WriteLine(Trim(Str(NE)))
 FileWriterPi.WriteLine(Trim(Str(NE)))
 FileWriterWi.WriteLine(Trim(Str(NE)))
 FileWriterVOLi.WriteLine(Trim(Str(NE)))
 FileWriterVOLGasi.WriteLine(Trim(Str(NE)))
 FileWriterBCoVoli.WriteLine(Trim(Str(NE)))
 FileWriterTi.WriteLine(Trim(Str(NE)))
 FileWriterUi.WriteLine(Trim(Str(NE)))
 FileWriterRHOi.WriteLine(Trim(Str(NE)))
 FileWriterGAMMAi.WriteLine(Trim(Str(NE)))
 FileWriterSi.WriteLine(Trim(Str(NE)))
 FileWriterdeltaQi.WriteLine(Trim(Str(NE)))
 FileWriterdeltaNi.WriteLine(Trim(Str(NE)))
 ' Propellant variables
 FileWriterBi.WriteLine(Trim(Str(NE)))
 FileWriterRgraini.WriteLine(Trim(Str(NE)))
 FileWriterRholesi.WriteLine(Trim(Str(NE)))
 FileWriterPropVOLi.WriteLine(Trim(Str(NE)))
 FileWriterdeltaMi.WriteLine(Trim(Str(NE)))
 FileWriterfi.WriteLine(Trim(Str(NE)))
 End Sub

 Public Sub WriteDataRowToAllOutputTextFiles()
 ' Gas element variables
 FileWriterMiP.Write(Trim(Str(Time)) & ", ")
 FileWriterMiG.Write(Trim(Str(Time)) & ", ")
 FileWriterNi.Write(Trim(Str(Time)) & ", ")
 FileWriterXi.Write(Trim(Str(Time)) & ", ")
 FileWriterVi.Write(Trim(Str(Time)) & ", ")
 FileWriterPi.Write(Trim(Str(Time)) & ", ")
 FileWriterWi.Write(Trim(Str(Time)) & ", ")
 FileWriterVOLi.Write(Trim(Str(Time)) & ", ")
 FileWriterVOLGasi.Write(Trim(Str(Time)) & ", ")
 FileWriterBCoVoli.Write(Trim(Str(Time)) & ", ")
 FileWriterTi.Write(Trim(Str(Time)) & ", ")
 FileWriterUi.Write(Trim(Str(Time)) & ", ")
 FileWriterRHOi.Write(Trim(Str(Time)) & ", ")
 FileWriterGAMMAi.Write(Trim(Str(Time)) & ", ")
 FileWriterSi.Write(Trim(Str(Time)) & ", ")
 FileWriterdeltaQi.Write(Trim(Str(Time)) & ", ")
 FileWriterdeltaNi.Write(Trim(Str(Time)) & ", ")
 ' Propellant variables
 FileWriterBi.Write(Trim(Str(Time)) & ", ")
 FileWriterRgraini.Write(Trim(Str(Time)) & ", ")
 FileWriterRholesi.Write(Trim(Str(Time)) & ", ")
 FileWriterPropVOLi.Write(Trim(Str(Time)) & ", ")

~ 41 ~

 FileWriterdeltaMi.Write(Trim(Str(Time)) & ", ")
 FileWriterfi.Write(Trim(Str(Time)) & ", ")
 For K As Int32 = 0 To (NE - 1) Step deltaNESave
 Dim ElementIndex As Int32
 If (K = 0) Then
 ElementIndex = 1
 Else
 ElementIndex = K
 End If
 ' Gas element variables
 FileWriterMiP.Write(Trim(Str(MiP(ElementIndex))) & ", ")
 FileWriterMiG.Write(Trim(Str(MiG(ElementIndex))) & ", ")
 FileWriterNi.Write(Trim(Str(Ni(ElementIndex))) & ", ")
 FileWriterXi.Write(Trim(Str(Xi(ElementIndex))) & ", ")
 FileWriterVi.Write(Trim(Str(Vi(ElementIndex))) & ", ")
 FileWriterPi.Write(Trim(Str(Pi(ElementIndex))) & ", ")
 FileWriterWi.Write(Trim(Str(Wi(ElementIndex))) & ", ")
 FileWriterVOLi.Write(Trim(Str(VOLi(ElementIndex))) & ", ")
 FileWriterVOLGasi.Write(Trim(Str(VOLGasi(ElementIndex))) & ", ")
 FileWriterBCoVoli.Write(Trim(Str(BCoVoli(ElementIndex))) & ", ")
 FileWriterTi.Write(Trim(Str(Ti(ElementIndex))) & ", ")
 FileWriterUi.Write(Trim(Str(Ui(ElementIndex))) & ", ")
 FileWriterRHOi.Write(Trim(Str(RHOi(ElementIndex))) & ", ")
 FileWriterGAMMAi.Write(Trim(Str(GAMMAi(ElementIndex))) & ", ")
 FileWriterSi.Write(Trim(Str(Si(ElementIndex))) & ", ")
 FileWriterdeltaQi.Write(Trim(Str(deltaQi(ElementIndex))) & ", ")
 FileWriterdeltaNi.Write(Trim(Str(deltaNi(ElementIndex))) & ", ")
 ' Propellant variables
 FileWriterBi.Write(Trim(Str(Bi(ElementIndex))) & ", ")
 FileWriterRgraini.Write(Trim(Str(Rgraini(ElementIndex))) & ", ")
 FileWriterRholesi.Write(Trim(Str(Rholesi(ElementIndex))) & ", ")
 FileWriterPropVOLi.Write(Trim(Str(PropVOLi(ElementIndex))) & ", ")
 FileWriterdeltaMi.Write(Trim(Str(deltaMi(ElementIndex))) & ", ")
 FileWriterfi.Write(Trim(Str(fi(ElementIndex))) & ", ")
 Next K
 ' Gas element variables
 FileWriterMiP.WriteLine(Trim(Str(MiP(NE))))
 FileWriterMiG.WriteLine(Trim(Str(MiG(NE))))
 FileWriterNi.WriteLine(Trim(Str(Ni(NE))))
 FileWriterXi.WriteLine(Trim(Str(Xi(NE))))
 FileWriterVi.WriteLine(Trim(Str(Vi(NE))))
 FileWriterPi.WriteLine(Trim(Str(Pi(NE))))
 FileWriterWi.WriteLine(Trim(Str(Wi(NE))))
 FileWriterVOLi.WriteLine(Trim(Str(VOLi(NE))))
 FileWriterVOLGasi.WriteLine(Trim(Str(VOLGasi(NE))))
 FileWriterBCoVoli.WriteLine(Trim(Str(BCoVoli(NE))))
 FileWriterTi.WriteLine(Trim(Str(Ti(NE))))
 FileWriterUi.WriteLine(Trim(Str(Ui(NE))))
 FileWriterRHOi.WriteLine(Trim(Str(RHOi(NE))))
 FileWriterGAMMAi.WriteLine(Trim(Str(GAMMAi(NE))))
 FileWriterSi.WriteLine(Trim(Str(Si(NE))))
 FileWriterdeltaQi.WriteLine(Trim(Str(deltaQi(NE))))
 FileWriterdeltaNi.WriteLine(Trim(Str(deltaNi(NE))))
 ' Propellant variables
 FileWriterBi.WriteLine(Trim(Str(Bi(NE))))
 FileWriterRgraini.WriteLine(Trim(Str(Rgraini(NE))))
 FileWriterRholesi.WriteLine(Trim(Str(Rholesi(NE))))
 FileWriterPropVOLi.WriteLine(Trim(Str(PropVOLi(NE))))

~ 42 ~

 FileWriterdeltaMi.WriteLine(Trim(Str(deltaMi(NE))))
 FileWriterfi.WriteLine(Trim(Str(fi(NE))))
 ' Projectile variables
 FileWriterShell.WriteLine(Trim(Str(Time)) & ", " & Trim(Str(Xshell)) & ", " & _
 Trim(Str(Vshell)) & ", " & Trim(Str(ACCshell)) & ", " & Trim(Str(Pshell)))
 End Sub

End Module

Module HoleCalculations
Option Strict On
Option Explicit On

Public Module HoleCalculations

 ' List of subroutines:
 ' VolumeOfPropellantBurned_WithHoles()
 ' VolumeOfPropellantBurned_NoHoles()

 Public Sub VolumeOfPropellantBurned_WithHoles(_
 ByVal lRgrainStart As Double, _
 ByVal lRholesStart As Double, _
 ByVal lBurnRate As Double, _
 ByVal lTimeStep As Double, _
 ByRef lRgrainEnd As Double, _
 ByRef lRholesEnd As Double, _
 ByRef lVolumeEnd As Double)
 '
 ' ///
 ' // Phase 1 burning - Grain is intact
 ' ///
 Dim lBurnDepth As Double
 If (lRholesStart < RholesEndPhase1) Then
 ' Calculate the depth burned during this time step
 lBurnDepth = lBurnRate * lTimeStep
 ' Calculate new radii for the grain and the holes
 lRgrainEnd = lRgrainStart - lBurnDepth
 lRholesEnd = lRholesStart + lBurnDepth
 ' Calculate the new volume
 lVolumeEnd = Math.PI * _
 ((lRgrainEnd ^ 2) - (7 * (lRholesEnd ^ 2))) * LgrainEff
 Exit Sub
 End If
 '
 ' ///
 ' // Calculate new hole radii for Phase 2 and Phase 3 burning
 ' ///
 ' Calculate the depth burned during this time step
 lBurnDepth = lBurnRate * lTimeStep
 ' Calculate new radius for the holes
 lRholesEnd = lRholesStart + lBurnDepth
 '
 ' ///
 ' // Phase 2 burning - Grain has disintegrated; 12 "triangles" are burning
 ' ///
 Dim lFactor1, lFactor2, lFactor3, lFactor4, lFactor5 As Double

~ 43 ~

 Dim lAlphaEnd, lLengthADEnd As Double
 Dim lAreaStraightTriangle As Double
 Dim lAreaCircularSegment As Double
 Dim lAreaInnerTriangle As Double
 If (lRholesEnd < RholesEndPhase2) Then
 ' Calculate angle alpha
 lFactor1 = Math.Sqrt((lRholesEnd ^ 2) - (RholesEndPhase1 ^ 2))
 lFactor2 = (Math.Sqrt(3) * RholesEndPhase1) - lFactor1
 lFactor3 = RholesEndPhase1 + (Math.Sqrt(3) * lFactor1)
 lAlphaEnd = _
 Math.Atan2(lFactor2, lFactor3) - Math.Atan2(lFactor1, RholesEndPhase1)
 ' Calculate the length of line segment AD
 lFactor4 = RholesEndPhase1 - (0.5 * lFactor3)
 lFactor5 = lFactor1 - (0.5 * lFactor2)
 lLengthADEnd = Math.Sqrt((lFactor4 ^ 2) + (lFactor5 ^ 2))
 ' Calculate the area of the straight-sided triangle
 lAreaStraightTriangle = Math.Sqrt(3) * (lLengthADEnd ^ 2) / 4
 ' Calculate the area of the circular segments
 lFactor2 = 0.5 * lAlphaEnd * (lRholesEnd ^ 2)
 lFactor3 = 0.5 * lLengthADEnd * lRholesEnd * Math.Cos(lAlphaEnd / 2)
 lAreaCircularSegment = lFactor2 - lFactor3
 ' Calculate the area of one inner "triangle"
 lAreaInnerTriangle = lAreaStraightTriangle - (3 * lAreaCircularSegment)
 Else
 lAreaInnerTriangle = 0
 End If
 '
 ' ///
 ' // Phase 3 burning - Only six outer "triangles" are burning
 ' ///
 Dim lBetaEnd, lThetaEnd As Double
 Dim lLengthGIEnd, lLengthOZEnd, lLengthOEEnd, lLengthEZEnd As Double
 Dim lAreaGreen, lAreaViolet As Double
 Dim lAreaOuterTriangle As Double
 If (lRholesEnd < RholesEndPhase3) Then
 ' Calculate angle beta
 lFactor1 = Math.PI / 3
 lFactor2 = Math.Sqrt(_
 ((3 * RholesEndPhase1) - lRholesEnd) * (lRholesEnd - RholesEndPhase1))
 lFactor3 = (5 * RholesEndPhase1) - (2 * lRholesEnd)
 lBetaEnd = lFactor1 - (2 * Math.Atan2(lFactor2, lFactor3))
 ' Calculate angle theta
 lFactor1 = _
 (Math.Sqrt(3) * RholesEndPhase1) + _
 Math.Sqrt((lRholesEnd ^ 2) - (RholesEndPhase1 ^ 2))
 lFactor2 = _
 -RholesEndPhase1 + _
 Math.Sqrt(3 * ((lRholesEnd ^ 2) - (RholesEndPhase1 ^ 2)))
 lFactor3 = Math.Sqrt(_
 ((3 * RholesEndPhase1) - lRholesEnd) * (lRholesEnd - RholesEndPhase1))
 lFactor4 = (3 * RholesEndPhase1) - (2 * lRholesEnd)
 lThetaEnd = Math.Atan2(lFactor1, lFactor2) - Math.Atan2(lFactor3, lFactor4)
 ' Calculate the length of line segment GI
 lLengthGIEnd = _
 2 * ((4 * RholesEndPhase1) - lRholesEnd) * Math.Sin(lBetaEnd / 2)
 ' Calculate the length of line segment OZ
 lLengthOZEnd = ((4 * RholesEndPhase1) - lRholesEnd) * Math.Cos(lBetaEnd / 2)
 ' Calculate the length of line segment OE

~ 44 ~

 lFactor1 = _
 (3 * RholesEndPhase1) + _
 Math.Sqrt(3 * ((lRholesEnd ^ 2) - (RholesEndPhase1 ^ 2)))
 lFactor2 = _
 (Math.Sqrt(3) * RholesEndPhase1) + _
 Math.Sqrt((lRholesEnd ^ 2) - (RholesEndPhase1 ^ 2))
 lLengthOEEnd = 0.5 * Math.Sqrt((lFactor1 ^ 2) + (lFactor2 ^ 2))
 ' Calculate the length of line segment EZ
 lLengthEZEnd = lLengthOZEnd - lLengthOEEnd
 ' Calculate the area of the straight-sided triangle
 lAreaStraightTriangle = 0.5 * lLengthGIEnd * lLengthEZEnd
 ' Calculate the area of the green circular segments
 lFactor1 = ((4 * RholesEndPhase1) - lRholesEnd) ^ 2
 lFactor2 = lBetaEnd - Math.Sin(lBetaEnd)
 lAreaGreen = 0.5 * lFactor1 * lFactor2
 ' Calculate the area of the violet circular segment
 lFactor1 = lRholesEnd ^ 2
 lFactor2 = lThetaEnd - Math.Sin(lThetaEnd)
 lAreaViolet = 0.5 * lFactor1 * lFactor2
 ' Calculate the area of one outer "triangle"
 lAreaOuterTriangle = lAreaStraightTriangle + lAreaGreen - (2 * lAreaViolet)
 Else
 lAreaOuterTriangle = 0
 End If
 '
 ' ///
 ' Calculate total volume of all "triangles" in Phases 2 and 3
 ' ///
 ' Calculate the new volume
 lVolumeEnd = 6 * (lAreaInnerTriangle + lAreaOuterTriangle) * LgrainEff
 End Sub

 Public Sub VolumeOfPropellantBurned_NoHoles(_
 ByVal lRgrainStart As Double, _
 ByVal lBurnRate As Double, _
 ByVal lTimeStep As Double, _
 ByRef lRgrainEnd As Double, _
 ByRef lVolumeEnd As Double)
 Dim lBurnDepth As Double
 ' Calculate the depth burned during this time step
 lBurnDepth = lBurnRate * lTimeStep
 ' Calculate new radius for the grain
 lRgrainEnd = lRgrainStart - lBurnDepth
 ' Calculate the new volume
 lVolumeEnd = Math.PI * (lRgrainEnd ^ 2) * LgrainEff
 End Sub

End Module

