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Interior ballistics: The effect of holes in the web 

 

In an earlier paper, titled Interior ballistics of a large naval gun or artillery piece, I assumed that the 

grains of propellant were solid cylinders with original unburned diameter  and length .  Burning takes 

place from the outside inwards, so the surface area being burned at any instant of time is .  This 

surface area decreases as the grain is consumed.  

 

 

 

 

 

 

 

 

 

The effective rate at which propellant is consumed (at comparable pressures) can be changed by adding 

holes to the web.  The following figure shows the same grain with seven holes.  This particular 

configuration of holes was very common in the British, American and Japanese navies.  The German 

navy preferred tubular grains, with a single hole at the central axis of the grain.   

 

 

 

 

 

 

 

The holes burn from the inside outwards, so their burning surface increases as the grain is consumed.  

This offsets the decrease with time in the outer surface area of the cylinder, giving a more uniform rate of 

consumption to the whole.  On large grains, the holes were typically one-tenth the diameter of the grain.  

On small grains, the holes were mere pinholes. 

 

The volume of a propellant grain during the initial phase of burning 

 

The figure to the right shows a cross-section 

of a grain of propellant before it starts 

burning.  All seven holes have the same 

radius,  say, before burning starts.  The six 

small holes in the middle ring are equally 

spaced around the grain.  It is important that 

the two distances  be equal.  As we will 

see, setting these distances equal will cause 

the grain to remain intact as it burns until the 

burning surfaces make contact with each 

other and the grain breaks into 12 pieces, 

each being roughly a triangular cylinder.  

Note that the distance  is not necessaily 

related to the size of the interior holes.  It is 

possible to have smaller holes and larger 's, 

or vice versa.      
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The situation after the propellant has burned 

for a time is shown in this figure.  The solid 

lines are the burning surfaces; the dotted 

lines are the original surfaces. 

 

During this period of burning, the radius of 

the unburned grain decreased from  to  

and the radii of the holes, including the 

substance burned, increased from  to .  If 

we assume that all surfaces burned at the 

same rate (an important assumption), then 

the change in radii must be the same: 

 

 

 

We can calculate the volume of unburned 

propellant at the start and end of this period 

of burning.  The calculation is easier if we 

ignore burning at the end faces of the grain, 

just like we did in the original analysis.  If 

so, then the length of the grain remains constant at . 

 

The volume of the original propellant is: 

 

 

  

The volume of unburned propellant at the end is: 

 

 

 

The decrease in volume (an algebraically positive number) during this period of burning is: 

 

 

 

Assume that this period of burning has a duration  and that the burning rate  throughout the period is 

constant.  Since the burning rate is the rate at which the burning surface eats down into the unburned 

surface, we can say that: 

 

 

 

This can be re-arranged to give: 

 

 

 

We can substitute these expressions into Equation  to express the decrease in volume in terms of 

quantities which exist at the start of the period of burning.  We get: 
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The mass of propellant burned during this period of burning is this volume multiplied by the density of 

the propellant, thus: 

 

 

 

When does the initial phase of burning come to an end? 

 

It will end when the radius of the outer surface of the grain  is equal to three times the radius of the 

interior holes .   

 

 

 

Equation  holds at all times during the initial phase, including the instant at the end of this phase.  

Substituting Equation  into Equation  gives: 

 

 

 

When the initial phase of burning is complete, the holes will have grown to a size 

where they touch each other and the grain falls into pieces.  There will be 12 pieces.  

The figure at the left shows there will be six inner "triangles" (rendered in red) and 

six outer "triangles (rendered in black).  In the second phase of burning, all 12 of 

these "triangles" will burn.  But, the red "triangles are smaller, and will be 

consumed first.  After they have been consumed, there will be a third phase of 

burning, in which only the remnants of the six outer "triangles" will be left burning. 

 

The volume of one of the inner "triangles" during the second phase of burning 

 

Consider three circles with radius  which are 

mutually tangent.  The following figure shows 

the arrangement.  Think of  as the radius of 

the holes in the web when the burn depths have 

just reached the point when a grain of 

propellant ceases to be a single entity and 

separates into 12 triangular prisms.  Therefore, 

 will be equal to  as calculated 

in Equation .  The orientation of the three 

circles is arbitrary, so I have laid them out with 

two of them side-by-side horizontally, with the 

origin of this two-dimensional plane at the 

center of the hole on the left. 

 

  

 
Inner triangle when 

radius is . 

 

 

#1 #2 

#3 
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Now consider the circles (holes) at some later time, when their radii have increased from  to .  There 

are now six points of intersection among the three circles.  Three of them – ,  and  – are the three 

vertices of the inner triangle, but we are going to need all six points to calculate the surface area. 

 

 

 

 

 

 

 

 

 

 

 

 

. 

 

The equations of these three circles are: 

 

 

 

The two points of intersection between circles #1 and #2 

 

Setting  and  common to circles #1 and #2 gives: 

 

 

 

Now substituting this value of  into the equation for circle #1 gives: 

 

 

 

and the co-ordinates of the two points of intersection are: 

 

 

 

The two points of intersection between circles #1 and #3 

 

Setting  and  common to circles #1 and #3 gives: 

 

 

 

 

 
 

 
 Inner triangle when 

radius has grown to  

 

 

#1 #2 

#3 
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Now substituting this value of  into the equation for circle #1 gives: 

 

 

 

and the co-ordinates of the two points of intersection are: 

 

 

 

The two points of intersection between circles #2 and #3 

 

Setting  and  common to circles #2 and #3 gives: 

 

 

 

Now substituting this value of  into the equation for circle #2 gives: 

 

 

 

and the co-ordinates of the two points of intersection are: 
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The angle subtended by two vertices of an inner triangle 

 

The following figure shows angle  centered at the center of circle #1.  Angle  is the angle subtended by 

two vertices of the inner triangle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using the spatial co-ordinates we have already calculated, we can write the following angles: 

 

 

 

And, from these, we can write the desired angle  as: 

 

 

 

The lengths of the arc and line segment between points  and  

 

The length of arc  is proportional to angle :   

 

 

 

The length of line segment  can be calculated using the Pythagorean Theorem: 

 

 

 

The area of the straight-sided equilateral triangle  

 

Consider the equilateral triangle with straight sides having length .  We can 

write its area as: 

 

  

 

 

 

 

 

#1 #2 

#3 
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The area of one of the circular segments 

 

Consider the segment of a circle, rendered in red in this figure, which impinges on one side of triangle 

. 

 

 

 

The cross-sectional area of one of the inner "triangles" of a propellant grain 

 

Now we have the data needed to calculate the cross-sectional area of one of the inner "triangles" of 

propellant.  That is the cross-section of the triangular star which is not shaded in red in the figure.  It is 

equal to the area of straight-sided triangle  less the area of three of the red segments.  

 

 

 

 

How do we apply all this information to our problem? 

 

Our goal is to calculate the mass (or volume) of propellant of an inner "triangle" which is burned during 

one time step.  Here's what we will know at the start of a time step when we are ready to make the 

calculation. 

 The duration of the upcoming time step  

 The effective radius of the inner holes at the end of the previous time step  

 As before, assume the ends of the grain do not burn, so the length of the grain remains constant at  

 The burn rate for the upcoming time step will be  

 The radius  when the grain disintegrated into 12 "triangles" 

 

Step #1:  Calculate angle  at the start of the time step. 

 

 

 

Step #2:  Calculate the length of line segment  at the start of the time step. 
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Step #3:  Calculate the cross-sectional area of the "triangle" at the start of the time step. 

 

 

 

Step #4:  Calculate the volume of the "triangle" at the start of the time step. 

 

 
 

Step #5:  Calculate the depth down into the surface which will be burned during this time step. 

 

 

 

Step #6:  Calculate the effective radius of the inner holes at the end of this time step . 

 

 

 

Step #7:  Calculate angle  at the end of this time step. 

 

 

 

Step #8:  Calculate the length of line segment  at the end of this time step. 

 

 

 

Step #9:  Calculate the cross-sectional area of the "triangle" at the end of this time step. 

 

 

 

Step #10:  Calculate the volume of the "triangle" at the end of this time step. 

 

 

 

Step #11:  Calculate the reduction in volume during this time step. 
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When is the burning of the inner "triangles" complete? 

 

Burning will be complete when points ,  and  are coincident.  Setting the -values of points  and  

equal gives: 

 

 

 

The outer "triangles" will continue to burn even after the inner "triangles" have been totally consumed. 

 

The volume of one of the outer "triangles" during the second and third phases of burning 

 

I will start this analysis back at the end of phase 1, when the radius of the holes is equal to 

.  The following figure shows four circles.  The three smaller, complete, circles are the same 

ones considered in the previous section, whose intersection defines a typical inner "triangle".  In this 

figure, a portion of a fourth circumscribing circle, labeled circle #4, is also shown.  Its intersection with 

circles #2 and #3 defines a typical outer "triangle". 

 

 

 

 

 

 

 

. 

 

 

 

 

 

 

 

All of these circles represent the burning surface at the instant when the propellant grain ceases to be a 

single entity and separates into 12 roughly triangular prisms.  At this moment, the inner circles (that is, 

the holes) have radius  and the circumscribing circle #4 has radius . 

 

Now consider these same circles at some later time, when the radii of the holes has increased from  to .   

During this time, the radius of the circumscribing circle will have decreased by the same amount, .  

I have identified six points of intersection.  Two of them – points  and  – are the same as were defined 

in the previous section.  Three of the points – points ,  and  – are the three vertices of one of the outer 

"triangles". 

  

 
Inner "triangle" when 

radius is . 

 

 

#1 #2 

#3 

Outer "triangle" when 

radius is . #4 
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. 

 

 

The equations of three of the circles of interest are: 

 

 

 

Note the radius of the circumscribing circle.  As the radius of the smaller circles increases from  to , 

the radius of the large circle decreases by distance  from its starting value  to .  

 

The two points of intersection between circles #2 and #4 

 

Setting  common to circles #2 and #4 gives: 

 

 

 

Now substituting this value of  into the equation for circle #2 gives: 

 

 

 

and the co-ordinates of the two points of intersection are: 

 

 

 

The two points of intersection between circles #2 and #3 

 

Setting  and  common to circles #2 and #3 gives: 

 

 

 

 

 
 

Inner "triangle" when 

radius has grown to . 

 

 

#1 #2 

#3 #4 

Outer "triangle" when 

radius has grown to . 
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Now substituting this value of  into the equation for circle #2 gives: 

 

 

 

and the co-ordinates of the two points of intersection are: 

 

 

 

The angle  subtended by two vertices of an outer "triangle" 

 

The following figure shows angle  centered at the center of circle #1, which is also the center of circle 

#4.  Angle  is the angle subtended by vertices  and  of the outer "triangle". 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The dotted line bisects angle .  Since circles #2 and #3 are two of the six circles arranged symmetrically 

around the center of the grain, the dotted line will have a slope of 30°.  We can express angle  as 

follows: 
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The angle  subtended by two other vertices of an outer "triangle" 

 

The following figure shows angle  centered at the center of circle #2.  Angle  is the angle subtended by 

vertices  and  of the outer "triangle". 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When we calculated the co-ordinates of points  and  above, we expressed them with respect to the 

origin at point .  These co-ordinates can be restated with respect to origin  by reducing the -co-

ordinate by  as follows: 

 

 

 

Angle  can then be calculated using straight-forward trigonometry: 

 

 

 

The lengths of arc segments  and  

 

The length of arc  is proportional to angle  and the radius of circle #4:   

 

 

 

The length of arc  is proportional to angle  and the radius of the small circles:   
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The area enclosed between an arc segment and a straight line segment 

 

I will do this calculation for the generalized situation, as drawn at the left.  The 

area between arc  and line segment  is shaded in blue.  The radius and 

subtended angle are also labeled, as  and , respectively.  The lengths of the 

two segments can be written down using the same relationships from above: 

 

 

 

The area of the wedge-shaped pie segment  is given by: 

 

 

 

The area of straight-sided triangle  is given by: 

 

 

 

The blue-shaded area is the difference: 

 

 

 

The cross-sectional area of an outer "triangle" of a propellant grain 

 

A typical outer "triangle" has vertices ,  and , as shown in the figure below.  Its cross-sectional area is 

equal to: (i) the area of the straight-sided triangle , (ii) plus the area of the green circular segment 

shown below, and (iii) less the areas of the two purple circular segments.  The areas of the circular 

segments have been determined using Equation  with the appropriate central angles and radii. 

 

In order to complete the calculation, we need to find the area of the straight-sided triangle .  I will do 

that with the aid of the following figure. 
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The "base" of triangle  is line segment , whose length can be calculated using Equation  as: 

 

 

 

The length of line segment  can be found in a similar way, as: 

 

 
 

The length of line segment  can be calculated directly using the Pythagorean Theorem, as: 

 

 

 

The "height" of triangle  is line segment , whose length can be found by subtraction, as: 

 

 
 

Then, the area of triangle  can be calculated as: 

 

 

 

How do we apply all this information to our problem? 

 

Our goal is to calculate the mass (or volume) of propellant in an outer "triangle" which is burned during 

one time step.  Here's what we will know at the start of a time step when we are ready to make the 

calculation. 

 The duration of the upcoming time step  

 The effective radius of the inner holes at the end of the previous time step  
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 As before, assume the ends of the grain do not burn, so the length of the grain is  

 The burn rate for the upcoming time step will be  

 The radius  when the grain disintegrated into 12 "triangles" 

 

Step #1:  Calculate angle  at the start of the time step. 

 

 

 

Step #2:  Calculate angle  at the start of the time step. 

 

 

 

Step #3:  Calculate the lengths of certain straight line segments at the start of the time step: 

 

 

 

Step #4:  Calculate the cross-sectional area of the outer-bulge green segments at the start of the time step. 

 

 

 

Step #5:  Calculate the cross-sectional area of the inner-bulge violet segments at the start of the time step. 

 

 
 

Step #6:  Calculate the cross-sectional area of the "triangle" at the start of the time step. 

 

 

 

Step #7:  Calculate the volume of the "triangle" at the start of the time step. 

 

 
 

Step #8:  Calculate the depth down into the surface which will be burned during this time step. 

 

 
 

Step #9:  Calculate the effective radius of the inner holes at the end of this time step . 

 

 

 

Step #10:  Repeat Steps #1 through #7  at the end of this time step, to get . 
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Step #11:  Calculate the reduction in volume during this time step. 

 

 

 

When is the burning of the outer "triangles" complete? 

 

Burning will be complete when points ,  and  are coincident.  Setting the -values of points  and  

equal gives: 

 

 

____________________________________________________________________________________ 

The following figure illustrates the effect of holes in the web of the propellant grain I used in the earlier 

paper, which had an initial outer diameter of 6.9 millimeters.  Note that these curves use a constant 

burning rate of 50 millimeters (into the surface) per second.  This is simply a test to compare the rate at 

which the propellant is consumed.  The blue curve represents the burning when the grain has no holes, as 

was assumed in the earlier paper.  For the black curve, the holes have a diameter one-tenth that of the 

grain.  For the red curve, the holes are smaller, with a diameter only one-twentieth of the grain diameter.  

For the green curve, it is one-fiftieth.  In each case, the fraction burned is plotted with respect to time.  
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In order to make sure that burning processes illustrated in the graph are comparable, I adjusted the axial 

length of the grains to ensure that each grain contained the same volume of propellant. 

 

It is clear that the existence of holes causes the burning to take place more quickly.  Even so, the starting 

size of the holes has surprisingly little effect on the time it takes to consume the propellant.  The very fact 

that there are holes seems to be much more important than the holes' actual size, although larger holes do 

result in slightly faster consumption. 

 

There are two small black squares on the curves which represent the burning when there are holes.  The 

first (earlier in time) square is the moment when the grain separates into 12 "triangular" cylinders.  The 

later square is the moment when the inner "triangular" cylinders have been consumed and only the six 

outer "triangles" remain.  These two later phases arise only in the last 20% or less of the process. 

 

Bear in mind that I have assumed that there are seven holes in the grain, six holes arranged in a circle 

around a central one.  This is a common configuration, particularly for very large naval guns, but it is not 

the only configuration.  If a grain has fewer holes, then the burning rate will lie somewhere between the 

blue and green curves above.  An easy way to control the rate of burning, and thus to control the power of 

the resulting shot, is to use propellant with a different number of holes. 

 

Results from the Base Case simulation 

 

As a Base Case, I used holes with a diameter one-twentieth the diameter of the grains.  I avoided the use 

of artificial viscosity by setting the  viscosity coefficient to zero.  The following graph shows the 

results.  The speed of the shell along the barrel is the blue line, to be referenced to the vertical axis on the 

right-hand side.  The pressure at three points along the active chamber are plotted against the left-hand 

vertical axis.  They are the pressures at the breech (element #1), halfway along (element #1000) and next 

to the shell (element #2000). 

 

The pressure peaks at about 9,000 atmospheres and the shell reaches a speed of about 920 meters per 

second.  The addition of holes has dramatically increased the pressure and speed compared with the 

unpierced grains we looked at in the earlier paper.  The following graph shows the fraction of propellant 

burned with respect to time, both at the breech and right behind the shell.  Not only is all of the propellant 
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consumed (unlike the unpierced grains), but it is entirely consumed long before the shell reaches the end 

of the barrel. 

 

In fact, things are now happening too fast.  For this gun, the pressure should peak at about 4,000 

atmospheres and the shell should reach an exit speed of about 750 meters per second.  In the earlier paper, 

burning took place too slowly.  Now, it takes place too quickly.  The only difference is the number of 

holes in the web.  A tentative conclusion could be drawn that seven holes is two or three too many.   

 

The following surface chart shows the pressure (the vertical axis) through time (the horizontal axis) all 

along the active chamber (the depth axis).  There is a little evidence of discontinuities in the pressure, but 

no real shock waves. 
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Progressive ignition 

 

Up to this point, I have always assumed that combustion starts at the same time everywhere in the 

chamber.  That is not so.  Combustion starts at the breech and then propagates through the propellant 

down towards the shell.  As each bit of propellant starts to burn, it heats up and ignites a neighbouring bit.    

A really thorough analysis could capture this.  It would track the temperature of each element.  Only when 

the temperature reached the flash point temperature would the neighbouring element begin to burn.    

 

I have used a slightly simpler model for ignition.  I have assumed that the ignition point moves from the 

breech towards the shell at a constant speed.  I have used the speed of sound, 343.2 meters per second, for 

this constant speed.  Since the chamber is approximately one meter long, element #2000 (situated right 

next to the shell) does not start burning until about three milliseconds after element #1 (situated right next 

to the breech) starts burning.  The effects are dramatic; significant shock waves develop.  In order to carry 

through the numerical integration, I had to invoke artificial viscosity.  I set the two viscosity coefficients 

to  and .  The following graph shows the pressure (the vertical axis) through time (the 

horizontal axis) all along the active chamber (the depth axis). 

 

Introducing progressive ignition, rather than instantaneous ignition, did not do what I had anticipated it 

might do.  I had thought (hoped) that delaying the time at which elements were ignited would, through 

overlapping burning cycles, lead to an overall reduction in the peak pressure experienced.  That is 

definitely not the case.  The development of shock waves has led to peak pressures much higher than 

before.  That can be seen more clearly in the following graph, which shows the shell's speed (right-hand 

vertical axis) and the pressure at three element locations in the active chamber (left-hand vertical axis). 
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The peak pressure has increased to more than 15,000 atmospheres
1
.  The effect of the shock waves has 

even carried over into the shell's "jerk".  (The jerk is the rate-of-change of the shell's acceleration.  The 

discontinuities in the curve of the shell's speed with respect to time are periods of non-zero jerk.) 

 

The following graph shows how quickly the burning progressed at the breech end and next to the shell. 

 

 

                                                           
1
   Unlike the previous graph of this type, the legend lists two series for the maximum pressure, two series for the 

pressure at the breech, and so on.  There is no significance to this.  Excel limits the number of data points per series 

to 32,000.  Since there were more than 32,000 data points, more than one series needed to be defined in order to 

construct the graph.  Excel gives each series its own line in the legend.  
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The following graph shows the location (in meters from the breech) of the element having the highest 

pressure in the active chamber.  This is one way to represent the shock waves as they bounce back and 

forth between the breech and the shell.  I have overlaid on the graph a red line segment whose slope is the 

343.2 meter per second speed at which the ignition point propagates through the original bags of 

propellant.  It seems that the initial peak pressure lags the ignition point at about one half of this speed.  

 

In order to determine if the use of artificial viscosity has a significant effect on the results obtained from 

the numerical integration, I made another run (Case #3).  The only difference from Case #2 was that I 

increased the amount of artificial viscosity used, by setting the first viscosity coefficient to fifty, . 

The following graph shows the pressures and shell speed with respect to time.  These curves are almost 

identical to those obtained with .  Conclusion: artificial viscosity does not have any meaningful 

impact on the results of the integration. 
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Averaging pressure over surface area and time 

 

I have stated already that the pressures being calculated are unrealistically high.  I have also stated my 

belief that this occurs because the propellant grains for this gun should not have seven holes, but some 

lesser number, perhaps four or six.  Before re-doing the analysis for a lesser number of holes, though, I 

want to look into a different issue. 

 

The pressure-data for this gun that I have been looking at was recorded shortly after World War II.  I 

suspect that the pressure sensors used were some type of mechanical analogue devices.  I have no idea 

how quickly they could respond to rapid changes in pressure, such as the passage of a shock wave.  Like 

all sensors, their use would have introduced some degree of averaging over time and averaging over area 

(the size of the sensor's intake port). 

 

In this section, I want to take a look at how "big", physically and temporally, the peak pressures in the 

graphs above really are.   

 

Discretization of distance 

In the numerical simulation, the chamber was discretized into 2000 elements.  Since the chamber is 

approximately one meter long, the elements start off being one-half millimeter long.  By the time the shell 

reaches the end of the barrel, the active length of the gas region is about seven meters and the average 

element length has increased to about 3½ millimeters.  The highest pressures are not experienced when 

the shell is in either of these extreme locations; it is experienced when the shell is between a third and a 

half of the way down the barrel, when the element lengths are about two millimeters.   

 

Discretization of time 

In the numerical simulation, the integration time steps are variable.  They are shortest at times when the 

rates-of-change of pressure are highest, which happen to be the very times when the pressures are passing 

through their highest peak values.  The results of the simulation show that, a those times, the time step 

gets down to 100 picoseconds. 

 

What we can conclude from the discretization parameters is that the peak pressures shown in the graphs 

above represent the highest values which occur within distances of two millimeters and time periods of 

100 picoseconds.   

 

Peak pressures measured on such small scales of distance and time could turn out to be localized events, 

and not representative of the pressures in their neighbourhoods in space and time.  In order to gauge how 

representative the reported peaks are, I ran the Case #3 simulation again, with modifications to report 

each element's "pressure" in a different way.  In the modified version, an element's pressure (call this the 

"central" element) at any time step is defined as the average of the pressures inside certain elements at 

certain times.  To determine which pressure values would be included in the average, the routine looked 

backwards in time (from the given time step) by five microseconds and forwards in time by five 

microseconds.  At each time step during that 10 microsecond period, the routine looked through the 

locations of all 2000 elements.  If any element was within a distance of five millimeters of the central 

element at that time, its pressure was added to the average.  In short, the pressure for each element at each 

time is an average of the pressures which exist within five millimeters and five milliseconds. 

 

The following graph shows the pressures measured in this way with respect to the simulation time and the 

element's index number. 
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This is a nice-looking graph; the averaging process highlights the sharpness of the shock waves.  The 

peak pressures are certainly not localized phenomena.  They are significant on the scale of a centimeter 

and ten microseconds – large and long enough to burst a barrel.  The peak value shown here, after the 

averaging process, is just slightly less than 15,000 atmospheres.  Compare this to the peak pressure (stated 

on the usual per-element basis) shown in the previous line graph for Case #3.  There, the peak pressure 

was just slightly more than 15,000 atmospheres.  Averaging over time and space did not materially affect 

the values. 

_____________________________________________________ 

 

I have attached as Appendix ""A" a listing of the VB2010 Express code used for the Case #2 simulation. 

 

 

 

Jim Hawley 

© March 2015 

 

If you found this description helpful, please let me know.  If you spot any errors or omissions, please send 

an e-mail.  Thank you. 
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Appendix "A" 

 

Listing of the VB2010 code for the Case #2 simulation 

 

The program consists of a Windows Forms application (Form1) and three modules: Variables, Procedures 

and HoleCalculations. 

 

Windows Form application Form1 
Option Strict On 
Option Explicit On 
 
Public Class Form1 
    Inherits System.Windows.Forms.Form 
 
    Public Sub New() 
        InitializeComponent() 
        With Me 
            Text = "Holes in the propellant grains" 
            FormBorderStyle = Windows.Forms.FormBorderStyle.None 
            Size = New Drawing.Size(1000, 700) 
            CenterToScreen() 
            MinimizeBox = True 
            MaximizeBox = True 
            FormBorderStyle = Windows.Forms.FormBorderStyle.Fixed3D 
            With Me 
                Controls.Add(buttonSimulateWithHoles) 
                buttonSimulateWithHoles.BringToFront() 
                Controls.Add(buttonSimulateNoHoles) 
                buttonSimulateNoHoles.BringToFront() 
                Controls.Add(buttonExit) : buttonExit.BringToFront() 
                Controls.Add(labelResult) : labelResult.BringToFront() 
            End With 
            Visible = True 
            PerformLayout() 
            BringToFront() 
        End With 
    End Sub 
    
'////////////////////////////////////////////////////////////////////////////////////// 
'////////////////////////////////////////////////////////////////////////////////////// 
'// Controls for MainForm. 
 
    Private WithEvents buttonSimulateWithHoles As New Windows.Forms.Button With _ 
        {.Size = New Drawing.Size(120, 30), _ 
         .Location = New Drawing.Point(5, 5), _ 
         .Text = "Simulate with holes", .TextAlign = ContentAlignment.MiddleCenter} 
 
    Private WithEvents buttonSimulateNoHoles As New Windows.Forms.Button With _ 
        {.Size = New Drawing.Size(120, 30), _ 
         .Location = New Drawing.Point(5, 40), _ 
         .Text = "Simulate - No holes", .TextAlign = ContentAlignment.MiddleCenter} 
 
    Private WithEvents buttonExit As New Windows.Forms.Button With _ 
        {.Size = New Drawing.Size(120, 30), _ 
         .Location = New Drawing.Point(5, 75), _ 
         .Text = "Exit", .TextAlign = ContentAlignment.MiddleCenter} 
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    Public labelResult As New Windows.Forms.Label With _ 
        {.Size = New Drawing.Size(950, 600), _ 
         .Location = New Drawing.Point(125, 5), _ 
         .Text = "", .TextAlign = ContentAlignment.TopLeft, .Visible = True} 
    
'////////////////////////////////////////////////////////////////////////////////////// 
'////////////////////////////////////////////////////////////////////////////////////// 
'// Handlers for controls for MainForm. 
 
    Private Sub buttonSimulateWithHoles_Click() Handles _ 
        buttonSimulateWithHoles.MouseClick 
        SimulateWithHoles = True 
        RunCompleteSimulation() 
    End Sub 
 
    Private Sub buttonSimulateNoHoles_Click() Handles _ 
        buttonSimulateNoHoles.MouseClick 
        SimulateWithHoles = False 
        RunCompleteSimulation() 
    End Sub 
 
    Private Sub buttonExit_Click() Handles buttonExit.MouseClick 
        Application.Exit() 
    End Sub 
 
End Class 
 

 
Module Variables 
Option Strict On 
Option Explicit On 
 
Public Module Variables 
 
    ' Treatment of holes in grain 
    ' Set SimulateWithHoles to False to simulate without holes 
    Public SimulateWithHoles As Boolean = True 
 
    ' Simulation parameters: 
    '   NE = Number of gas elements 
    '   MaxSimTime = Maximum length of simulation, in seconds 
    '   deltaT = Initial duration of a time step, in seconds 
    '   Time = Simulation time, in seconds 
    '   deltaTSave = Time interval between writes to output text files 
    '   TimeOfNextSave = Time of next write to output text files 
    '   deltaNESave = Spatial interval between gas elements which will be saved 
    Public NE As Int32 = 2000 
    Public MaxSimTime As Double = 0.05 
    Public deltaT As Double = 0.0000001 
    Public Time As Double 
    Public deltaTSave As Double = 0.00001 
    Public TimeOfNextSave As Double 
    Public deltaNESave As Int32 = 20 
 
    ' Variables used to calculate the length of a time step 
    '   MaxChangeAllowed = If per-step change in Pi() or RHOi() exceeds this, reduce TS 
    '   MinChangeAllowed = If per-step change in Pi() and RHOi() are less, increase TS 
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    '   DecreaseInTS = Fraction to decrease time step if pressure change is too high 
    '   IncreaseInTS = Fraction to increase time step if pressure change is too low 
    '   MaxPressure = Maximum of pressure in all elements, for display purposes only 
    '   MaxPressureIndex = Index of element with maximum pressure, for display only 
    Public MaxChangeAllowed As Double = 0.001 
    Public MinChangeAllowed As Double = 0.00025 
    Public DecreaseInTS As Double = 0.9 
    Public IncreaseInTS As Double = 1.01 
    Public MaxPressure As Double 
    Public MaxPressureIndex As Int32 
 
    ' Important times: 
    '   TimeOfShellStart = Time at which the shell starts to move 
    '   TimeOfShellExit = Time at which the shell leaves the barrel 
    Public TimeofShellStart As Double 
    Public TimeOfShellExit As Double 
 
    ' Physical parameters of the gun: 
    '   Lchamber = Length of chamber 
    '   Lbarrel = Shell travel distance 
    '   Abarrel = Area of open barrel 
    '   Mshell = Mass of the shell 
    '   Pengband = Engraving band pressure 
    Public Lchamber As Double = 1.03        ' meters 
    Public Lbarrel As Double = 5.97         ' meters 
    Public Abarrel As Double = 0.0127       ' square meters 
    Public Mshell As Double = 31.8          ' kilograms 
    Public Pengband As Double = Val("4E7")  ' Newtons per square meter 
 
    ' Physical parameters of the propellant: 
    '   Mcharge = Total mass of propellant 
    '   Dgrain = Diameter of a grain of propellant 
    '   Lgrain = Original length of a grain of propellant 
    '   RHOgrain = Crystalline density of solid propellant 
    '   RHOLoad = Loading density of solid propellant 
    '   Q0 = Heat released from burning one kilogram of propellant 
    Public Mcharge As Double = 8.85         ' kilograms 
    Public Dgrain As Double = 0.0069        ' meters 
    Public Lgrain As Double = 0.012         ' meters 
    Public RHOgrain As Double = 1660        ' kilograms per cubic meter 
    Public RHOLoad As Double = 680          ' kilograms per cubic meter 
    Public Q0 As Double = 3430000           ' Joules per kilogram 
 
    ' Physical parameters for the holes in the grains of propellant: 
    '   Rgrain = Original radius of a grain of propellant 
    '   Rholes = Original radius of the holes in the webbing  
    '   RholesEndPhase1 = Hole radius when grain disintegrates 
    '   RholesEndPhase2 = Hole radius when inner "triangles" stop burning 
    '   RholesEndPhase3 = Hole radius when outer "triangles" stop burning 
    '   LgrainEff = Effective length of one grain, per element 
    '   AgrainEff = Effective cross-sectional area of one grain, per element 
    Public Rgrain As Double = Dgrain / 2    ' meters 
    Public Rholes As Double = Rgrain / 20   ' meters 
    Public RholesEndPhase1 As Double = (Rgrain + Rholes) / 4 
    Public RholesEndPhase2 As Double = 2 * RholesEndPhase1 / Math.Sqrt(3) 
    Public RholesEndPhase3 As Double = RholesEndPhase1 * (28 - (6 * Math.Sqrt(3))) / 13 
    Public LgrainEff As Double 
    Public AgrainEff As Double 
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    ' Physical parameters of the gas: 
    '   StoichRatio = Moles of gas produced per kilogram of propellant 
    '   Ridc = R, the Ideal Gas Constant 
    '   C1, C2 = Artificial viscosity coefficients 
    '   Cfr = Mass compensation coefficient for frictional forces 
    '   Bcovolume = Basic ideal gas co-volume correction "b" 
    Public StoichRatio As Double = 40       ' moles per kilogram 
    Public Rigc As Double = 8.31446         ' Joules per mole-degK 
    Public C1 As Double = 5                 ' Artificial viscosity coefficient #1 
    Public C2 As Double = C1 / 10           ' Artificial viscosity coefficient #2 
    Public Cfr As Double = 0.167            ' Mass compensation for frictional forces 
    Public Bcovolume As Double = 0.00095    ' cubic meters per kilogram 
 
    ' Initial conditions of the ambient air inside the barrel: 
    '   Patm = Atmospheric pressure 
    '   Tatm = Temperature inside the chamber 
    '   AirMW = Molecular weight of dry air 
    '   AirNi = Number of moles of original air inside each element 
    '   AirMi = Mass of original air inside each element 
    Public Patm As Double = 101300          ' Newtons per square meter 
    Public Tatm As Double = 100             ' degC 
    Public AirMW As Double = 0.02897        ' kilograms per mole 
    Public AirNi As Double                  ' moles 
    Public AirMi As Double                  ' kilograms 
 
    ' Ignition parameters  
    ' IgnitionShockWaveSpeeed = Propagation speed of ignition shock wave 
    '   Use 343.2 m/s for ignition wave 
    '   Use Val("+1E+20") for simultaneous start all along chamber 
    Public IgnitionShockWaveSpeed As Double = 343.2 
 
    ' Gas element variables: 
    ' Values for all elements and for two consecutive time steps are stored 
    ' in the following variables.  
    '   MiT = Total mass of propellant inside element #i (constant) 
    '   MiP0 = Original mass of propellant inside element #i 
    '   MiP(NE) = Mass of unburned propellant inside element #i at time T 
    '   MiG(NE) = Mass of propellant gas inside element #i at time T 
    '   Ni(NE) = Total moles of gas inside element #i at time T 
    '   Xi(NE) = Location of boundary faces at time T (At breech, Xi(0)=0 always) 
    '   Vi(NE) = Speed of boundary faces at time T-deltaT/2 (Vi(0)= 0 always) 
    '   Pi(NE) = Static pressure inside element #i at time T 
    '   Wi(NE) = Artificial viscosity inside element #i at time T 
    '   VOLi(NE) = Total volume of element #i at time T 
    '   VOLGasi(NE) = Gas volume of element #i at time T 
    '   BCoVoli(NE) = Co-volume correction inside element #i at time T 
    '   Ti(NE) = Temperature inside element #i at time T 
    '   Ui(NE) = Internal energy of element #i at time T 
    '   RHOi(NE) = Density inside element #i at time T 
    '   GAMMAi(NE) = Ratio of specific heats inside element #i at time T 
    '   Si(NE) = Speed of sound inside element #i at time T 
    '   deltaQi(NE) = Heat added to element #i during one time step 
    '   deltaNi(NE) = Moles of gas added to element #i during one time step 
    Public MiT As Double                                ' kilograms 
    Public MiP0 As Double                               ' kilograms 
    Public MiP(NE), MiP_previous(NE) As Double          ' kilograms 
    Public MiG(NE), MiG_previous(NE) As Double          ' kilograms 
    Public Ni(NE), Ni_previous(NE) As Double            ' moles 
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    Public Xi(NE), Xi_previous(NE) As Double            ' meters 
    Public Vi(NE), Vi_previous(NE) As Double            ' meters per second 
    Public Pi(NE), Pi_previous(NE) As Double            ' Newtons per square meter 
    Public Wi(NE), Wi_previous(NE) As Double            ' Newtons per square meter 
    Public VOLi(NE), VOLi_previous(NE) As Double        ' cubic meters 
    Public VOLGasi(NE), VOLGasi_previous(NE) As Double  ' cubic meters 
    Public BCoVoli(NE), BCoVoli_previous(NE) As Double  ' cubic meters 
    Public Ti(NE), Ti_previous(NE) As Double            ' degK 
    Public Ui(NE), Ui_previous(NE) As Double            ' Joules 
    Public RHOi(NE), RHOi_previous(NE) As Double        ' kilograms per cubic meter 
    Public GAMMAi(NE), GAMMAi_previous(NE) As Double 
    Public Si(NE), Si_previous(NE) As Double            ' meters per second 
    Public deltaQi(NE), deltaQi_previous(NE) As Double  ' Joules 
    Public deltaNi(NE), deltaNi_previous(NE) As Double  ' moles 
 
    ' Propellant variables: 
    ' Values for all elements and for two consecutive time steps are stored in the 
    ' following variables.  
    '   Bi(NE) = Burn rate inside element #i at time T 
    '   Rgraini(NE) = Radius of grains in element #i at time T 
    '   Rholesi(NE) = Radius of holes in element #i at time T 
    '   PropVOLi(NE) = Volume of propellant in element #i at time T 
    '   deltaMi(NE) = Mass of propellant burned during one time step 
    '   fi(NE) = Fraction of propellant burned in element #i at time T  
    Public Bi(NE), Bi_previous(NE) As Double             ' meters per second 
    Public Rgraini(NE), Rgraini_previous(NE) As Double   ' meters 
    Public Rholesi(NE), Rholesi_previous(NE) As Double   ' meters 
    Public PropVOLi(NE), PropVOLi_previous(NE) As Double ' cubic meters 
    Public deltaMi(NE), deltaMi_previous(NE) As Double   ' kilograms 
    Public fi(NE), fi_previous(NE) As Double 
 
    ' Projectile variables: 
    ' Values for the projectile for two consecutive time steps are stored in the 
    ' following variables. 
    '   Pshell = Pressure on rear face of shell at time T 
    '   Xshell = Location of rear face of shell at time T 
    '   Vshell = Speed of shell at time T-deltaT/2 
    '   ACCshell = Acceleration of shell at time T 
    '   CanShellMove is True when the shell has broken free from its band 
    Public Pshell, Pshell_previous As Double            ' Newtons per square meter 
    Public Xshell, Xshell_previous As Double            ' meters 
    Public Vshell, Vshell_previous As Double            ' meters per second 
    Public ACCshell, ACCshell_previous As Double        ' meters per second^2 
    Public CanShellMove As Boolean 
 
    ' Text file processing 
    Public ThisDirectory As String = FileSystem.CurDir.ToString 
    Public TextOutputFileName As String = "Naval_gun_simulation_" 
    ' Log of screen display 
    Public FileWriterMaster As System.IO.StreamWriter 
    ' Gas element variables 
    Public FileWriterMiP As System.IO.StreamWriter 
    Public FileWriterMiG As System.IO.StreamWriter 
    Public FileWriterNi As System.IO.StreamWriter 
    Public FileWriterXi As System.IO.StreamWriter 
    Public FileWriterVi As System.IO.StreamWriter 
    Public FileWriterPi As System.IO.StreamWriter 
    Public FileWriterWi As System.IO.StreamWriter 
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    Public FileWriterVOLi As System.IO.StreamWriter 
    Public FileWriterVOLGasi As System.IO.StreamWriter 
    Public FileWriterBCoVoli As System.IO.StreamWriter 
    Public FileWriterTi As System.IO.StreamWriter 
    Public FileWriterUi As System.IO.StreamWriter 
    Public FileWriterRHOi As System.IO.StreamWriter 
    Public FileWriterGAMMAi As System.IO.StreamWriter 
    Public FileWriterSi As System.IO.StreamWriter 
    Public FileWriterdeltaQi As System.IO.StreamWriter 
    Public FileWriterdeltaNi As System.IO.StreamWriter 
    ' Propellant variables 
    Public FileWriterBi As System.IO.StreamWriter 
    Public FileWriterRgraini As System.IO.StreamWriter 
    Public FileWriterRholesi As System.IO.StreamWriter 
    Public FileWriterPropVOLi As System.IO.StreamWriter 
    Public FileWriterdeltaMi As System.IO.StreamWriter 
    Public FileWriterfi As System.IO.StreamWriter 
    ' Projectile variables 
    Public FileWriterShell As System.IO.StreamWriter 
 
End Module 

 

 

Module Procedures 
Option Strict On 
Option Explicit On 
 
' List of subroutines: 
'   InitializeForSimulation() 
'   RunFullSimulation() 
'   ExecuteOneTimeStep() 
'   ShiftAllValuesToPreviousVariables() 
'   FindMaximumPressure() 
'   OpenAllOutputTextFiles() 
'   CloseAllOutputTextFiles() 
'   WriteHeadersToAllOutputTextFiles() 
'   WriteDataRowToAllOutputTextFiles() 
 
Public Module Procedures 
 
    Public Sub InitializeForSimulation() 
        ' This subroutine sets all quantities to their initial values, so  
        ' everything is ready to start the first time step. 
        ' 
        ' -------------------------------------------------------- 
        ' Deal with the ambient air in the chamber prior to firing 
        Dim TotalVolumeOfAir As Double = _ 
            Mcharge * ((1 / RHOLoad) - (1 / RHOgrain)) 
        Dim TotalMolesOfAir As Double = _ 
            Patm * TotalVolumeOfAir / (Rigc * (Tatm + 273.15)) 
        Dim TotalMassOfAir As Double = AirMW * TotalMolesOfAir 
        AirNi = TotalMolesOfAir / NE 
        AirMi = TotalMassOfAir / NE 
        ' -------------------------------------------------------- 
        ' 
        ' Set the initial MASS of propellant inside each element 
        MiP0 = Mcharge / NE 
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        MiT = MiP0 + AirMi 
        For J As Int32 = 1 To NE Step 1 
            MiP(J) = MiP0 
            MiG(J) = 0 
        Next J 
        ' 
        ' Set the initial VOLUME of propellant inside each element 
        For J As Int32 = 1 To NE Step 1 
            PropVOLi(J) = MiP(J) / RHOgrain 
            Rgraini(J) = Rgrain 
            If (SimulateWithHoles = True) Then 
                Rholesi(J) = Rholes 
            Else 
                Rholesi(J) = 0 
            End If 
        Next J 
        ' 
        ' Set the effective area and length of grains in each element 
        ' This is done for the sole purpose of calculating the volume of propellant 
        If (SimulateWithHoles = True) Then 
            AgrainEff = Math.PI * ((Rgrain ^ 2) - (7 * (Rholes ^ 2))) 
        Else 
            AgrainEff = Math.PI * (Rgrain ^ 2) 
        End If 
        LgrainEff = ((Mcharge / NE) / RHOgrain) / AgrainEff 
        ' 
        ' Set the unburned fractions 
        For J As Int32 = 1 To NE Step 1 
            fi(J) = 1 
        Next J 
        ' 
        ' Set initial locations of boundary faces 
        Xi(0) = 0 
        For J As Int32 = 1 To NE Step 1 
            Xi(J) = Lchamber * J / NE 
        Next J 
        Xshell = Lchamber 
        ' 
        ' Set the initial speeds 
        For J As Int32 = 1 To NE Step 1 
            Vi(J) = 0 
        Next J 
        Vshell = 0 
        ' 
        ' Set the initial pressure, volume, density and number of moles of air 
        For J As Int32 = 1 To NE Step 1 
            Pi(J) = Patm 
            VOLi(J) = Abarrel * (Xi(J) - Xi(J - 1)) 
            RHOi(J) = AirMi / (VOLi(J) - PropVOLi(J)) 
            Ni(J) = AirNi 
        Next J 
        ' 
        ' Set the internal energies 
        For J As Int32 = 1 To NE Step 1 
            Ui(J) = (Ni(J) * Rigc * (Tatm + 273.15)) / (1.333 - 1) 
        Next J 
    End Sub 
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    Public Sub RunCompleteSimulation() 
        Form1.labelResult.Text = "Starting simulation ..." 
        Form1.labelResult.Refresh() 
        ' 
        ' Initialize the vectors 
        InitializeForSimulation() 
        ' 
        ' Open the text output files 
        OpenAllOutputTextFiles() 
        WriteHeadersToAllOutputTextFiles() 
        ' 
        ' Save the starting values 
        Time = 0 
        WriteDataRowToAllOutputTextFiles() 
        TimeOfNextSave = Time + deltaTSave 
        ' 
        ' Set the control parameters 
        CanShellMove = False 
        Dim ScreenUpdateInterval As Int32 = 250 
        Dim ScreenUpdateCounter As Int32 = 250 
        Do 
            Time = Time + deltaT 
            ' Test to see if the simulation has timed out 
            If (Time >= MaxSimTime) Then 
                Exit Do 
            End If 
            ' Shift the present variables into their "previous" variants 
            ShiftAllValuesToPreviousVariables() 
            ' Run one time step 
            ExecuteOneTimeStep() 
            ' Find the change in maximum pressure 
            FindMaximumPressure(MaxPressure, MaxPressureIndex) 
            ' Test to see if it is time to write to the output text files 
            If (Time >= TimeOfNextSave) Then 
                WriteDataRowToAllOutputTextFiles() 
                TimeOfNextSave = Time + deltaTSave 
            End If 
            ' Test to see if the shell can start moving 
            If ((CanShellMove = False) And _ 
                (Pi(NE) >= Pengband)) Then 
                CanShellMove = True 
                TimeofShellStart = Time 
                Form1.labelResult.Text = Strings.Right( _ 
                    Form1.labelResult.Text & vbCrLf & _ 
                    "Shell starts moving at time = " & Trim(Str(Time)), 6000) 
                Form1.labelResult.Refresh() 
                FileWriterMaster.WriteLine( _ 
                    "Shell starts moving at time = " & Trim(Str(Time))) 
                Threading.Thread.Sleep(2000) 
            End If 
            ' Test to see if the shell has left the barrel 
            If (Xshell > (Lchamber + Lbarrel)) Then 
                TimeOfShellExit = Time 
                Form1.labelResult.Text = Strings.Right( _ 
                    Form1.labelResult.Text & vbCrLf & _ 
                    "Shell exits at time = " & Trim(Str(Time)), 6000) 
                Form1.labelResult.Refresh() 
                FileWriterMaster.WriteLine( _ 
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                    "Shell exits at time = " & Trim(Str(Time))) 
                ' Write the final values to the output text files 
                WriteDataRowToAllOutputTextFiles() 
                Exit Do 
            End If 
            ' Update the screen display 
            ScreenUpdateCounter = ScreenUpdateCounter + 1 
            If (ScreenUpdateCounter >= ScreenUpdateInterval) Then 
                Form1.labelResult.Text = Strings.Right( _ 
                    Form1.labelResult.Text & vbCrLf & _ 
                    "T(us)= " & FormatNumber(Time * 1000000, 2) & _ 
                    "  dT(us)= " & FormatNumber(deltaT * 1000000, 6) & _ 
                    "  MaxP= " & FormatNumber(MaxPressure, 0, , TriState.True) & _ 
                    "  MaxPindex= " & Trim(Str(MaxPressureIndex)) & _ 
                    "  P1= " & FormatNumber(Pi(1), 0, , , TriState.True) & _ 
                    "  Pne= " & FormatNumber(Pi(NE), 0, , , TriState.True) & _ 
                    "  Bne= " & FormatNumber(Bi(NE), 4) & _ 
                    "  fne= " & FormatNumber(fi(NE), 5) & _ 
                    "  f1= " & FormatNumber(fi(1), 5) & _ 
                    "  Vs= " & FormatNumber(Vshell, 2) & _ 
                    "  Wne= " & FormatNumber(Wi(NE), 0, , , TriState.True), _ 
                    6000) 
                Form1.labelResult.Refresh() 
                ' Save the new line to the Master text output file as well 
                FileWriterMaster.WriteLine( _ 
                    "Time= ," & Trim(Str(Time)) & _ 
                    ", with deltaT= ," & Trim(Str(deltaT)) & _ 
                    ", MaxP= ," & Trim(Str(MaxPressure)) & _ 
                    ", MaxPIndex= ," & Trim(Str(MaxPressureIndex)) & _ 
                    ", P1= ," & Trim(Str(Pi(1))) & _ 
                    ", Pne= ," & Trim(Str(Pi(NE))) & _ 
                    ", Wne= ," & Trim(Str(Wi(NE))) & _ 
                    ", Une= ," & Trim(Str(Ui(NE))) & _ 
                    ", Bne= ," & Trim(Str(Bi(NE))) & _ 
                    ", fne= ," & Trim(Str(fi(NE))) & _ 
                    ", f1= ," & Trim(Str(fi(1))) & _ 
                    ", Xs= ," & Trim(Str(Xshell)) & _ 
                    ", Vs= ," & Trim(Str(Vshell))) 
                ScreenUpdateCounter = 0 
            End If 
            ' Based on change in maximum pressure, change the time step if necessary 
            ' Equation (U) 
            Dim lRelChangeInP As Double 
            Dim lMaxRelChangeInP As Double 
            Dim lRelChangeInRHO As Double 
            Dim lMaxRelChangeInRHO As Double 
            lMaxRelChangeInP = Val("-1E+20") 
            lMaxRelChangeInRHO = Val("-1E+20") 
            For J As Int32 = 1 To NE Step 1 
                lRelChangeInP = _ 
                    Math.Abs((Pi(J) - Pi_previous(J)) / Pi_previous(J)) 
                lRelChangeInRHO = _ 
                    Math.Abs((RHOi(J) - RHOi_previous(J)) / RHOi_previous(J)) 
                If (lRelChangeInP > lMaxRelChangeInP) Then 
                    lMaxRelChangeInP = lRelChangeInP 
                End If 
                If (lRelChangeInRHO > lMaxRelChangeInRHO) Then 
                    lMaxRelChangeInRHO = lRelChangeInRHO 
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                End If 
            Next J 
            If ((lMaxRelChangeInP > MaxChangeAllowed) Or _ 
                (lMaxRelChangeInRHO > MaxChangeAllowed)) Then 
                deltaT = DecreaseInTS * deltaT 
            End If 
            If ((lMaxRelChangeInP < MinChangeAllowed) And _ 
                (lMaxRelChangeInRHO < MinChangeAllowed)) Then 
                deltaT = IncreaseInTS * deltaT 
            End If 
        Loop 
        ' Close the output text file 
        CloseAllOutputTextFiles() 
    End Sub 
 
    Public Sub ExecuteOneTimeStep() 
        ' This subroutine advances the simulation from time t to time t+deltaT once the 
        ' speeds of the boundary faces at time t+deltaT/2 have been calculated. 
        ' For example, Vi(j) is the speed of boundary face #j at time t+deltaT/2 
        '              Pi(j) is the pressure in element #j at time t+deltaT 
        ' If the Boolean flag CanShellMove is False, then the shell, and the RHS 
        ' boundary face of element #NE, are not permitted to move. 
        ' 
        ' Step #1: Equation (A) 
        Xi(0) = 0 
        For J As Int32 = 1 To (NE - 1) Step 1 
            Xi(J) = Xi_previous(J) + (Vi(J) * deltaT) 
        Next J 
        If (CanShellMove = True) Then 
            Xi(NE) = Xi_previous(NE) + (Vshell * deltaT) 
        Else 
            Xi(NE) = Xi_previous(NE) 
        End If 
        Xshell = Xi(NE) 
        ' 
        ' Step #2: Equation (B) 
        For J As Int32 = 1 To NE Step 1 
            VOLi(J) = (Xi(J) - Xi(J - 1)) * Abarrel 
        Next J 
        ' 
        ' Step #3: Burning equations 
        For J As Int32 = 1 To NE Step 1 
            If ((IgnitionShockWaveSpeed * Time) >= Xi_previous(J)) Then 
                ' Equation (C) 
                Bi(J) = Math.Exp(( _ 
                    (0.046696597 * ((Math.Log(Pi_previous(J) / Patm)) ^ 2)) + _ 
                    (0.34808898 * Math.Log(Pi_previous(J) / Patm)) + _ 
                    -0.572295873)) / 1000 
            Else 
                Bi(J) = 0 
            End If 
 
            ' /////////////////////////////////////////////////////////////////////////// 
            ' // Use different routines to calculate the mass of propellant burned 
            ' /////////////////////////////////////////////////////////////////////////// 
            If (SimulateWithHoles = True) Then 
                VolumeOfPropellantBurned_WithHoles( _ 
                    Rgraini_previous(J), _ 
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                    Rholesi_previous(J), _ 
                    Bi(J), _ 
                    deltaT, _ 
                    Rgraini(J), _ 
                    Rholesi(J), _ 
                    PropVOLi(J)) 
            Else 
                VolumeOfPropellantBurned_NoHoles( _ 
                    Rgraini_previous(J), _ 
                    Bi(J), _ 
                    deltaT, _ 
                    Rgraini(J), _ 
                    PropVOLi(J)) 
                Rholesi(J) = 0 
            End If 
 
            Dim DecreaseInVolume As Double = PropVOLi_previous(J) - PropVOLi(J) 
            deltaMi(J) = RHOgrain * DecreaseInVolume 
            ' 
            ' Check that burning does not consume more than 100% of the remaining mass 
            If (deltaMi(J) > MiP_previous(J)) Then 
                Rgraini(J) = 0 
                PropVOLi(J) = 0 
                deltaMi(J) = MiP_previous(J) 
            End If 
            ' Equation (E) 
            MiP(J) = MiP_previous(J) - deltaMi(J) 
            MiG(J) = MiG_previous(J) + deltaMi(J) 
            fi(J) = MiG(J) / MiP0 
        Next J 
        ' 
        ' Step #4: Equation (F) 
        For J As Int32 = 1 To NE Step 1 
            deltaQi(J) = Q0 * deltaMi(J) 
        Next J 
        ' 
        ' Step #5: Density 
        For J As Int32 = 1 To NE Step 1 
            'Equation (G) 
            VOLGasi(J) = VOLi(J) - (MiP(J) / RHOgrain) 
            ' Equation (H) 
            RHOi(J) = (MiG(J) + AirMi) / VOLGasi(J) 
        Next J 
        ' 
        ' Step #6: Co-volume correction 
        For J As Int32 = 1 To NE Step 1 
            ' Equation (I) 
            BCoVoli(J) = Bcovolume * (MiG(J) + AirMi) / (1 + (2 * RHOi(J) / 500)) 
            ' Equation (J) 
            deltaNi(J) = 40 * deltaMi(J) 
            ' Equation (K) 
            Ni(J) = Ni_previous(J) + deltaNi(J) 
        Next J 
        '  
        ' Step #7: Adiabatic Index 
        For J As Int32 = 1 To NE Step 1 
            ' Equation (L) 
            GAMMAi(J) = 1.333 + (0.567 * RHOi(J) / 1200) 
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        Next J 
        ' 
        ' Step #8: Internal energy and pressure 
        For J As Int32 = 1 To NE Step 1 
            Dim MaxNumOfIterations As Double = 1000 
            Dim NumOfIterations As Double = 0 
            ' Starting guess 
            Pi(J) = Pi_previous(J) 
            ' Loop 
            Do 
                ' Equation (M) 
                Si(J) = Math.Sqrt(GAMMAi(J) * Pi(J) / RHOi(J)) 
                ' Carry out the relative speed test 
                Dim deltaV As Double 
                If (J = 1) Then 
                    deltaV = -Vi(J) 
                Else 
                    deltaV = Vi(J - 1) - Vi(J) 
                End If 
                ' Equation (N) 
                If (deltaV > 0) Then 
                    Wi(J) = RHOi(J) * ( _ 
                        (C1 * deltaV * deltaV) + _ 
                        (C2 * Si(J) * Math.Abs(deltaV))) 
                Else 
                    Wi(J) = 0 
                End If 
                ' Equation (O) 
                Dim lFactor1 As Double 
                Dim lFactor2 As Double 
                lFactor1 = Pi(J) + Wi(J) + Pi_previous(J) + Wi_previous(J) 
                lFactor2 = VOLi(J) - VOLi_previous(J) 
                Ui(J) = Ui_previous(J) + deltaQi(J) - (0.5 * lFactor1 * lFactor2) 
                ' Equation (P) 
                Dim lFactor3 As Double 
                Dim P_New As Double 
                lFactor3 = VOLGasi(J) - BCoVoli(J) 
                P_New = (GAMMAi(J) - 1) * Ui(J) / lFactor3 
                ' Test for negative pressure 
                If (P_New <= 0) Then 
                    MsgBox("Error: Negative pressure.  Reduce time step.") 
                    Exit Sub 
                End If 
                ' Test for convergence 
                If (Math.Abs((P_New - Pi(J)) / Pi(J)) < 0.000000001) Then 
                    Pi(J) = P_New 
                    Exit Do 
                End If 
                ' Restrict the per-iteration adjustment in pressure 
                Dim MaxAbsChange As Double 
                MaxAbsChange = Math.Min(0.1 * Pi(J), Math.Abs(P_New - Pi(J))) 
                If (P_New > Pi(J)) Then 
                    Pi(J) = Pi(J) + MaxAbsChange 
                Else 
                    Pi(J) = Pi(J) - MaxAbsChange 
                End If 
                ' Test for too many iterations 
                NumOfIterations = NumOfIterations + 1 
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                If (NumOfIterations > MaxNumOfIterations) Then 
                    MsgBox("Error: Too many iterations.") 
                    Exit Sub 
                End If 
            Loop 
        Next J 
        ' 
        ' Step #9: Temperature 
        ' Equation (Q) 
        For J As Int32 = 1 To NE Step 1 
            Ti(J) = Pi(J) * (VOLGasi(J) - BCoVoli(J)) / (Ni(J) * Rigc) 
        Next J 
        ' 
        ' Step #10: Acceleration of the shell 
        ' Equation (R) 
        Dim EffectiveMshell As Double = Mshell / (1 - Cfr) 
        Pshell = Pi(NE) 
        ACCshell = (Pshell - Patm) * Abarrel / EffectiveMshell 
        ' 
        ' Step #11: Advance the speeds 
        ' Equation (S) 
        For J As Int32 = 1 To (NE - 1) Step 1 
            Dim lFactor1 As Double 
            lFactor1 = Pi(J + 1) + Wi(J + 1) - Pi(J) - Wi(J) 
            Vi(J) = Vi_previous(J) - (deltaT * lFactor1 * Abarrel / MiT) 
        Next J 
        ' Equation (T) 
        If (CanShellMove = True) Then 
            Vshell = Vshell_previous + (ACCshell * deltaT) 
        Else 
            Vshell = 0 
        End If 
        Vi(NE) = Vshell 
    End Sub 
 
    Public Sub ShiftAllValuesToPreviousVariables() 
        ' This subroutine is called at the end of every time step.  It moves the values 
        ' just calculated into their "previous" variants, in preparation for the next 
        ' time step. 
        Xi_previous(0) = Xi(0) 
        For J As Int32 = 1 To NE Step 1 
            ' Gas element variables 
            MiP_previous(J) = MiP(J) 
            MiG_previous(J) = MiG(J) 
            Ni_previous(J) = Ni(J) 
            Xi_previous(J) = Xi(J) 
            Vi_previous(J) = Vi(J) 
            Pi_previous(J) = Pi(J) 
            Wi_previous(J) = Wi(J) 
            VOLi_previous(J) = VOLi(J) 
            VOLGasi_previous(J) = VOLGasi(J) 
            BCoVoli_previous(J) = BCoVoli(J) 
            Ti_previous(J) = Ti(J) 
            Ui_previous(J) = Ui(J) 
            RHOi_previous(J) = RHOi(J) 
            GAMMAi_previous(J) = GAMMAi(J) 
            Si_previous(J) = Si(J) 
            deltaQi_previous(J) = deltaQi(J) 
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            deltaNi_previous(J) = deltaNi(J) 
            ' Propellant variables 
            Bi_previous(J) = Bi(J) 
            Rgraini_previous(J) = Rgraini(J) 
            Rholesi_previous(J) = Rholesi(J) 
            PropVOLi_previous(J) = PropVOLi(J) 
            deltaMi_previous(J) = deltaMi(J) 
            fi_previous(J) = fi(J) 
        Next J 
        ' Projectile variables 
        Pshell_previous = Pshell 
        Xshell_previous = Xshell 
        Vshell_previous = Vshell 
        ACCshell_previous = ACCshell 
    End Sub 
 
    Public Sub FindMaximumPressure( _ 
        ByRef MaxP As Double, ByRef MaxPIndex As Int32) 
        ' This function is called at the end of every time step.  It looks through the 
        ' current values of the pressure in all elements.  It returns the maximum value 
        ' and the index of the element with the maximum pressure. 
        MaxP = Val("-1E+20") 
        For J As Int32 = 1 To NE Step 1 
            If (Pi(J) > MaxP) Then 
                MaxP = Pi(J) 
                MaxPIndex = J 
            End If 
        Next J 
    End Sub 
 
    Public Sub OpenAllOutputTextFiles() 
        ' Log of screen display 
        FileWriterMaster = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "Master.txt") 
        ' Gas element variables 
        FileWriterMiP = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "MiP.txt") 
        FileWriterMiG = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "MiG.txt") 
        FileWriterNi = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "Ni.txt") 
        FileWriterXi = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "Xi.txt") 
        FileWriterVi = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "Vi.txt") 
        FileWriterPi = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "Pi.txt") 
        FileWriterWi = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "Wi.txt") 
        FileWriterVOLi = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "VOLi.txt") 
        FileWriterVOLGasi = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "VOLGasi.txt") 
        FileWriterBCoVoli = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "BCoVoli.txt") 
        FileWriterTi = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "Ti.txt") 
        FileWriterUi = New System.IO.StreamWriter( _ 
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            ThisDirectory & "\" & TextOutputFileName & "Ui.txt") 
        FileWriterRHOi = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "RHOi.txt") 
        FileWriterGAMMAi = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "GAMMAi.txt") 
        FileWriterSi = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "Si.txt") 
        FileWriterdeltaQi = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "deltaQi.txt") 
        FileWriterdeltaNi = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "deltaNi.txt") 
        ' Propellant variables 
        FileWriterBi = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "Bi.txt") 
        FileWriterRgraini = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "Rgraini.txt") 
        FileWriterRholesi = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "Rholesi.txt") 
        FileWriterPropVOLi = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "PropVOLi.txt") 
        FileWriterdeltaMi = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "deltaMi.txt") 
        FileWriterfi = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "fi.txt") 
        ' Projectile variables 
        FileWriterShell = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "Shell.txt") 
    End Sub 
 
    Public Sub CloseAllOutputTextFiles() 
        ' Log of screen display 
        FileWriterMaster.Close() 
        ' Gas element variables 
        FileWriterMiP.Close() 
        FileWriterMiG.Close() 
        FileWriterNi.Close() 
        FileWriterXi.Close() 
        FileWriterVi.Close() 
        FileWriterPi.Close() 
        FileWriterWi.Close() 
        FileWriterVOLi.Close() 
        FileWriterVOLGasi.Close() 
        FileWriterBCoVoli.Close() 
        FileWriterTi.Close() 
        FileWriterUi.Close() 
        FileWriterRHOi.Close() 
        FileWriterGAMMAi.Close() 
        FileWriterSi.Close() 
        FileWriterdeltaQi.Close() 
        FileWriterdeltaNi.Close() 
        ' Propellant variables 
        FileWriterBi.Close() 
        FileWriterRgraini.Close() 
        FileWriterRholesi.Close() 
        FileWriterPropVOLi.Close() 
        FileWriterdeltaMi.Close() 
        FileWriterfi.Close() 
        ' Projectile variables 
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        FileWriterShell.Close() 
    End Sub 
 
    Public Sub WriteHeadersToAllOutputTextFiles() 
        ' Log of screen display 
        FileWriterMiP.Write("Time, ") 
        ' Gas element variables 
        FileWriterMiG.Write("Time, ") 
        FileWriterNi.Write("Time, ") 
        FileWriterXi.Write("Time, ") 
        FileWriterVi.Write("Time, ") 
        FileWriterPi.Write("Time, ") 
        FileWriterWi.Write("Time, ") 
        FileWriterVOLi.Write("Time, ") 
        FileWriterVOLGasi.Write("Time, ") 
        FileWriterBCoVoli.Write("Time, ") 
        FileWriterTi.Write("Time, ") 
        FileWriterUi.Write("Time, ") 
        FileWriterRHOi.Write("Time, ") 
        FileWriterGAMMAi.Write("Time, ") 
        FileWriterSi.Write("Time, ") 
        FileWriterdeltaQi.Write("Time, ") 
        FileWriterdeltaNi.Write("Time, ") 
        ' Propellant variables 
        FileWriterBi.Write("Time, ") 
        FileWriterRgraini.Write("Time, ") 
        FileWriterRholesi.Write("Time, ") 
        FileWriterPropVOLi.Write("Time, ") 
        FileWriterdeltaMi.Write("Time, ") 
        FileWriterfi.Write("Time, ") 
        ' Projectile variables 
        FileWriterShell.WriteLine("Time, Xshell, Vshell, ACCshell, Pshell") 
        For K As Int32 = 0 To (NE - 1) Step deltaNESave 
            Dim ElementIndex As Int32 
            If (K = 0) Then 
                ElementIndex = 1 
            Else 
                ElementIndex = K 
            End If 
            ' Gas element variables 
            FileWriterMiP.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterMiG.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterNi.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterXi.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterVi.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterPi.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterWi.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterVOLi.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterVOLGasi.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterBCoVoli.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterTi.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterUi.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterRHOi.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterGAMMAi.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterSi.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterdeltaQi.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterdeltaNi.Write(Trim(Str(ElementIndex)) & ", ") 
            ' Propellant variables 
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            FileWriterBi.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterRgraini.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterRholesi.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterPropVOLi.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterdeltaMi.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterfi.Write(Trim(Str(ElementIndex)) & ", ") 
        Next K 
        ' Gas element variables 
        FileWriterMiP.WriteLine(Trim(Str(NE))) 
        FileWriterMiG.WriteLine(Trim(Str(NE))) 
        FileWriterNi.WriteLine(Trim(Str(NE))) 
        FileWriterXi.WriteLine(Trim(Str(NE))) 
        FileWriterVi.WriteLine(Trim(Str(NE))) 
        FileWriterPi.WriteLine(Trim(Str(NE))) 
        FileWriterWi.WriteLine(Trim(Str(NE))) 
        FileWriterVOLi.WriteLine(Trim(Str(NE))) 
        FileWriterVOLGasi.WriteLine(Trim(Str(NE))) 
        FileWriterBCoVoli.WriteLine(Trim(Str(NE))) 
        FileWriterTi.WriteLine(Trim(Str(NE))) 
        FileWriterUi.WriteLine(Trim(Str(NE))) 
        FileWriterRHOi.WriteLine(Trim(Str(NE))) 
        FileWriterGAMMAi.WriteLine(Trim(Str(NE))) 
        FileWriterSi.WriteLine(Trim(Str(NE))) 
        FileWriterdeltaQi.WriteLine(Trim(Str(NE))) 
        FileWriterdeltaNi.WriteLine(Trim(Str(NE))) 
        ' Propellant variables 
        FileWriterBi.WriteLine(Trim(Str(NE))) 
        FileWriterRgraini.WriteLine(Trim(Str(NE))) 
        FileWriterRholesi.WriteLine(Trim(Str(NE))) 
        FileWriterPropVOLi.WriteLine(Trim(Str(NE))) 
        FileWriterdeltaMi.WriteLine(Trim(Str(NE))) 
        FileWriterfi.WriteLine(Trim(Str(NE))) 
    End Sub 
 
    Public Sub WriteDataRowToAllOutputTextFiles() 
        ' Gas element variables 
        FileWriterMiP.Write(Trim(Str(Time)) & ", ") 
        FileWriterMiG.Write(Trim(Str(Time)) & ", ") 
        FileWriterNi.Write(Trim(Str(Time)) & ", ") 
        FileWriterXi.Write(Trim(Str(Time)) & ", ") 
        FileWriterVi.Write(Trim(Str(Time)) & ", ") 
        FileWriterPi.Write(Trim(Str(Time)) & ", ") 
        FileWriterWi.Write(Trim(Str(Time)) & ", ") 
        FileWriterVOLi.Write(Trim(Str(Time)) & ", ") 
        FileWriterVOLGasi.Write(Trim(Str(Time)) & ", ") 
        FileWriterBCoVoli.Write(Trim(Str(Time)) & ", ") 
        FileWriterTi.Write(Trim(Str(Time)) & ", ") 
        FileWriterUi.Write(Trim(Str(Time)) & ", ") 
        FileWriterRHOi.Write(Trim(Str(Time)) & ", ") 
        FileWriterGAMMAi.Write(Trim(Str(Time)) & ", ") 
        FileWriterSi.Write(Trim(Str(Time)) & ", ") 
        FileWriterdeltaQi.Write(Trim(Str(Time)) & ", ") 
        FileWriterdeltaNi.Write(Trim(Str(Time)) & ", ") 
        ' Propellant variables 
        FileWriterBi.Write(Trim(Str(Time)) & ", ") 
        FileWriterRgraini.Write(Trim(Str(Time)) & ", ") 
        FileWriterRholesi.Write(Trim(Str(Time)) & ", ") 
        FileWriterPropVOLi.Write(Trim(Str(Time)) & ", ") 
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        FileWriterdeltaMi.Write(Trim(Str(Time)) & ", ") 
        FileWriterfi.Write(Trim(Str(Time)) & ", ") 
        For K As Int32 = 0 To (NE - 1) Step deltaNESave 
            Dim ElementIndex As Int32 
            If (K = 0) Then 
                ElementIndex = 1 
            Else 
                ElementIndex = K 
            End If 
            ' Gas element variables 
            FileWriterMiP.Write(Trim(Str(MiP(ElementIndex))) & ", ") 
            FileWriterMiG.Write(Trim(Str(MiG(ElementIndex))) & ", ") 
            FileWriterNi.Write(Trim(Str(Ni(ElementIndex))) & ", ") 
            FileWriterXi.Write(Trim(Str(Xi(ElementIndex))) & ", ") 
            FileWriterVi.Write(Trim(Str(Vi(ElementIndex))) & ", ") 
            FileWriterPi.Write(Trim(Str(Pi(ElementIndex))) & ", ") 
            FileWriterWi.Write(Trim(Str(Wi(ElementIndex))) & ", ") 
            FileWriterVOLi.Write(Trim(Str(VOLi(ElementIndex))) & ", ") 
            FileWriterVOLGasi.Write(Trim(Str(VOLGasi(ElementIndex))) & ", ") 
            FileWriterBCoVoli.Write(Trim(Str(BCoVoli(ElementIndex))) & ", ") 
            FileWriterTi.Write(Trim(Str(Ti(ElementIndex))) & ", ") 
            FileWriterUi.Write(Trim(Str(Ui(ElementIndex))) & ", ") 
            FileWriterRHOi.Write(Trim(Str(RHOi(ElementIndex))) & ", ") 
            FileWriterGAMMAi.Write(Trim(Str(GAMMAi(ElementIndex))) & ", ") 
            FileWriterSi.Write(Trim(Str(Si(ElementIndex))) & ", ") 
            FileWriterdeltaQi.Write(Trim(Str(deltaQi(ElementIndex))) & ", ") 
            FileWriterdeltaNi.Write(Trim(Str(deltaNi(ElementIndex))) & ", ") 
            ' Propellant variables 
            FileWriterBi.Write(Trim(Str(Bi(ElementIndex))) & ", ") 
            FileWriterRgraini.Write(Trim(Str(Rgraini(ElementIndex))) & ", ") 
            FileWriterRholesi.Write(Trim(Str(Rholesi(ElementIndex))) & ", ") 
            FileWriterPropVOLi.Write(Trim(Str(PropVOLi(ElementIndex))) & ", ") 
            FileWriterdeltaMi.Write(Trim(Str(deltaMi(ElementIndex))) & ", ") 
            FileWriterfi.Write(Trim(Str(fi(ElementIndex))) & ", ") 
        Next K 
        ' Gas element variables 
        FileWriterMiP.WriteLine(Trim(Str(MiP(NE)))) 
        FileWriterMiG.WriteLine(Trim(Str(MiG(NE)))) 
        FileWriterNi.WriteLine(Trim(Str(Ni(NE)))) 
        FileWriterXi.WriteLine(Trim(Str(Xi(NE)))) 
        FileWriterVi.WriteLine(Trim(Str(Vi(NE)))) 
        FileWriterPi.WriteLine(Trim(Str(Pi(NE)))) 
        FileWriterWi.WriteLine(Trim(Str(Wi(NE)))) 
        FileWriterVOLi.WriteLine(Trim(Str(VOLi(NE)))) 
        FileWriterVOLGasi.WriteLine(Trim(Str(VOLGasi(NE)))) 
        FileWriterBCoVoli.WriteLine(Trim(Str(BCoVoli(NE)))) 
        FileWriterTi.WriteLine(Trim(Str(Ti(NE)))) 
        FileWriterUi.WriteLine(Trim(Str(Ui(NE)))) 
        FileWriterRHOi.WriteLine(Trim(Str(RHOi(NE)))) 
        FileWriterGAMMAi.WriteLine(Trim(Str(GAMMAi(NE)))) 
        FileWriterSi.WriteLine(Trim(Str(Si(NE)))) 
        FileWriterdeltaQi.WriteLine(Trim(Str(deltaQi(NE)))) 
        FileWriterdeltaNi.WriteLine(Trim(Str(deltaNi(NE)))) 
        ' Propellant variables 
        FileWriterBi.WriteLine(Trim(Str(Bi(NE)))) 
        FileWriterRgraini.WriteLine(Trim(Str(Rgraini(NE)))) 
        FileWriterRholesi.WriteLine(Trim(Str(Rholesi(NE)))) 
        FileWriterPropVOLi.WriteLine(Trim(Str(PropVOLi(NE)))) 
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        FileWriterdeltaMi.WriteLine(Trim(Str(deltaMi(NE)))) 
        FileWriterfi.WriteLine(Trim(Str(fi(NE)))) 
        ' Projectile variables 
        FileWriterShell.WriteLine(Trim(Str(Time)) & ", " & Trim(Str(Xshell)) & ", " & _ 
            Trim(Str(Vshell)) & ", " & Trim(Str(ACCshell)) & ", " & Trim(Str(Pshell))) 
    End Sub 
 
End Module 

 

 

Module HoleCalculations 
Option Strict On 
Option Explicit On 
 
Public Module HoleCalculations 
 
    ' List of subroutines: 
    '   VolumeOfPropellantBurned_WithHoles() 
    '   VolumeOfPropellantBurned_NoHoles() 
 
    Public Sub VolumeOfPropellantBurned_WithHoles( _ 
        ByVal lRgrainStart As Double, _ 
        ByVal lRholesStart As Double, _ 
        ByVal lBurnRate As Double, _ 
        ByVal lTimeStep As Double, _ 
        ByRef lRgrainEnd As Double, _ 
        ByRef lRholesEnd As Double, _ 
        ByRef lVolumeEnd As Double) 
        ' 
        ' /////////////////////////////////////////////////////////////////////////////// 
        ' // Phase 1 burning - Grain is intact 
        ' /////////////////////////////////////////////////////////////////////////////// 
        Dim lBurnDepth As Double 
        If (lRholesStart < RholesEndPhase1) Then 
            ' Calculate the depth burned during this time step 
            lBurnDepth = lBurnRate * lTimeStep 
            ' Calculate new radii for the grain and the holes 
            lRgrainEnd = lRgrainStart - lBurnDepth 
            lRholesEnd = lRholesStart + lBurnDepth 
            ' Calculate the new volume 
            lVolumeEnd = Math.PI * _ 
          ((lRgrainEnd ^ 2) - (7 * (lRholesEnd ^ 2))) * LgrainEff 
            Exit Sub 
        End If 
        ' 
        ' /////////////////////////////////////////////////////////////////////////////// 
        ' // Calculate new hole radii for Phase 2 and Phase 3 burning 
        ' /////////////////////////////////////////////////////////////////////////////// 
        ' Calculate the depth burned during this time step 
        lBurnDepth = lBurnRate * lTimeStep 
        ' Calculate new radius for the holes 
        lRholesEnd = lRholesStart + lBurnDepth 
        ' 
        ' /////////////////////////////////////////////////////////////////////////////// 
        ' // Phase 2 burning - Grain has disintegrated; 12 "triangles" are burning 
        ' /////////////////////////////////////////////////////////////////////////////// 
        Dim lFactor1, lFactor2, lFactor3, lFactor4, lFactor5 As Double 
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        Dim lAlphaEnd, lLengthADEnd As Double 
        Dim lAreaStraightTriangle As Double 
        Dim lAreaCircularSegment As Double 
        Dim lAreaInnerTriangle As Double 
        If (lRholesEnd < RholesEndPhase2) Then 
            ' Calculate angle alpha 
            lFactor1 = Math.Sqrt((lRholesEnd ^ 2) - (RholesEndPhase1 ^ 2)) 
            lFactor2 = (Math.Sqrt(3) * RholesEndPhase1) - lFactor1 
            lFactor3 = RholesEndPhase1 + (Math.Sqrt(3) * lFactor1) 
            lAlphaEnd = _ 
                Math.Atan2(lFactor2, lFactor3) - Math.Atan2(lFactor1, RholesEndPhase1) 
            ' Calculate the length of line segment AD 
            lFactor4 = RholesEndPhase1 - (0.5 * lFactor3) 
            lFactor5 = lFactor1 - (0.5 * lFactor2) 
            lLengthADEnd = Math.Sqrt((lFactor4 ^ 2) + (lFactor5 ^ 2)) 
            ' Calculate the area of the straight-sided triangle  
            lAreaStraightTriangle = Math.Sqrt(3) * (lLengthADEnd ^ 2) / 4 
            ' Calculate the area of the circular segments 
            lFactor2 = 0.5 * lAlphaEnd * (lRholesEnd ^ 2) 
            lFactor3 = 0.5 * lLengthADEnd * lRholesEnd * Math.Cos(lAlphaEnd / 2) 
            lAreaCircularSegment = lFactor2 - lFactor3 
            ' Calculate the area of one inner "triangle" 
            lAreaInnerTriangle = lAreaStraightTriangle - (3 * lAreaCircularSegment) 
        Else 
            lAreaInnerTriangle = 0 
        End If 
        ' 
        ' /////////////////////////////////////////////////////////////////////////////// 
        ' // Phase 3 burning - Only six outer "triangles" are burning 
        ' /////////////////////////////////////////////////////////////////////////////// 
        Dim lBetaEnd, lThetaEnd As Double 
        Dim lLengthGIEnd, lLengthOZEnd, lLengthOEEnd, lLengthEZEnd As Double 
        Dim lAreaGreen, lAreaViolet As Double 
        Dim lAreaOuterTriangle As Double 
        If (lRholesEnd < RholesEndPhase3) Then 
            ' Calculate angle beta 
            lFactor1 = Math.PI / 3 
            lFactor2 = Math.Sqrt( _ 
                ((3 * RholesEndPhase1) - lRholesEnd) * (lRholesEnd - RholesEndPhase1)) 
            lFactor3 = (5 * RholesEndPhase1) - (2 * lRholesEnd) 
            lBetaEnd = lFactor1 - (2 * Math.Atan2(lFactor2, lFactor3)) 
            ' Calculate angle theta 
            lFactor1 = _ 
                (Math.Sqrt(3) * RholesEndPhase1) + _ 
                Math.Sqrt((lRholesEnd ^ 2) - (RholesEndPhase1 ^ 2)) 
            lFactor2 = _ 
                -RholesEndPhase1 + _ 
                Math.Sqrt(3 * ((lRholesEnd ^ 2) - (RholesEndPhase1 ^ 2))) 
            lFactor3 = Math.Sqrt( _ 
                ((3 * RholesEndPhase1) - lRholesEnd) * (lRholesEnd - RholesEndPhase1)) 
            lFactor4 = (3 * RholesEndPhase1) - (2 * lRholesEnd) 
            lThetaEnd = Math.Atan2(lFactor1, lFactor2) - Math.Atan2(lFactor3, lFactor4) 
            ' Calculate the length of line segment GI 
            lLengthGIEnd = _ 
                2 * ((4 * RholesEndPhase1) - lRholesEnd) * Math.Sin(lBetaEnd / 2) 
            ' Calculate the length of line segment OZ 
            lLengthOZEnd = ((4 * RholesEndPhase1) - lRholesEnd) * Math.Cos(lBetaEnd / 2) 
            ' Calculate the length of line segment OE 
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            lFactor1 = _ 
                (3 * RholesEndPhase1) + _ 
                Math.Sqrt(3 * ((lRholesEnd ^ 2) - (RholesEndPhase1 ^ 2))) 
            lFactor2 = _ 
                (Math.Sqrt(3) * RholesEndPhase1) + _ 
                Math.Sqrt((lRholesEnd ^ 2) - (RholesEndPhase1 ^ 2)) 
            lLengthOEEnd = 0.5 * Math.Sqrt((lFactor1 ^ 2) + (lFactor2 ^ 2)) 
            ' Calculate the length of line segment EZ 
            lLengthEZEnd = lLengthOZEnd - lLengthOEEnd 
            ' Calculate the area of the straight-sided triangle  
            lAreaStraightTriangle = 0.5 * lLengthGIEnd * lLengthEZEnd 
            ' Calculate the area of the green circular segments 
            lFactor1 = ((4 * RholesEndPhase1) - lRholesEnd) ^ 2 
            lFactor2 = lBetaEnd - Math.Sin(lBetaEnd) 
            lAreaGreen = 0.5 * lFactor1 * lFactor2 
            ' Calculate the area of the violet circular segment 
            lFactor1 = lRholesEnd ^ 2 
            lFactor2 = lThetaEnd - Math.Sin(lThetaEnd) 
            lAreaViolet = 0.5 * lFactor1 * lFactor2 
            ' Calculate the area of one outer "triangle" 
            lAreaOuterTriangle = lAreaStraightTriangle + lAreaGreen - (2 * lAreaViolet) 
        Else 
            lAreaOuterTriangle = 0 
        End If 
        ' 
        ' /////////////////////////////////////////////////////////////////////////////// 
        ' Calculate total volume of all "triangles" in Phases 2 and 3 
        ' /////////////////////////////////////////////////////////////////////////////// 
        ' Calculate the new volume 
        lVolumeEnd = 6 * (lAreaInnerTriangle + lAreaOuterTriangle) * LgrainEff 
    End Sub 
 
    Public Sub VolumeOfPropellantBurned_NoHoles( _ 
        ByVal lRgrainStart As Double, _ 
        ByVal lBurnRate As Double, _ 
        ByVal lTimeStep As Double, _ 
        ByRef lRgrainEnd As Double, _ 
        ByRef lVolumeEnd As Double) 
        Dim lBurnDepth As Double 
        ' Calculate the depth burned during this time step 
        lBurnDepth = lBurnRate * lTimeStep 
        ' Calculate new radius for the grain 
        lRgrainEnd = lRgrainStart - lBurnDepth 
        ' Calculate the new volume 
        lVolumeEnd = Math.PI * (lRgrainEnd ^ 2) * LgrainEff 
    End Sub 
 
End Module 
 


