
~ 1 ~

Interior ballistics of a large naval gun or artillery piece

Interior ballistics describes what happens inside the barrel. The behaviour of the gas released as the

propellant burns lies at the heart of the problem.

The following cross-section of a 12-inch gun was taken from Ordnance and Gunnery: A textbook

prepared for the Cadets of the United States Military Academy, by Ormon Lissak, 1907. The layout is

typical of large naval guns and artillery pieces, even a century later.

The projectile, which I will call the "shell", for this gun weighs about 1,130 pounds. The powder charge,

which I will call the "propellant", weighs 360 pounds. For ease in manhandling, the charge is stowed in

four silk bags each containing 90 pounds. After the shell is rammed home through the breech, the bags of

propellant are thrown into the chamber. It can be seen that the propellant does not fill the chamber

completely. The propellant for this gun is about 90% nitrocellulose. Nitrocellulose burns relatively

slowly, so there are additives like nitroglycerin to help get the burning started quickly over the entire

exposed surface area of the propellant. There are also chemical stabilizers and gelatinizing agents. The

propellant is molded into small cylinders, called "grains". For this gun, the grains have a diameter of

about 7/8-inch and a length of about 1-1/2 inch.

The physical shape and size of the grains is not a trivial matter. The objective of their geometry is to

control, and particularly to slow down, the rate at which they burn. Contrary to popular belief, the

propellant does not explode. Nor does it burn up quickly compared with the time it takes the shell to

travel down the barrel. In the ideal case, the propellant would continue to burn during the entire time the

shell remains inside the barrel. Indeed, it sometimes occurs that unburned propellant is ejected along with

the shell.

Interior ballistics

Exterior ballistics

~ 2 ~

The following figure shows the simplifications to the geometry I am going to make. Certain of the basic

quantities are also defined.

I am going to analyze the gas in one-dimension, along the central axis of the gun. Distance along this axis

will be measured by the -co-ordinate, as shown in the following figure. I will assume that the properties

of the gas are the same all across the circular cross-section at each longitudinal -station. It is therefore

convenient to assume that the chamber (in which the propellant is placed) has the same radius as the

barrel, as is shown in the figure above.

It is apparent that the breech is at . At the time of ignition, the aft face of the shell is at the forward

end of the chamber, that is, at . The shell travels a distance inside the barrel, and leaves the

influence of the propellant when its aft face is at co-ordinate . It may be that the rear end of

the shell is tapered so there is a gap between the circumference at the rear end and the inside of the barrel

while the shell is exiting. If so, that can be compensated for in the modeling by setting the length of the

barrel to some value a little less than the physical length of the barrel.

The mathematical model for firing this gun can be captured in seven relationships, relating to:

1. Conservation of mass of the gas

2. Conservation of momentum of the gas

3. Conservation of internal energy of the gas

4. Description of the heat generated as the propellant is burned

5. Dynamic equation governing the acceleration of the shell

6. Thermal equation of state for the gas, relating its physical parameters to temperature

7. Calorific equation of state for the gas, relating its physical properties to energy

I will deal with each relationship in a separate section.

Breech is at

The properties of the gas are

constant across each section.

Radius

Area

Mass of shell

Length of

chamber
Length of

barrel

Mass of propellant

Speed of shell

~ 3 ~

Part 1 – Conservation of mass of the gas

The bags containing the grains of propellant are cylindrical. Typically, a flat pancake made from another

kind of explosive is inserted into a pocket at each end of the bag. The gun is fired by igniting these flat

pancakes, which are used because they are easier to ignite than the propellant itself. Since the objective

of the pancakes is to initiate burning on the entire surface area of all the grains in all the bags, there will

be a great commotion during ignition. The pressure inside the chamber will rise sharply. Typically, the

shell will be held back until the pressure reaches a certain value, determined by the engraving band, after

which the shell will be allowed to begin accelerating down the barrel.

I have given this description of the ignition to justify the assumption I will make about the location of the

propellant grains. I will assume that, at all times, the grains of propellant are uniformly distributed

throughout the volume between the breech and the rear face of the shell. In other words, the commotion

inside the barrel jostles the grains in such a way that they do not remain inside the chamber once the shell

begins moving. They move apart from one another, taking advantage of the increased volume as it

becomes available.

This assumption allows us to build conservation of mass into the behaviour of the gas right from the

outset. Here is what I will do. I will divide the volume occupied by the gas at any instant of time into

(a large number) of "elements", each of which will be a thin disk. Initially, the thin disks will have the

same thickness and, since the length of the chamber is , that thickness will be equal to . Since the

total original mass of the propellant is , the mass of (unburned) propellant initially contained

inside each thin disk will be equal to .

I am going to arrange things so that the total mass contained inside each thin disk does not change with

time. It remains constant at . The proportion between unburned propellant and gas molecules

will change as time progresses, but the total mass will remain unchanged. What does change with time is

the -locations of the faces of the disks. The numbering scheme I propose to use is illustrated in the

following figure. I will use the symbol for the -location of the shell-end face of the
th
 element at a

particular time . The figure shows the locations of the faces of element # at time and again at a later

time . This
th
 element is shaded in grey. Unless both faces moved by the same distance from time

to time , the volume of element # will have changed. The important thing is that we will cause the

equations of motion to move the faces so that the same gas is always present inside element # . Hence,

mass will be conserved.

It follows from these definitions that the location of the breech end of the
st
 element, that is , will be

zero at all times . It will not move. The barrel end of the last element, that is element # , is located at

. At all times, this will be the rear face of the shell.

Time

Time

~ 4 ~

 Part 2 – Conservation of momentum of the gas

In this section, I will look at conservation of momentum of the gas. Taken along with conservation of

mass from the previous section, the two ideas will ensure the conservation of the gas's kinetic energy. If

we were considering potential energy in our model of the gun, we would include the potential energy of

the gas here, along with its kinetic energy. Even if the barrel of the gun is not horizontal, though, the

potential energy of the gas is insignificant compared with its kinetic energy. I mention the potential

energy just to put it into its proper place. This Part 2 deals with the energy of the gas's motion and

location; Part 3 will deal with its internal energy.

As we get into this discussion, we are going to be faced with a bit of a problem about how to describe the

locations of things. Some quantities of interest, like the mass of the gas, which relate to a whole element,

are best treated as if they exist or apply at the physical "center" of the elements. Other quantities, like the

location of each element, are best expressed by reference to the faces which are the boundaries of the

element. In essence, this is a question of how we discretize phenomena which we would prefer to model

mathematically in a continuous and differential form. I am going to skirt around the problem by

developing the equation of motion directly in discrete form.

Consider the boundary face between elements # and # . (I will always assume that the breech end of

the gun lies to our left, the shell exits to the right, and the location indices are numbered from left to

right.) In accordance with our numbering scheme, this boundary face is located at -co-ordinate at

time . I will use the symbol for the speed of this boundary face at time . (I will reserve the capital

letter for volumes and use the small letter for speeds.) We will have solved the equation of motion

for the gas if we can calculate the speeds at all the boundary faces.

To the left of this boundary face is element # , with total mass . To the right lies element # , with

total mass . The situation look like this.

Notionally, we are going to assign some mass to the boundary face

shaded in pink. Suppose we assign to this face half of the mass of the

element to the left and half of the mass of the element to the right. So

long as we make the right adjustments to the left-most face (at the

breech) and right-most face (at the shell), and assign only half masses to

them, this approximation scheme will approach perfection as the size of

the elements is reduced.

The mechanical momentum (mass multiplied by speed) of this "massy" boundary face can be written as:

Since the masses are constant with respect to time, per Section 1, we can write the rate-of-change of this

momentum as:

According to Newton's Laws, this rate-of-change of momentum will be equal to the net force which acts

on this massy boundary face. Since I have set up the distance and speed convention as increasing towards

the right, a net force will be algebraically positive if it also acts towards the right. Therefore:

~ 5 ~

Since we are conducting a one-dimensional analysis, we need concern ourselves only with forces which

act parallel to the long axis of the gun. There is gas to the left and gas to the right, so the only force will

be exerted by static pressure. The force acting on the left side of this massy face will be the pressure

inside element # , say , multiplied by the area of the face. The force acting on the right side of this

massy face will be the pressure inside element # , , again multiplied by area . This latter

pressure acts towards the left, however, tending to decelerate the massy face. Under the influence of

these pressures, the massy face will accelerate in accordance with:

Note that I have added the superscript to the pressures to denote that these are their values at time . No

such superscript is needed on the masses, since the total mass inside each element remains constant.

In some situations, a numerical integration of this expression would work out just fine. In our situation, I

expect that the process will fail, with the failure manifesting itself in infinite speeds, negative pressures

and other such impossible results. Since the gas inside the barrel is compressed under tremendous and

rapidly changing pressures, shock fronts will almost certainly form. There will be sharp changes in the

pressure, density and temperature of the gas over short distances. Such discontinuities are shock waves.

A remedy was proposed in 1950 by Messrs. Richtmyer and von Neumann. They proposed to add a kind

of additional pressure. They formulated the added pressure in such a way that it would dissipate some of

the gas's energy, just like a shock wave does. From the point-of-view of the numerical integration, the

effects of a discontinuity would then be spread over several adjacent elements in the discretized model of

the gas. The arbitrary nature of this remedy was reflected in the name they gave the added pressure,

"artificial viscosity". Like all viscosities, the added pressure term removes energy from the gas at a

microscopic level.

The added pressure is artificial, but not wholly arbitrary. There is a difference. Equation is not an

adequate model of the gas's behaviour when it becomes supersonic, so some correction must be made.

The need for a correction exists and making a correction is not arbitrary. But there are different ways to

implement the correction. The way I am going to implement the correction is this. Letting be the

artificial viscosity inside the
th
 element at time , I will revise the equation of motion to be:

where the discretized expression for is:

In this expression, is the density of the gas inside element # and is the local speed of sound there,

both at time . and are constants chosen to assist the realism of the new terms.

~ 6 ~

__

Aside: Heuristic derivation of an appropriate form for

As I say, different forms can be used for the artificial viscosity. The form I have chosen makes intuitive

sense to me, as the following heuristic derivation shows. Consider two finite masses and which

have initial speeds and , respectively. is on the left. If , the two masses will never hit

each other. A collision will occur only if the mass on the left, , is travelling faster than and

eventually overtakes it. This is analogous to our gaseous situation if the gas is being compressed faster

than it is being accelerated, causing some elements to overtake their counterparts further down the barrel.

If the collision between the two masses is elastic, then they will bounce off each other without any loss in

their combined kinetic energy. This is analogous to our gaseous situation as described in Equation (1)

which is, in effect, the "elastic" version of encounters between gas elements in the barrel. On the other

hand, an inelastic collision between masses and , in which the total kinetic energy is reduced,

becomes analogous to our gaseous situation when our goal is to incorporate some form of energy

dissipation. So, let's look more closely at inelastic collisions between and .

First, recognize that we do not know how much inelasticity to build into the collision. Is a lot of the

initial total kinetic energy lost, or just a little bit? The way to handle this uncertainty is to build in some

flexibility. Let's assume that a little bit of mass , in an amount , encounters a little bit of mass ,

in an amount . Let's assume that the collision between and is perfectly inelastic. They

stick together, at some final speed . This final speed can be calculated using simple mechanics. Their

combined initial and final momenta are:

The initial and final momenta must be the same whether the collision is elastic or not. Equating them, we

get:

Now, let's notionally separate the two component submasses and , both now moving at speed ,

and recombine them with their parent masses. Physically, this is quite close to what happens with our

gaseous elements in the gun. The masses are adjacent elements on either side of a boundary face, and

they are in constant contact with one another. After recombining the prodigal submasses, the final

momenta of the parent masses are as follows:

Subtracting the parents' initial momenta gives the following changes in momentum:

-axis

~ 7 ~

Substituting the expression for speed into the change in momentum of the first mass gives:

Similar algebra for the second mass shows that its change in momentum is:

which is equal in magnitude but opposite in sign, as one would expect.

Let's start to apply these changes in momentum to the gas elements in our gun. First, let's figure out what

we want to represent the so-called parent masses. Since we have already chosen to use boundary faces

between elements as the loci for measuring speeds, let's continue to do so. Then, would represent the

speed of the right-hand boundary face of some particular element and would represent the speed of its

left-hand boundary face. In talking about "massy" faces above, I have already assigned effective masses

to both boundary faces. In other words, the masses which correspond to and are the masses of the

massy boundary faces on the left side and right side, respectively, of this particular element. The

interaction between the two submasses and therefore takes place at what is the center of this

particular element. That is handy, because we will have to talk about the density of the gas (below), and

the density we calculate will be the average of conditions throughout the element's volume. We will

localize the density to the center of the element, right where the interaction between and takes

place. For now, let's say that the density at the center of this particular element is .

Secondly, recall that we chose the magnitude of the interacting masses and arbitrarily. There is

nothing to prevent them from being the same, so that . If is the density of the gas at the

spot where these masses interact, then we can express the masses as the product of the density and a

volume. An appropriate volume for this purpose could be a very thin circular cylinder, with the circle

being the open barrel. The area of the cylinder is the same area of the barrel we used above. The

thickness of the cylinder can be chosen to suit. Let's say the thickness is . With these definitions, we

can express the masses and in terms of the density as follows:

Having expressed the submasses in this way, the changes in the momenta of the parent masses are:

Remember that there will not be any collision at all unless . In that case, the change in

momentum of will be algebraically negative (it loses momentum) and the change in momentum of

will be algebraically positive (it gains momentum).

~ 8 ~

The thickness is still arbitrary. We can, without limiting anything we have done so far, express this

distance as the product of a speed and a time. We already have a speed at hand, , which is the

relative speed at which the submasses approach each other. There will be a corresponding time period, an

"interaction time" , if you will, which can be used along with the relative speed to calculate a "depth"

of the interaction. With these definitions, we can express the depth as:

Since the interaction distance only makes physical sense if it is a positive number, this expression only

makes sense if . Making the substitution into Equation , the changes in momenta can be

written as:

Yes, I realize that the speed-difference terms can be combined as squares. And, in due course I will

combine them, but not just yet. I am not ready to pick which one of or should come first in the

subtraction.

What do we get if we divide both sides of one of these equations by the interaction time ? The result is

the rate-of-change in the momentum during the interaction period. That sounds like exactly the kind of

artificial adjustment we hoped to make to the equation of motion , namely, a dissipation of energy

during a short interaction time. Executing the division on both equations, we get:

If the particular element we have been looking at is the
th
 element, the relevant density in the discretized

versions of these equations would be denoted by or, since the density changes with time, then as at

time . Speed corresponds to the speed of the right-hand boundary face of this element, . Speed

corresponds to the speed of the left-hand boundary face of this element, . Combining the factor

into a more general constant means that the artificial viscosity to be added to the right-hand side of

Newton's equation has the form:

This will always be algebraically negative. But the whole concept only applies if or, in terms of

the speeds at the element's boundary faces, .

Observe that Equation corresponds to the first of the two terms in my expression for the artificial

viscosity in Equation . But, there is a second term in Equation as well. Here's why. The

correction (that is, dissipation of energy) in Equation is said to "capure strong shocks and prevent

zone inversions", but can still leave "unphysical oscillations" behind the shock front. A second term,

similar in form but only linear in the speed-difference term , is sometimes added to deal with

this. Relative speeds get higher as one approaches a shock front, so a term which is linear in the relative

speed rather than squared will decrease less rapidly as one gets further away from the shock front. In

other words, a linear correction term would extend its ameliorating influence further away from the shock

front than does Equation .

~ 9 ~

A good place to begin is back at Equation . In Equation , the change in momentum due to

inelastic, or viscous, effects was expressed in terms of an interaction distance . In the first run-

through, I expressed the interaction distance in terms of the local relative speed muliplied by an

interaction time . There are other ways to drum up estimates for interaction distances. For example, one

could use the product of the local speed of sound and the interaction time . Just like the density , the

local speed of sound is a quantity that we can deal with on an element-centered basis. I will set aside for

the moment the question of how we go about calculating the speed of sound, and just assume that we

know its value. The interaction distance can then be written as:

Working through the same steps as before, we arrive at the following expression for the rate-of-change in

the momentum through the interaction zone:

where is the speed of sound at the center of element # at time and is a different constant for this

different formulation of the artificial viscosity. This expression will also be algebraically negative in the

circumstance of interest to us, when . Note that Equation corresponds to the second of the

two terms in my expression for the artificial viscosity in Equation .

I believe the best way to add up the effects in Equations and to avoid continuing confusion over

algebraic signs is as follows:

All the factors are guaranteed to be positive and the dissipative nature of the correction shows up in the

explicit minus signs. As always, the dissipation occurs only when the relative speeds dictate, namely,

when .

But, this is not quite the end of the story. The story so far has tracked through what the gas would do if

the elements interacted in an inelastic manner. Our problem is the reverse of this. What we really want to

do is to artificially introduce the effect of inelasticity, so that our otherwise perfectly colliding elements

respond as if they experienced inelastic collisions. We need to add the reverse of the inelastic effects

described in Equation . It is for that reason that the addition I made to adjust Equation (2) is the

negative of Equation and not Equation itself.

Let me explain this using a different approach. The following figure shows four successive elements in

the barrel which are subject to a gradient of static pressure which is high on the left-side and low on the

right-side. I have shown the elements at four successive times.

Under the influence of the static pressure only, the

boundary end-faces of the elements at the high pressure

end will be accelerated more quickly than the end-faces at

the low pressure end. The high pressure faces will

overtake their counterparts at the low pressure end. If the

time steps of the numerical integration are "too long" in

duration, or the elements "too big" in size, it can happen

that the high pressure faces pass right through the low

pressure ones. Obviously, we cannot permit that.

High pressure Low pressure

~ 10 ~

The purpose of artificial viscosity is to add some extra, artificial, pressure inside those elements which are

being compressed most vigorously. The extra pressure inside the elements which are being squeezed

retards the advance of the elements, and their boundary end-faces, which are crushing in from the left.

The "end" of this act is to increase the pressure inside the elements which are being squeezed; the

"means" by which this is done is to use the viscosity concept to slow down the on-coming end-faces.

They are two sides of the same coin.

An element which is being squeezed is one whose left face, which is moving at speed , is moving

faster than its right face, which is moving at speed . The relative speed at which the faces are closing

on each other is . When this is positive, the element is being compressed. The extra pressure

needs to be added to the inside of this element. Hence the algebraic sign of the addition of artificial

viscosity in Equation .

_____________________________________End of aside____________________________________

We are not quite done with our equation of motion. Equation still contains the derivative ,

which needs to be discretized before we can use it in a numerical procedure. Suppose the time step used

in the numerical integration is . The usual way to discretize the derivative would be to make the

approximation:

I am going to make a slightly different approximation. I am going to center the derivative on time by

offsetting the speeds used in the approximation one-half time step forwards and backwards, like this:

In the limit as shrinks to zero, the two approximations are the same. But, before gets all the way

to zero, they are not quite the same. In practice, particularly when the time step is not as short as one

would like, the second approximation avoids the lopsided bias built into the first approximation. Using

the second approximation, our equation of motion can be written as:

where and are still computed using Equation . In effect, this means that the speeds will be

calculated at half-integral time steps, while all other quantities will be calculated at integral time steps. I

believe that some practitioners call this method "leap-frogging".

Once the speeds have been calculated using Equation , the locations of the boundary faces can then

be advanced through the next time step. For example:

The benefits of having calculated the speeds at half-integral time steps is a little clearer in Equation ,

where enters as the speed at the middle of the time step, and not the speed at the start of the time

step.

~ 11 ~

Once the locations of the boundary faces at time have been calculated using Equation , the

total volume of each element can be computed, as follows:

Equations and are the equations which ensure that mass and momentum are conserved. In our

numerical procedure, we will use them to advance the speed and location variables from one time step to

the next. Because of the special geometry of our gun, their use automatically advances the total volumes

of the elements, too, via Equation .

Note that the variables which are the ingredients in these equations, on the right-hand side, are referenced

to time . Once we have solved for all quantities at time , these three equations will be our first foray

into time .

Constants and must be specified before the artificial viscosities can be calculated. My heuristic

derivation suggests setting to a value of ½. If the speed of sound is expected to be greater than the

relative closing speeds of adjacent boundary faces, then the two viscosity approaches will make equal

contributions if is set to a fraction of . I observe that some investigators suggest starting with

 and .

A word or two about the air inside the chamber

In the previous section, we dealt with the total mass of "stuff" inside the
th
 element, and used the symbol

 for it. It will remain constant during the entire firing process. Whatever was inside the
th
 element

when firing commenced stayed inside that element for the duration of the entire process.

The "stuff" inside each element consists of three things. It consists of unburned propellant, the gas

produced by the propellant which has been burned and, not to be forgotten, is the ambient air which was

inside the chamber when the bags of propellant were placed inside. The amount of ambient air is quite

small compared to the amount of gas which will be generated when the propellant burns. But, its effect

on the peak pressures which will be experienced during the process are not necessarily insignificant.

When an element is severely compressed by its neighbouring elements, the pressure and density will

increase dramatically. The increase will be particularly acute near shock fronts. It is best if we try to

account for the things we do know, so we do not needlessly present ourselves with surprises.

The total mass inside element # can be expanded as:

where the superscripts record that these three terms represent the unburned Propellant, the propellant Gas

and the original Air, respectively. The total mass and its component of air will be constant with

time and so do not need a " " superscript. The total mass of unburned and burned propellant

will also be constant, but the proportions will change. In fact, the numerical simulation is based on

dividing the chamber into elements with the same size, so , and the sum will actually

be the same for all elements, as well as being constant with time.

~ 12 ~

The following figure shows the chamber just before firing, as I have modeled it. The equations are

simpler when the entire barrel, including the chamber, has a constant cross-section. The red ellipse marks

the rear face of the shell.

A more exact physical model would include chambrage – the fact that the chamber sometimes has a

larger diameter than the barrel. This is shown in the following figure.

The difference between these two physical models is the proportion of the chamber's real volume which is

occupied by solid propellant. This proportion is usually expressed in terms of the "loading density" of

the propellant. This should not be confused with one's normal definition of density, which in this case is

usually called the "crystalline density" of the propellant. In the numerical simulation, I will use the

following values:

Let me talk about the crystalline density first. Water has a density of , so propellant does

not float. A given volume of this propellant weighs 66% more than an equivalent volume of water. In the

numerical simulation, I will model a 5-inch naval gun which has the following parameters:

The volume of the chamber in our model is the length of the chamber multiplied by the cross-sectional

area of the barrel: . The physical volume of the propellant is the total mass

of propellant divided by its crystalline density: . Solid propellant occupies

 of the volume of the chamber in our model.

Now, let me talk about the loading density. of propellant is placed into a space in which it

comprises per cubic meter of the available space. It follows that the available space must be

Mass of propellant

Radius

Area

Length of

chamber

Mass of propellant

Radius

Area

Length of

chamber

~ 13 ~

equal to . It is coincidence that the effective volume in this case happens to be

equal to the volume of the chamber in our model. (Well, it is not a mere coincidence. The 5-inch gun I

will be simulating has no chambrage – the chamber has the same diameter as the barrel.)

In our case, the of the chamber's volume which is not filled with solid propellant will be filled

with air. The actual volume filled with air will be . More generally,

including cases where the chambrage is non-zero, the physcial volume occupied by air would be

calculated as follows:

I will treat the air in the chamber as an ideal gas. We can use the Ideal Gas Law to determine how many

moles of air will accompany the propellant. In order to use the Ideal Gas Law in this circumstance, we

need to know the pressure and temperature. In the numerical simulation, I assume that the ambient

pressure is (standard atmosphere at sea level) and that the temperature is (a little

higher than standard, perhaps due to heat left over from a previous firing). The general formula and the

particular result for the numerical simulation are:

The molar weight of (dry) air is which means that the mass of the air inside the

chamber is . This is quite small compared to the of propellant,

which be be gaseous if and when it has been completely burned. In any event, this mass of

air, when divided by the number of elements, gives the value for all elements. A similar division

can be done for the number of moles of air to give , which I will refer to below as the number of

moles of air inside each element.

Part 3 – Conservation of internal energy of the gas

I will use the symbol for the internal energy density of the gas inside element # at time . is the

total material energy () of the gas in the element divided by the mass of that gas. There are different

phenomena which can change the material energy. Energy can be conveyed from one element to another

by radiation, the exchange of electrons, and so on, but I am going to ignore all causes of changes in

internal energy except one. The one I am going to focus on is the mechanical work performed by the

pressure as the volume of the element changes. The pressure which does this work is not just the static

pressure but includes the artificial viscosity as well. Although it is called a viscosity, affects

the gas in exactly the same way as the static pressure. Their combined outward effect (from the point-of-

view of an element pressing on its neighbours) leads to the equation of motion. Their combined inward

effect (from the point-of-view of an element experiencing pressure exerted by its two neighbours)

changes the internal energy of an element.

~ 14 ~

Consider the one-dimensional travel of a rigid body. If a force causes the body to move through a

distance , the mechanical work done on the object is the product . Similarly, if a pressure

causes the volume of a fixed amount of gas to expand by , the work done is the product . Some

agent must do the work, of course. In our case, the agent driving the expansion is the internal energy of

the gas. The work done as the volume increases reduces the internal energy of the gas. Over a given

interval of time, the equality can be written as:

Since these are changes take place with respect to time, let's set a starting time and an ending time

 for the interval. If we have solved the equations in Part 2 already, then we will know the volumes

of each element at the start and end of this time interval. They will be and , respectively.

Starting to make substitutions into Equation , we get:

What shall we do about the inside element # ? It is not . is the total mass of material

inside the element. Only some of it is a gas, capable of doing work by expansion. In the previous

section, we separated the total mass into three components:

where the two gaseous components are . It is this mass whose internal energy is changed by

the change in volume.

Now, what shall we do about the ? We know it is going to be a sum like , but that sum

changes with time. A suitable quantity for our purpose would be the simple average of the pressures at

the start and the end of the interval. That will converge to perfection as the time intervals are made

smaller and smaller. Therefore:

Oops, I have forgotten something very important. As the propellant burns, it releases heat. The addition

of heat to the gas increases its internal energy. I am going to ignore the heat that is absorbed by the metal

in the barrel, and assume that the gas absorbs all of the heat generated.

To be precise about things, we should treat the gas trapped inside the barrel as a closed system. We

should use the First Law of Thermodynamics to revise Equation to:

My first version of Equation only included the term, which is the mechanical work done. The

correct version Equation includes the heat added. We can remedy Equation by adding a term

to represent the heat added during the to time step. I will use the following symbol:

~ 15 ~

In due course (below), we will have to figure out how to calculate how much heat is added. For now, I

will simply amend Equation by including the heat term. The result is:

Equation is our equation of conservation of internal energy. In the numerical procedure, we will use

it to advance the internal energy from one time step to the next. Note that the variables which are the

ingredients in this equation, on the right-hand side, include some which are referenced to time .

We will have to figure out (below) whether we can calculate the internal energy first or the

pressure first or, alternatively, whether a simultaneous solution will be needed.

A word or two about the volume of a particular element

It is time to get more precise about what we mean by the "volume" of an element. We will be refering to

volume in two senses. The absolute volume of element # is the distance between its two end-faces

multiplied by the cross-sectional area of the barrel. The other volume of interest is the volume occupied

by gas. As long as there is unburned propellant, the volume occupied by gas will be less than the absolute

volume of the element. The following figure highlights the difference from a conceptual point-of-view.

The absolute volume of element # at time is . The mass of

unburned propellant at time is . Dividing this mass by the

crystalline density of the propellant gives the absolute volume of

the unburned propellant, . The difference between these two

volumes is the volume of free space which is available to the

molecules of gas.

The molecules of gas consist of a mass of propellant combustion products and the mass of

original air. We will have occasion to talk about the number of moles of these two constituents. I have

already mentioned , the number of moles of ambient air inside the element. The stoichiometric ratio

for converting the propellant from solid to gas is this: burning one kilogram of propellant produces 40

moles of gas. Therefore:

It is obvious that the process of burning changes the volume of free space which is available for gas. A

question arises: does this change in volume contribute to the mechanical work discussed in the

previous section? My answer is no, it does not. I refer to the following figure in support of my answer.

The mechanical work discussed above derived from the

pressure acting uniformly across the two end-faces of the

element. The pressures gave rise to forces on the neighbouring

elements. If the end-faces moved, mechanical work was done.

In the case of the combustion which occurs inside the element,

the conversion of a certain volume of solid into an equivalent

volume of gas did not arise from a displacement-due-to-pressure process. It did not constitute mechanical

Unburned

propellant

Element #

Free

space

Element #

~ 16 ~

work. Accordingly, the volumes refered to in Equation , which are the absolute volumes of the

elements, are satisfactory as they stand.

 Part 4 – Heat generated as the propellant is burned

Nitrocellulose is often called "gun cotton". Indeed, it usually made from cotton. Cotton is a polymer,

made up of hundreds of glucose units bonded to one another in a long chain. The following diagram

shows the glucose backbone of the chain.

The raw cotton is treated with sulphuric acid and nitric acid. The treatment is called "nitration" and it

adds an nitro group to each glucose unit. My diagram shows the nitro group on only one of the

glucose units, but every glucose unit will have its own nitro group.

When the molecule is oxidized (that is, burns), the beauty of this arrangement becomes clear. The oxygen

atoms needed during the oxidation process are physically nearby. The oxygen does not have to be

extracted from the ambient air, and then mixed with molecules of fuel, as must happen in internal

combustion engines. There are two important consequences: the combustion of nitrocellulose is fast and

leaves little residue.

When used as a propellant, nitrocellulose is usually mixed with a smaller quantity of a similar compound,

as well as gelatins and stabilizing agents. Nitroglycerin is often used as the additive. The resulting

compound is easily molded or extruded and, when dried, makes ideal grains. Because there are two

explosive compounds, both with their own combination of fuel and oxygen, these propellants are called

"double-based" propellants. Furthermore, by adjusting the ratio of nitrocellulose and the additive, the

"heat of explosion" or "calorimetric value" of a given mass of propellant can be varied. This has led to

such propellants being called "cool" or "hot" or "extremely hot".

Propellants used in large naval guns are at the "cool" end of the range. The heat released when one gram

of naval propellant is converted into a gas is about 820 calories. Hotter variants are used as solid rocket

fuel. I am going to use the symbol as the heat of explosion of the propellant for our gun. Converting

from calories to Joules at the rate of , we have:

I am going to describe the rate of burning using a so-called "burn rate" . I envision that burning is

something that occurs uniformly over a surface. As the thin layer which is burning is consumed, and

converted into gas, the burning surface eats its way down into the unburned propellant.

The burn rate can be thought of as the speed, in meters per second, say,

at which the burning surface penetrates the unburned propellant. In the

diagram shown to the left, burning began on the top surface. The burning

surface (rendered in red) is moving downwards at speed .

 Glu Glu Glu Glu Glu Glu Glu Glu

 N

 O O

Unburned propellant

Burned propellant

~ 17 ~

The following graph is useful for our purpose. It shows the burn rate for double-base propellants of

various warmth. The speed is measured along the vertical axis; the static pressure being exerted on the

burning surface is measured along the horizontal axis. Both axes are logarithmic.

I am going to use the "cool propellant" data points in the graph as representative of our propellant. Its

heat of explosion is . I am going to fit a quadratic curve to these data points. The proposed

equation has the form:

To calculate the coefficients , and , I have selected three particular data points, which are idenified on

the graph with red crosshairs. The co-ordinates of the three points and the solutions for the coefficients

are as follows:

I intend to do all calculations in S.I. units. Before using this expression, it will be necessary to convert

the pressures inside the elements from into atmospheres. Then, after computing in , it

will be necessary to convert it into the of our burn rate . The complete burn rate equation is:

~ 18 ~

It will be convenient if we introduce variable as the fraction (by mass or, equivalently, by unburned

volume) of the propellant which has been burned by time . starts at zero when the gun is fired and

will rise to one when all of the propellant has been consumed. Since the burn rate depends on pressure,

the rate at which the propellant burns will vary from element to element as well as with time. To be

precise, we need to define the fraction so that every element has its own. Among other uses, it will

help us keep track of the masses of burned and unburned propellant in each element at time , as follows:

We can also use the fractions to determine the area of propellant burning at any particular time.

Suppose the cylindrical grains of unburned propellant have diameter and length . The grains will

burn from the outside inwards. I will ignore any holes in the web, which extend axially through the grain.

(This is a much more important assumption than it seems.) I will also ignore burning of the end-faces.

(This is not such an important assumption, since the area of the end-faces is small compared with the area

of the curved surface. And, this assumption will be even less significant if the propellant is extruded into

long strands or cords, and called cordite.) Some time after ignition, a typical grain will look like this:

The original grain is outlined with a dashed line. The unburned portion at this particular time is outlined

with the solid line. The burning surface at this time is the curved surface of the cylinder with diameter

and length . The fraction of propellant burned is equal to the ratio of the burned and original volumes:

Given the diameter , the area of the burning surface of this grain at this time is:

This is a good time to generalize things to include all the propellant in the gun. Here's how we can do

that. We know that the unburned propellant originally has a total mass . Suppose that the

~ 19 ~

crystalline density of the unburned propellant is . The original mass of each grain is therefore

equal to:

and the total number of grains in the gun is equal to:

Since we have divided the available volume inside the barrel into elements, and since each element

always contains the same propellant solids and gases, the number of grains contained inside each element

is . The total burning surface area of all the grains in element # when the burn fraction is can be

found by simple multiplication:

If the burn rate inside element # during a particular time step is , then the volume of solid propellant

burned in a short time interval will be equal to:

Since the density of the unburned propellant is , then the mass of solid propellant burned inside element

during time interval is equal to:

Since the heat given off during the conversion is Joules per unit mass, then the heat released inside

element # during time interval is:

~ 20 ~

Notice that the "heat released in element # during time interval " is exactly the same as the quantity

 which we talked about in the previous section, and which is one of the variables required to

evaluate Equation .

This is the principal equation we will use to describe the burning process. In the computer code, we will

need to advance the burn fraction from one time step to the next . To do that, we will have to

use a couple of the preceding equations in their discretized form.

Part 5 – Thermal equation of state of the gas

The "state" of a gas is the collection of values which describe its physical characteristics. In the simplest

models, the variables which are of interest for some fixed quantity of gas at some time are its pressure

, volume , temperature and quantity. The quantity of gas can be measured in different ways. The

one I will use is the cardinal number of molecules. However, I will not report the number of molecules

simply as molecules, say, but will first divide the number of molecules by the constant

. The constant is called Avogadro's number and the quotient after the division is said to

be the number of moles of gas. It is customary to use the symbol , or at time , for the number of

moles. I will do so even at the risk of possible confusion with the number of elements into which I

discretized the gas.

One of the most valuable and widely-used mathematical models for the state of a gas is:

where – is the Ideal Gas Constant. A gas which behaves like this is an

Ideal Gas. Conceptually, and briefly, an ideal gas is one in which the individual molecules are small

compared with the distance they travel between collisions. Since this expression relates the pressure-

times-volume product to the temperature, it is called the thermal equation of state.

At and around standard ambient conditions, virtually all gases can be treated as ideal. At extreme

temperatures and pressures, virtually all gases depart from the ideal. Messr. van der Waals proposed a

form of correction to the ideal which greatly expanded the envelope of applicability. His correction

(Nobel in 1910 for it) is often written as:

The first correction term, the one with the coefficient , arises from the existence of a pairwise attraction

force between molecules. It is this pairwise attraction which leads to the condensation of the gas into a

liquid at a sufficiently low temperature. Basically, the correction term arises from the asymmetry

experienced by molecules as they get nearer to the boundary walls of the container.

The second correction term, the one with the coefficient , is needed when the assumption that the

molecules are mathematical points becomes unrealistic. When subjected to high pressure, for example,

the size of the molecules becomes a more significant fraction of the total available volume, and cannot be

~ 21 ~

neglected. Van der Waals handled this by assuming that individual molecules were hard spheres with

radius and volume . The absolute volume of space occupied by substance would therefore be this

molecular volume multiplied by the number of molecules. Note, though, that the center-to-center

distance between two colliding molecules at their point of closest approach is not , but twice . This

means that the "zone of exclusion" between hard molecular centers has radius of and a volume of

. Since molecules collide in pairs, the center-to-center distance can be shared by two

molecules, with the result that the volume occupied by two colliding molecules is . If there

are moles of molecules in the container, then the volume of space which is "occupied" (possible

positions which are denied to molecular centers) is reduced by . This denied volume is

called the "co-volume". Van der Walls recognized that molecules are not hard spheres. He treated the

factor in his correction as an upper bound.

The gas in our gun will be under very high pressure and temperature. The inter-molecular attraction force

correction will be insignificant compared with the co-volume correction. I will write the equation of state

for the gas in the
th
 element in the following way. Since this is a "state" equation, which should apply at

every instant in time.

The volume is the volume inside element # which is free space available for gas. This is the total

volume of element # less he volume of unburned propellant.

 is the correction for co-volume. In Equation , the volume is an absolute volume, which could

be measured in cubic meters, for example. However we go about quantifying it, the co-volume will

also be an absolute volume.

It is worth noting that almost all of the byproducts from the combustion of nitrocellulose are diatomic

gases. Although the molecules of nitrocellulose are complex, what remains after buring is not. A

commonly used co-volume correction factor for simple gases is . If this is

multiplied by the mass of gas inside a container, it yields an absolute volume. Note that has units that

are the reciprocal of density. The effective denisty which corresponds to this value of is 1053 .

Often, the value of is assumed to be constant. That is not a good assumption in our case. The gases in

the barrel are going to be under tremendous pressure. Under high pressure, molecules are able to penerate

more deeply into one another when they interact. As the ambient pressure increases, the volume of space

which is denied to molecules of gas decreases. Usually, this effect is taken into account by treating as a

value which depends on the density of the gas. I am going to use the following dependence:

At small densities, this function is close to the usual value . The function decreases

inversely with the density. When the density reaches , the evaluated value is one-third of the

low-density value. Note that the density of air under standard conditions is , so this

adjustment to is definitely a high-density phenomenon.

Since the mass of gas inside element # is the sum , and the free space volume available to

the gas is , we can carry out the follwing algebra:

~ 22 ~

 Part 6 – Calorific equation of state of the gas

In the previous section, we related the pressure-times-volume product to the temperature of a fixed

quantity of gas. In this section, we will do something similar, but relate the pressure-times-volume

product to the internal energy of the gas. Since the related state variable is energy, this new relationship

is called the calorific equation of state. Let me state the result first:

The numerator on the right-hand side is the pressure inside the
th
 at time multiplied by the volume of

gas (with the co-volume corresction) inside the element at that time. The denominator is the Adiabatic

Index of the gas, less one. A gas whose energy can be expressed in this way is called a gamma-law gas.

I will give a rough justification for this relationship to shed some light on the assumptions which are

involved. Start by considering element # at a temperature of absolute zero. The pressure will be zero

and the internal energy will be zero. It does not matter what volume the gas occupies; the pressure and

internal energy will still be zero. It is convenient to start things off with the element's volume being

and the volume occupied by the gas being .

Now, let's add some quantity of heat , which raises the temperature from zero to and the pressure of

from zero to . The first Law of Thermodynamics tells us that the amount of heat added must be equal

to the sum of: (i) the work done by the gas during the process and (ii) the internal energy added to it. In

this particular thought experiment, the gas does not do any work. Its volume stays constant. Work would

have been done by the pressure if the volume had expanded, but that did not happen. It follows that all of

the heat added is absorbed by the gas as internal energy. Since the internal energy was initially zero, we

can say that the gas's internal energy after this process is:

The specific heat of a substance is defined as the rate at which the addition of heat raises the

temperature by .

The specific heat depends on the details of the process. For example, if the pressure of a gas is allowed to

change as the heat is being added, the specific heat will be different from the measurement made if the

pressure is held constant. In our thought experiment, we held the volume of the gas constant while the

heat was added. The specific heat which is measured in this constant-volume process is called the

"specific heat at constant volume" and is usually represented by the symbol . In our case, then:

~ 23 ~

The specific heat is not necessarily the same at all temperatures. In fact, usually it is not. It

varies as the temperature changes. An important assumption we are going to make is that the specific

heat is constant and does not vary with temperature.

Next, we are going to invoke Meyer's Law. For an Ideal Gas, and for some other models of gases as well:

where is the number of moles of gas, is the Ideal Gas Constant (both as used in

the previous section) and is the specific heat at constant pressure. Substituting this relationship into

the thermal equation of state from Part 5 above, we get:

We can combine Equations and to write:

where the ratio of the specific heats is called the Adiabatic Index of the gas, and is usually

represented by the symbol . Although we have assumed that is constant with temperature, it does not

follow that the Adiabatic Index is also constant. It depends on . It is possible to investigate how

changes separately with temperature and with pressure. Often, the effects are combined and is said to

be a function of the density.

For the purposes of this paper, I am going to that varies linearly with density. As a starting point, let's

consider the gas as if it was an ideal diatomic gas. The gas products resulting from the burning of

nitrocellulose are mainly , , , and . Recall that is a colinear molecule (the three

atoms lie on a straight line), so carbon dioxide has the same dynamic characteristics as a diatomic

molecule. The ambient air trapped inside the barrel before firing is mostly and so it, too, is

virtually all diatomic. The Adiabatic Index of an ideal diatomic gas at room temperature and pressure has

a theoretical value of , arising from three translational and two rotational degrees of

freedom. At high temperatures, a vibrational mode of motion begins to absorb energy, so the number of

degrees of freedom increases to six, and the Adiabatic Index of an ideal diatomic gas falls to

3 at high temperatures. I have seen a report that suggests the Adiabatic Index rises to 1.9 when the

gas density is . The straight line which connects these two data points is:

~ 24 ~

This is the expression I have used in the numerical simulation for the Adiabatic Index.

Part 7 – Equation of motion for the shell

I am going to treat the shell as a rigid body being accelerated in one direction by a uniform pressure

exerted on its rear face. We have already defined the mass and speed of the shell as and ,

respectively. Newton's Law for the acceleration of the shell down the axis of the barrel is:

Writing down Newton's Law is not the hard part. The hard part is trying to model the various effects

which contribute to the net accelerating force. I have included some of the usual suspects in the following

expression.

Here, is the pressure force acting on the rear face of the shell. is the ambient air pressure of

the day, which is a reasonable first approximation for the pressure which acts on the projected frontal area

of the shell. is only a first approximation because the air initially present in the barrel in front of the

shell will be compressed and heated as the progress of the shell drives it out of the barrel.

There will be friction as the metal projectile slides through the metal barrel. The rifling

 will increase the metal-to-metal friction, but will have a second retarding effect as well. Even

if there was no friction at all between the rifling and the projectile, the rifling will give rise to a retarding

force. The rifling extracts mechanical power from the forward motion of the shell and diverts it into

rotational acceleration around the shell's spin axis. This diversion of energy from the forward motion is a

consequence of simple dynamics of motion, and is not related to friction. The metals in contact will also

be heated by the friction, and some deformation is to be expected.

For the purposes of this paper, I am going to collect together all of the retarding forces under the heading

"friction". I am going to use a simple model for the friction not unlike the one often used to describe

frictional forces due to gravitational weight. Let me review the traditional model, which is illustrated

here.

Gravity pulls mass down against a flat surface with weight . The

mass is pulled towards the right by some other force . The

interface between the mass and the flat surface resists the pulling

force with a frictional force . Surprisingly, the magnitude of the

frictional force is not related to the magnitude of the pulling force.

Instead, it is proportional to the transverse force – the weight. A

coefficient of friction is often used as the constant of

proportionality, so that .

I have shown to the left how one can apply the traditional model to

the shell inside the barrel. The frictional force is, once again,

opposite in direction to the velocity of the shell. One would expect

the magnitude of the frictional force to be proportional, not to the

pushing force , but to the transverse force with which

~ 25 ~

the barrel seizes the shell. If so, then the expression would be , where the constant of

proportionality might or might not be the same coefficient of friction as above.

This interpretation makes sense, but what to do about is far from clear. Let me describe three

alternatives, each of which makes sense in its own right, but all of which have quite different

consequences.

1. In the traditional gravitational case, the mass of the object is very often a constant. It follows that

the frictional force is also constant. Often, one uses two versions of the coefficient of friction, a

"static" coefficient of friction which applies while the weight is at rest, and another, but also

constant, "dynamic" coefficient which applies once the weight begins moving. If this type of

behaviour applies to the shell in the barrel, and if the compression force is constant, then the

result would be a frictional force which remains constant while the shell accelerates down the

barrel.

2. An alternative would be to focus on the very thin gap which may exist between the circumference

of the shell and the barrel. Perhaps there was no gap at all when the shell was rammed into the

breech. But, under the enormous pressure of the expanding gas, the barrel will be forcibly

enlarged. That will create a gap which will quickly be filled by the high pressure propellant gas.

If this is what happens, then an appropriate model would be to treat the thin gap as a thin layer of

viscous fluid between two moving surfaces. The frictional force would then have the

characteristics of a viscous force. It would be proportional to three variables and inversely

proportional to a fourth. The frictional force would be proportional to: (i) the surface area of

contact, which we would estimate as the circumference of the inside of the barrel multiplied by

the length of the shell, (ii) the relative speed of the two surfaces which, in our case, would be the

speed of the shell, and (iii) the dynamic viscosity of the high temperature high pressure gases

from combustion. As for the fourth variable, the frictional force would be inversely proportional

to the distance between the surfaces. The formula we would use for the frictional force would be

something like this:

The pressure driving the shell enters into this relationship in two ways. Firstly, it affects

the viscosity. The viscosity will increase with pressure, but only gradually. Secondly, the

distance between the surfaces will increase in step with the increase in pressure. Basically,

the frictional force will be driven in the following way:

The frictional force will vary as the shell travels down the barrel as shown in the following figure.

(I have run a few runs already, and can say that the pressure peaks when the shell is about half-

way down the barrel. The reciprocal of the pressure has a dip.) The frictional force in this

alternative is not constant at all.

time or

distance

speed effect

pressure effect

combined effect

~ 26 ~

3. A third alternative is to imagine that the thin gap between the shell and the barrel behaves like a

rubber or plastic seal between two moving parts. If that is the case, then the pressure acting

on the rear face of the shell also acts on the end-face of this "seal" where it peeks out through the

gap around the circumference of the rear end of the shell. As hydraulic pressure does, the

pressure on the end-face would be transmitted throughout the volume of the "seal". In particular,

it would act radially outwards, and would be the main cause of the compression force .

Taking into account the contact area between the surfaces, we could write:

Noting that the area of the barrel is , and that it is equal to , we can express the main

dependence as follows:

Then, the frictional force as the shell travels down the barrel looks like the following. In this

alternative, the frictional force is greatest when the pressure peaks.

In my opinion, none of these three alternatives is satisfactory. I will explore in a subsequent paper an

approach I believe is more credible. It leads to a frictional force which is more like the third alternative

above than the first two. Because of that, I will use a frictional force having the characteristics of

Equation . I will make just two changes. I will use as the constant of proportionality. I will also

use the pressure difference , rather than just , as the dependent variable. That is a very

minor change, but greatly simplifies the equation for the shell's dynamics, as I will now demonstrate.

Let me substitute this form of frictional force into Equation for Newton's Law. We get:

This has exactly the same form as Newton's Law without any frictional force at all. Friction has been

taken into account by increasing the mass of the shell from to a larger mass .

This "effective" mass, being larger, causes the "effective" mass to accelerate more slowly in response to

the driving pressure than it would in the absence of any friction. We can express the effective mass as

follows:

time or

distance

~ 27 ~

Calculations done by some investigators show that the effective mass can be as much as 20% greater than

the rest mass. In the computer code for this paper, I have set , which gives a 20% increase in

effective mass.

Implementation of the numerical procedure

Suppose we have just completed calculating the speeds of all the boundary faces at some half-time step,

say time . We therefore know for all boundary faces . Speed

will be equal to zero, since it is the breech plate. Speed will be the speed of the shell. The other

speeds will have been calculated using the equations for gas dynamics.

Step #1 – Advance the locations of the boundary faces

Advance the locations of all boundary faces from time through one whole time step to time .

Step #2 – Calculate the absolute volumes of the elements

Calculate the absolute volumes of all the elements at time .

Step #3 – Analyze the rate at which burning occurs

Calculate the burn rate inside each element during this time step.

Calculate the mass of propellant burned inside each element during this time step.

Advance the burned and unburned masses in each element, and the burned fraction.

~ 28 ~

Step #4 – Calculate the heat generated

Calculate the heat released inside each element by the burning which takes place during this time step.

This heat by will absorbed by the gas.

Step #5 – Calculate the density of the gas

It is necessary first to calculate the volume which is available as free space for the gas. This is Equation

, which adjusts the absolute volumes of the elements for the volume occupied by the unburned solid

propellant.

Calculation of the density does not require any co-volume correction. That correction is needed for the

equations of state, but the definition of density is straight-forward.

Step #6 – Calculate the co-volume correction

Calculate the co-volume correction.

This is probably a good place to update the number of moles of gas inside each element. Since gas is

added at the rate of moles per kilogram of solid propellant burned, the number of moles added by

combustion during the ime step is:

Advance the total number of moles of gas inside each element. Do do forget that the total number of

moles includes the original air.

Step #7 – Calculate the Adiabatic Index inside each element

We can calculate the Adiabatic Index using Equation . I did not say so above, but a separate index is

needed for each element.

~ 29 ~

Step #8 – Calculate the pressure and internal energy

I am going to use an iterative procedure to calculate the pressure and internal energy inside

each element. In effect, this is a simultaneous solution of the equation ensuring conservation of internal

energy and the calorific equation of state. The following procedure, for element # , can only be carried

out after the procedure has been completed for element # , to the left of this element. To begin the

process, assume that the pressure is the same as it was in this element during the last time step. That is,

. Then, the sub-steps are:

Step #8A

Calculate the speed of sound, which is one of the ingredients of the artificial viscosity.

Note that this formulation for the speed of sound is accurate only for ideal gases at modest

temperatures and pressures. At high temperatures and pressures, something more complex should

be used. The only reason this approximation is adequate for our purpose is that the speed of

sound is not a required result in its own right, but is only used as an estimating parameter in the

calculation of the artificial viscosity.

Step #8B

Calculate the artificial viscosity.

This calculation only matters if the relative velocity condition is met. If the velocity condition is

not met, and the element is expanding, then the artificial viscosity will be zero.

Step #8C

Calculate the internal energy using the equation ensuring conservation of internal energy.

Step #8D

Use the calorific equation of state to calculate a new, revised, pressure.

Step #8E

Using this new value for the pressure, go back and start over at Step #8A. Terminate the

iterations when the changes in and during one iteration become acceptably small,

either in absolute terms or in relative terms. Note that, once element # has been sorted out, it

will be necessary to move on to element # .

Step #9

As a loose end for the gas dynamics, the temperature inside element # can be computed using the thermal

equation of state.

~ 30 ~

Step #10

Calculate the acceleration of the shell.

Step #11

We are now ready to advance the speeds of the boundary faces through the next time step. For the

boundary faces which are enclosed within gas, the relevant equation is Equation .

The quantities and will have been finalized during Step #6 and can be used here without

further ado. The speed of the last boundary face is the speed of the shell, advanced using:

Equation completes the calculations done during one time step. The new speeds, at time ,

are the starting point for the next time step.

The use of adaptive time steps

I quickly discovered that it is not practical to use a constant time step. There are times during the process

when the time step needs to be very small, on the order of tens of nanoseconds. Running the entire

simulation at this time scale is not practical. I handled the problem in the following way. At the end of

every time step, I searched through the pressures in all the elements to identify which element

experienced the greatest relative change in pressure during the time step just finished. If this percentage

change exceeded a certain preset threshold, I then reduced the length of the time step to be used during

the next iteration. On the other hand, if this percentage change in pressure was less than another certain

preset threshold, then I increased the length of the time step for the next iteration. The parameters I used,

which seemed to generate consistent and reasonably quick simulations, were the following:

In the final version of the code, I applied this same test, with these same preset thresholds, to the density

of the gas inside each element as well as to the static pressure. I insisted on the reduction in the duration

of the next time step if the maximum relative change in either pressure or density required it. On the

other hand, I permitted the duration of the time step to be increased only if both the pressure test and the

density test were satisfactory.

~ 31 ~

Other features of the code

I have listed in Appendix "A" the source code for the numerical simulation of the base case, whose

parameters have been discussed above. The code was developed in Visual Basic 2010 Express. The

number of elements is set to 2000. A limited selection of key values is displayed on the screen every 250

time steps.

The principal variables are written into text files for later analysis. As an example, the variable is

written into a text file with the name "Naval_gun_simulation_Bi.txt". The user can set the time interval

between successive writes to the output text files. Similarly, the user can set the interval between element

indices to be saved, so that all 2000 values are not written. The numbers are written as comma-separated

values ("csv") to make it easy to import into Excel or other analysis programs.

Note this. In the base case, I set the artificial viscosity constant to zero, . Despite my

expectation, the run concluded with no mathematical errors.

Results from the simulation of the base case

The following graph shows three pressures and the shell's speed with respect to time. The red curve is the

pressure at the breech, inside element #1. The black curve is the pressure inside the last element, element

#2000, which is the one which actually presses on the rear face of the shell. The green curve, which is

almost completely hidden by the breech pressure, is the maximum of the pressures inside all the elements.

The maximum pressure experienced inside the barrel during firing is just under 2100 atmospheres.

Since the shell is held in place by its engraving band until the pressure inside the chamber reaches 400

atmospheres, the shell's speed (blue curve) is zero until that time. This occurs 6.70 milliseconds into the

simulation. The shell accelerates in proportion to the pressure, and reaches a speed of about 595 meters

per second when it exits the barrel, 24.36 milliseconds after ignition.

~ 32 ~

The cusps in the pressure curves represent mild shock waves. As I stated above, the numerical integration

ran without a hitch even though I set the artificial viscosity to zero. The shock waves are a little clearer in

the following surface plot. It shows the pressure (vertical axis) as a function of time (horizontal axis) and

element number (depth axis, projected into the page). The colour bands are 100 bar, or approximately

100 atmospheres, high. The numbers along the depth axis are element numbers, with the breech element

#1 being at the front side of the graph. The depth axis corresponds to the distance between the breech and

the shell, but it is not the actual distance in meters. As time passes and the shell moves further down the

barrel, the elements get longer in the -direction. This increase in their length is not shown in the graph.

The pressure is always a little higher at the breech-end than at the shell-end. I have indicated with arrows

raised above the surface, the progress of a shock wave from the breech to the shell, where it is reflected

back to the breech. That particular shock wave starts at the moment when the pressure reaches its peak

value at the breech. There is a similar shock wave on the "front" side of this hill, while the pressure is

still rising, but that wave is not so clear with the graph oriented as it is.

I have tried in the following graph to track the progress of the shock wave as it travels up and down the

barrel. To prepare this graph, I first looked through the elements along the barrel to find out which one

had the highest pressure. I repeated this at every time step. If a shock wave front is well-defined, and

moving smartly through the gas, then the peak pressure will pass smoothly and uniformly along

successive neighbouring elements. Next, I converted elements #'s into distances in meters. I did this by

multiplying the breech-to-shell distance at every time by the appropriate fraction of tube length,

calculated by dividing the element # by the total number of elements. The following graph shows the

location of the instantaneous peak-pressure element with respect to simulation time.

~ 33 ~

The two red arrows identify the same pair of shock waves that were identified with red arrows in the

surface plot above. It looks like the shock wave that took place while the gas was still being compressed

was much better defined than the one (marked with the red arrows) which took place while the gas was

starting to expand. The noise in the element locations which happens before the shell is released (6.70

ms) and again after about 15 ms indicates that there is no shock front present, so the location of the

instantaneous peak pressure is set randomly by hot spots in the burning propellant.

We can calculate the speed of these shock waves. Take the first one, which leaves the breech at about 9.0

ms into the simulation. It reaches the shell at about 10.5 ms, by which time the rear face of the shell has

moved out to about 1.2 meters from the breech. The shock wave travelled 1.2 meters in 1.5 ms, which is

a speed of 800 meters per second.

Look at the shock which is reflected back from the shell about 13 ms into the run. At first blush, it looks

like the shock front made a sudden leap, at nearly infinite speed. No, that is the wrong interpretation.

What is happening is that the shock wave is starting to dissipate, and the identity of the element which

had the highest instantaneous pressure changed. It was out-of-sequence, and the shock wave front is no

longer well-defined.

This simulation is not a good representation of what one would expect for this gun. Here is what one

would expect.

 The peak pressure should be around 3,750 atmospheres, almost twice what is predicted here.

 The shell's exit speed should be around 750 meters per second, at which speed it would have

 times as much kinetic energy as it has when it exits the gun at 595 meters per

second, as predicted here.

There is a reason for this shortfall. It is illustrated in the following graph, which shows that only about

one-half of the propellant was burned. Slightly more propellant was burned at the breech (57.6%) than

inside the last element (53.0%)., but the fact is that burning was too slow.

Shell is

released

Maximum pressure

during firing

Shell is moving

down the barrel

~ 34 ~

And, there is a good reason why more propellant was not consumed. In this paper, I modeled the grains

of propellant as solid cylinders. I ignored the fact that the grains are pierced by several holes drilled

through from one end-face to the other. These holes provide additional surface area on which burning

takes place. The holes allow the grains to be burned from the inside out, as well as from the outside in.

The net result is that more propellant is consumed, more heat is generated more quickly than from solid

grains, and there is higher pressure and greater shell speed. I will look at the effect of these holes in the

next paper.

As I have said, the numerical procedure did not require the use of artificial viscosity. Apparently, the

time steps were short enough that the pressures calculated using the normal unadjusted equations of state

were able to change quickly enough to withstand on-coming shocks. The time steps got as low as 60 ns

(nanoseconds) during the run.

Even though artificial viscosity was not necessary, it is still interesting to look at its effects. I have placed

on the following page three "Pressure and shell speed w.r.t. time" graphs, all of which are comparable to

the one above with that caption. The three graphs show the results of using non-zero artificial viscosity.

The artificial viscosity coefficient is set to ½, 10 and 100, respectively, in the three cases. In all cases,

the second artificial viscosity coefficient (which is based on a speed-of-sound factor), is set to one-

tenth of .

The main observation is this. The case shows some softening of the sharpness at the shock

wave fronts. If one looks closely, there is slight evidence of this kind of softening at . At

, the shock fronts look as sharp as they were with no artificial viscosity at all. It is worth bearing

in mind that the purpose of the artificial viscosity is not to make the shock waves somehow disappear, but

only to soften them just enough to permit the numerical integration to survive.

~ 35 ~

~ 36 ~

Also note that the use of artificial viscosity, and the dissipation which accompanies it, did not cause any

change in the speed at which the shell exits from the barrel.

In the next paper, I will add holes to the web of the grains.

Jim Hawley

© February 2015

If you found this description helpful, please let me know. If you spot any errors or omissions, please send

an e-mail. Thank you.

~ 37 ~

Appendix "A"

Listing of the VB2010 code for the numerical simulation

The program consists of a Windows Forms application (Form1) and two modules, Variables and

Procedures.

Listing of form Form1

Option Strict On
Option Explicit On

Public Class Form1
 Inherits System.Windows.Forms.Form

 Public Sub New()
 InitializeComponent()
 With Me
 Text = "Naval gun simulation"
 FormBorderStyle = Windows.Forms.FormBorderStyle.None
 Size = New Drawing.Size(1000, 700)
 CenterToScreen()
 MinimizeBox = True
 MaximizeBox = True
 FormBorderStyle = Windows.Forms.FormBorderStyle.Fixed3D
 With Me
 Controls.Add(buttonSimulate) : buttonSimulate.BringToFront()
 Controls.Add(buttonExit) : buttonExit.BringToFront()
 Controls.Add(labelResult) : labelResult.BringToFront()
 End With
 Visible = True
 PerformLayout()
 BringToFront()
 End With
 End Sub

 '//
 '//
 '// Controls for MainForm.

 Private WithEvents buttonSimulate As New Windows.Forms.Button With _
 {.Size = New Drawing.Size(120, 30), _
 .Location = New Drawing.Point(5, 5), _
 .Text = "Simulate", .TextAlign = ContentAlignment.MiddleCenter}

 Private WithEvents buttonExit As New Windows.Forms.Button With _
 {.Size = New Drawing.Size(120, 30), _
 .Location = New Drawing.Point(5, 40), _
 .Text = "Exit", .TextAlign = ContentAlignment.MiddleCenter}

 Public labelResult As New Windows.Forms.Label With _
 {.Size = New Drawing.Size(950, 600), _
 .Location = New Drawing.Point(125, 5), _
 .Text = "", .TextAlign = ContentAlignment.TopLeft, .Visible = True}

~ 38 ~

 '//
 '//
 '// Handlers for controls for MainForm.

 Private Sub buttonSimulate_Click() Handles buttonSimulate.MouseClick
 RunCompleteSimulation()
 End Sub

 Private Sub buttonExit_Click() Handles buttonExit.MouseClick
 Application.Exit()
 End Sub

End Class

Listing of module Variables

Option Strict On
Option Explicit On

Public Module Variables

 ' Simulation parameters:
 ' NE = Number of gas elements
 ' MaxSimTime = Maximum length of simulation, in seconds
 ' deltaT = Initial duration of a time step, in seconds
 ' Time = Simulation time, in seconds
 ' deltaTSave = Time interval between writes to output text files
 ' TimeOfNextSave = Time of next write to output text files
 ' deltaNESave = Spatial interval between gas elements which will be saved
 Public NE As Int32 = 2000
 Public MaxSimTime As Double = 0.05
 Public deltaT As Double = 0.0000001
 Public Time As Double
 Public deltaTSave As Double = 0.00001
 Public TimeOfNextSave As Double
 Public deltaNESave As Int32 = 20

 ' Variables used to calculate the length of a time step
 ' MaxChangeAllowed = If per-step change in Pi() or RHOi() exceeds this, reduce TS
 ' MinChangeAllowed = If per-step change in Pi() and RHOi() are less, increase TS
 ' DecreaseInTS = Fraction to decrease time step if pressure change is too high
 ' IncreaseInTS = Fraction to increase time step is pressure change is too low
 ' MaxPressure = Maximum of pressure in all elements, for display purposes only
 ' MaxPressureIndex = Index of element with maximum pressure, for display only
 Public MaxChangeAllowed As Double = 0.001
 Public MinChangeAllowed As Double = 0.00025
 Public DecreaseInTS As Double = 0.9
 Public IncreaseInTS As Double = 1.01
 Public MaxPressure As Double
 Public MaxPressureIndex As Int32

 ' Important times:
 ' TimeOfShellStart = Time at which the shell starts to move
 ' TimeOfShellExit = Time at which the shell leaves the barrel
 Public TimeofShellStart As Double
 Public TimeOfShellExit As Double

~ 39 ~

 ' Physical parameters of the gun:
 ' Lchamber = Length of chamber
 ' Lbarrel = Shell travel distance
 ' Abarrel = Area of open barrel
 ' Mshell = Mass of the shell
 ' Pengband = Engraving band pressure
 Public Lchamber As Double = 1.03 ' meters
 Public Lbarrel As Double = 5.97 ' meters
 Public Abarrel As Double = 0.0127 ' square meters
 Public Mshell As Double = 31.8 ' kilograms
 Public Pengband As Double = Val("4E7") ' Newtons per square meter

 ' Physical parameters of the propellant:
 ' Mcharge = Total mass of propellant
 ' Dgrain = Diameter of a grain of propellant
 ' Lgrain = Original length of a grain of propellant
 ' RHOgrain = Crystalline density of solid propellant
 ' RHOLoad = Loading denisty of solid propellant
 ' Q0 = Heat released from burning one kilogram of propellant
 ' Rgrain = Original radius of a grain of propellant
 ' LgrainEff = Effective length of one grain, per element
 ' AgrainEff = Effective cross-sectional area of one grain, per element
 Public Mcharge As Double = 8.85 ' kilograms
 Public Dgrain As Double = 0.0069 ' meters
 Public Lgrain As Double = 0.012 ' meters
 Public RHOgrain As Double = 1660 ' kilograms per cubic meter
 Public RHOLoad As Double = 680 ' kilograms per cubic meter
 Public Q0 As Double = 3430000 ' Joules per kilogram
 Public Rgrain As Double = Dgrain / 2 ' meters
 Public LgrainEff As Double
 Public AgrainEff As Double

 ' Physical parameters of the gas:
 ' StoichRatio = Moles of gas produced per kilogram of propellant
 ' Ridc = R, the Ideal Gas Constant
 ' C1, C2 = Artificial viscosity coefficients
 ' Cfr = Mass compensation coefficient for frictional forces
 ' Bcovolume = Basic ideal gas co-volume correction "b"
 Public StoichRatio As Double = 40 ' moles per kilogram
 Public Rigc As Double = 8.31446 ' Joules per mole-degK
 Public C1 As Double = 0 ' Artificial viscosity coefficient #1
 Public C2 As Double = C1 / 10 ' Artificial viscosity coefficient #2
 Public Cfr As Double = 0.167 ' Mass compensation for frictional forces
 Public Bcovolume As Double = 0.00095 ' cubic meters per kilogram

 ' Initial conditions of the ambient air inside the barrel:
 ' Patm = Atmospheric pressure
 ' Tatm = Temperature inside the chamber
 ' AirMW = Molecular weight of dry air
 ' AirNi = Number of moles of original air inside each element
 ' AirMi = Mass of original air inside each element
 Public Patm As Double = 101300 ' Newtons per square meter
 Public Tatm As Double = 100 ' degC
 Public AirMW As Double = 0.02897 ' kilograms per mole
 Public AirNi As Double ' moles
 Public AirMi As Double ' kilograms

~ 40 ~

 ' Gas element variables:
 ' Values for all elements and for two consecutive time steps are stored
 ' in the following variables.
 ' MiT = Total mass of "stuff" inside element #i (constant)
 ' MiP0 = Original mass of propellant inside element #i
 ' MiP(NE) = Mass of unburned propellant inside element #i at time T
 ' MiG(NE) = Mass of propellant gas inside element #i at time T
 ' Ni(NE) = Total moles of gas inside element #i at time T
 ' Xi(NE) = Location of boundary faces at time T (At breech, Xi(0)=0 always)
 ' Vi(NE) = Speed of boundary faces at time T-deltaT/2 (Vi(0)= 0 always)
 ' Pi(NE) = Static pressure inside element #i at time T
 ' Wi(NE) = Artificial viscosity inside element #i at time T
 ' VOLi(NE) = Total volume of element #i at time T
 ' VOLGasi(NE) = Gas volume of element #i at time T
 ' BCoVoli(NE) = Co-volume correction inside element #i at time T
 ' Ti(NE) = Temperature inside element #i at time T
 ' Ui(NE) = Internal energy of element #i at time T
 ' RHOi(NE) = Density inside element #i at time T
 ' GAMMAi(NE) = Ratio of specific heats inside element #i at time T
 ' Si(NE) = Speed of sound inside element #i at time T
 ' deltaQi(NE) = Heat added to element #i during one time step
 ' deltaNi(NE) = Moles of gas added to element #i during one time step
 Public MiT As Double ' kilograms
 Public MiP0 As Double ' kilograms
 Public MiP(NE), MiP_previous(NE) As Double ' kilograms
 Public MiG(NE), MiG_previous(NE) As Double ' kilograms
 Public Ni(NE), Ni_previous(NE) As Double ' moles
 Public Xi(NE), Xi_previous(NE) As Double ' meters
 Public Vi(NE), Vi_previous(NE) As Double ' meters per second
 Public Pi(NE), Pi_previous(NE) As Double ' Newtons per square meter
 Public Wi(NE), Wi_previous(NE) As Double ' Newtons per square meter
 Public VOLi(NE), VOLi_previous(NE) As Double ' cubic meters
 Public VOLGasi(NE), VOLGasi_previous(NE) As Double ' cubic meters
 Public BCoVoli(NE), BCoVoli_previous(NE) As Double ' cubic meters
 Public Ti(NE), Ti_previous(NE) As Double ' degK
 Public Ui(NE), Ui_previous(NE) As Double ' Joules
 Public RHOi(NE), RHOi_previous(NE) As Double ' kilograms per cubic meter
 Public GAMMAi(NE), GAMMAi_previous(NE) As Double
 Public Si(NE), Si_previous(NE) As Double ' meters per second
 Public deltaQi(NE), deltaQi_previous(NE) As Double ' Joules
 Public deltaNi(NE), deltaNi_previous(NE) As Double ' moles

 ' Propellant variables:
 ' Values for all elements and for two consecutive time steps are stored in the
 ' following variables.
 ' Bi(NE) = Burn rate inside element #i at time T
 ' Rgraini(NE) = Radius of grains in element #i at time T
 ' PropVOLi(NE) = Volume of propellant in element #i at time T
 ' deltaMi(NE) = Mass of propellant burned during one time step
 ' fi(NE) = Fraction of propellant burned in element #i at time T
 Public Bi(NE), Bi_previous(NE) As Double ' meters per second
 Public Rgraini(NE), Rgraini_previous(NE) As Double ' meters
 Public PropVOLi(NE), PropVOLi_previous(NE) As Double ' cubic meters
 Public deltaMi(NE), deltaMi_previous(NE) As Double ' kilograms
 Public fi(NE), fi_previous(NE) As Double

~ 41 ~

 ' Projectile variables:
 ' Values for the projectile for two consecutive time steps are stored in the
 ' following variables.
 ' Pshell = Pressure on rear face of shell at time T
 ' Xshell = Location of rear face of shell at time T
 ' Vshell = Speed of shell at time T-deltaT/2
 ' ACCshell = Acceleration of shell at time T
 ' CanShellMove is True when the shell has broken free from its band
 Public Pshell, Pshell_previous As Double ' Newtons per square meter
 Public Xshell, Xshell_previous As Double ' meters
 Public Vshell, Vshell_previous As Double ' meters per second
 Public ACCshell, ACCshell_previous As Double ' meters per second^2
 Public CanShellMove As Boolean

 ' Text file processing
 Public ThisDirectory As String = FileSystem.CurDir.ToString
 Public TextOutputFileName As String = "Naval_gun_simulation_"
 ' Log of screen display
 Public FileWriterMaster As System.IO.StreamWriter
 ' Gas element variables
 Public FileWriterMiP As System.IO.StreamWriter
 Public FileWriterMiG As System.IO.StreamWriter
 Public FileWriterNi As System.IO.StreamWriter
 Public FileWriterXi As System.IO.StreamWriter
 Public FileWriterVi As System.IO.StreamWriter
 Public FileWriterPi As System.IO.StreamWriter
 Public FileWriterWi As System.IO.StreamWriter
 Public FileWriterVOLi As System.IO.StreamWriter
 Public FileWriterVOLGasi As System.IO.StreamWriter
 Public FileWriterBCoVoli As System.IO.StreamWriter
 Public FileWriterTi As System.IO.StreamWriter
 Public FileWriterUi As System.IO.StreamWriter
 Public FileWriterRHOi As System.IO.StreamWriter
 Public FileWriterGAMMAi As System.IO.StreamWriter
 Public FileWriterSi As System.IO.StreamWriter
 Public FileWriterdeltaQi As System.IO.StreamWriter
 Public FileWriterdeltaNi As System.IO.StreamWriter
 ' Propellant variables
 Public FileWriterBi As System.IO.StreamWriter
 Public FileWriterRgraini As System.IO.StreamWriter
 Public FileWriterPropVOLi As System.IO.StreamWriter
 Public FileWriterdeltaMi As System.IO.StreamWriter
 Public FileWriterfi As System.IO.StreamWriter
 ' Projectile variables
 Public FileWriterShell As System.IO.StreamWriter

End Module

~ 42 ~

Listing of module Procedures

Option Strict On
Option Explicit On

' List of subroutines:
' InitializeForSimulation()
' RunFullSimulation()
' ExecuteOneTimeStep()
' ShiftAllValuesToPreviousVariables()
' FindMaximumPressure()
' OpenAllOutputTextFiles()
' CloseAllOutputTextFiles()
' WriteHeadersToAllOutputTextFiles()
' WriteDataRowToAllOutputTextFiles()

Public Module Procedures

 Public Sub InitializeForSimulation()
 ' This subroutine sets all quantities to their initial values, so
 ' everything is ready to start the first time step.
 '
 ' --
 ' Deal with the ambient air in the chamber prior to firing
 Dim TotalVolumeOfAir As Double = _
 Mcharge * ((1 / RHOLoad) - (1 / RHOgrain))
 Dim TotalMolesOfAir As Double = _
 Patm * TotalVolumeOfAir / (Rigc * (Tatm + 273.15))
 Dim TotalMassOfAir As Double = AirMW * TotalMolesOfAir
 AirNi = TotalMolesOfAir / NE
 AirMi = TotalMassOfAir / NE
 ' --
 '
 ' Set the initial MASS of propellant inside each element
 MiP0 = Mcharge / NE
 MiT = MiP0 + AirMi
 For J As Int32 = 1 To NE Step 1
 MiP(J) = MiP0
 MiG(J) = 0
 Next J
 '
 ' Set the initial VOLUME of propellant inside each element
 For J As Int32 = 1 To NE Step 1
 PropVOLi(J) = MiP(J) / RHOgrain
 Rgraini(J) = Rgrain
 Next J
 '
 ' Set the effective area and length of grains in each element
 ' This is done for the sole purpose of calculating the volume of propellant
 AgrainEff = Math.PI * (Rgrain ^ 2)
 LgrainEff = ((Mcharge / NE) / RHOgrain) / AgrainEff
 '
 ' Set the unburned fractions
 For J As Int32 = 1 To NE Step 1
 fi(J) = 1
 Next J
 '

~ 43 ~

 ' Set initial locations of boundary faces
 Xi(0) = 0
 For J As Int32 = 1 To NE Step 1
 Xi(J) = Lchamber * J / NE
 Next J
 Xshell = Lchamber
 '
 ' Set the initial speeds
 For J As Int32 = 1 To NE Step 1
 Vi(J) = 0
 Next J
 Vshell = 0
 '
 ' Set the initial pressure, volume, density and number of moles of air
 For J As Int32 = 1 To NE Step 1
 Pi(J) = Patm
 VOLi(J) = Abarrel * (Xi(J) - Xi(J - 1))
 RHOi(J) = AirMi / (VOLi(J) - PropVOLi(J))
 Ni(J) = AirNi
 Next J
 '
 ' Set the internal energies
 For J As Int32 = 1 To NE Step 1
 Ui(J) = (Ni(J) * Rigc * (Tatm + 273.15)) / (1.333 - 1)
 Next J
 End Sub

 Public Sub RunCompleteSimulation()
 Form1.labelResult.Text = "Starting simulation ..."
 Form1.labelResult.Refresh()
 '
 ' Initialize the vectors
 InitializeForSimulation()
 '
 ' Open the text output files
 OpenAllOutputTextFiles()
 WriteHeadersToAllOutputTextFiles()
 '
 ' Save the starting values
 Time = 0
 WriteDataRowToAllOutputTextFiles()
 TimeOfNextSave = Time + deltaTSave
 '
 ' Set the control parameters
 CanShellMove = False
 Dim ScreenUpdateInterval As Int32 = 250
 Dim ScreenUpdateCounter As Int32 = 250
 Do
 Time = Time + deltaT
 ' Test to see if the simulation has timed out
 If (Time >= MaxSimTime) Then
 Exit Do
 End If
 ' Shift the present variables into their "previous" variants
 ShiftAllValuesToPreviousVariables()
 ' Run one time step
 ExecuteOneTimeStep()

~ 44 ~

 ' Find the change in maximum pressure
 FindMaximumPressure(MaxPressure, MaxPressureIndex)
 ' Test to see if it is time to write to the output text files
 If (Time >= TimeOfNextSave) Then
 WriteDataRowToAllOutputTextFiles()
 TimeOfNextSave = Time + deltaTSave
 End If
 ' Test to see if the shell can start moving
 If ((CanShellMove = False) And _
 (Pi(NE) >= Pengband)) Then
 CanShellMove = True
 TimeofShellStart = Time
 Form1.labelResult.Text = Strings.Right(_
 Form1.labelResult.Text & vbCrLf & _
 "Shell starts moving at time = " & Trim(Str(Time)), 6000)
 Form1.labelResult.Refresh()
 FileWriterMaster.WriteLine(_
 "Shell starts moving at time = " & Trim(Str(Time)))
 Threading.Thread.Sleep(2000)
 End If
 ' Test to see if the shell has left the barrel
 If (Xshell > (Lchamber + Lbarrel)) Then
 TimeOfShellExit = Time
 Form1.labelResult.Text = Strings.Right(_
 Form1.labelResult.Text & vbCrLf & _
 "Shell exits at time = " & Trim(Str(Time)), 6000)
 Form1.labelResult.Refresh()
 FileWriterMaster.WriteLine(_
 "Shell exits at time = " & Trim(Str(Time)))
 ' Write the final values to the output text files
 WriteDataRowToAllOutputTextFiles()
 Exit Do
 End If
 ' Update the screen display
 ScreenUpdateCounter = ScreenUpdateCounter + 1
 If (ScreenUpdateCounter >= ScreenUpdateInterval) Then
 Form1.labelResult.Text = Strings.Right(_
 Form1.labelResult.Text & vbCrLf & _
 "T(us)= " & FormatNumber(Time * 1000000, 2) & _
 " dT(us)= " & FormatNumber(deltaT * 1000000, 6) & _
 " MaxP= " & FormatNumber(MaxPressure, 0, , TriState.True) & _
 " MaxPIndex= " & Trim(Str(MaxPressureIndex)) & _
 " P1= " & FormatNumber(Pi(1), 0, , , TriState.True) & _
 " Pne= " & FormatNumber(Pi(NE), 0, , , TriState.True) & _
 " Bne= " & FormatNumber(Bi(NE), 4) & _
 " fne= " & FormatNumber(fi(NE), 5) & _
 " f1= " & FormatNumber(fi(1), 5) & _
 " Vs= " & FormatNumber(Vshell, 2) & _
 " Wne= " & FormatNumber(Wi(NE), 0, , , TriState.True), _
 6000)
 Form1.labelResult.Refresh()
 ' Save the new line to the Master text output file as well
 FileWriterMaster.WriteLine(_
 "Time= ," & Trim(Str(Time)) & _
 ", with deltaT= ," & Trim(Str(deltaT)) & _
 ", MaxP= ," & Trim(Str(MaxPressure)) & _
 ", MaxPIndex= ," & Trim(Str(MaxPressureIndex)) & _
 ", P1= ," & Trim(Str(Pi(1))) & _

~ 45 ~

 ", Pne= ," & Trim(Str(Pi(NE))) & _
 ", Wne= ," & Trim(Str(Wi(NE))) & _
 ", Une= ," & Trim(Str(Ui(NE))) & _
 ", Bne= ," & Trim(Str(Bi(NE))) & _
 ", fne= ," & Trim(Str(fi(NE))) & _
 ", f1= ," & Trim(Str(fi(1))) & _
 ", Xs= ," & Trim(Str(Xshell)) & _
 ", Vs= ," & Trim(Str(Vshell)))
 ScreenUpdateCounter = 0
 End If
 ' Based on change in maximum pressure, change the time step if necessary
 ' Equation (?????*****)
 Dim lRelChangeInP As Double
 Dim lMaxRelChangeInP As Double
 Dim lRelChangeInRHO As Double
 Dim lMaxRelChangeInRHO As Double
 lMaxRelChangeInP = Val("-1E+20")
 lMaxRelChangeInRHO = Val("-1E+20")
 For J As Int32 = 1 To NE Step 1
 lRelChangeInP = _
 Math.Abs((Pi(J) - Pi_previous(J)) / Pi_previous(J))
 lRelChangeInRHO = _
 Math.Abs((RHOi(J) - RHOi_previous(J)) / RHOi_previous(J))
 If (lRelChangeInP > lMaxRelChangeInP) Then
 lMaxRelChangeInP = lRelChangeInP
 End If
 If (lRelChangeInRHO > lMaxRelChangeInRHO) Then
 lMaxRelChangeInRHO = lRelChangeInRHO
 End If
 Next J
 If ((lMaxRelChangeInP > MaxChangeAllowed) Or _
 (lMaxRelChangeInRHO > MaxChangeAllowed)) Then
 deltaT = DecreaseInTS * deltaT
 End If
 If ((lMaxRelChangeInP < MinChangeAllowed) And _
 (lMaxRelChangeInRHO < MinChangeAllowed)) Then
 deltaT = IncreaseInTS * deltaT
 End If
 Loop
 ' Close the output text file
 CloseAllOutputTextFiles()
 End Sub

 Public Sub ExecuteOneTimeStep()
 ' This subroutine advances the simulation from time t to time t+deltaT once the
 ' speeds of the boundary faces at time t+deltaT/2 have been calculated.
 ' For example, Vi(j) is the speed of boundary face #j at time t+deltaT/2
 ' Pi(j) is the pressure in element #j at time t+deltaT
 ' If the Boolean flag CanShellMove is False, then the shell, and the RHS
 ' boundary face of element #NE, are not permitted to move.
 '
 ' Step #1: Equation (A)
 Xi(0) = 0
 For J As Int32 = 1 To (NE - 1) Step 1
 Xi(J) = Xi_previous(J) + (Vi(J) * deltaT)
 Next J
 If (CanShellMove = True) Then
 Xi(NE) = Xi_previous(NE) + (Vshell * deltaT)

~ 46 ~

 Else
 Xi(NE) = Xi_previous(NE)
 End If
 Xshell = Xi(NE)
 '
 ' Step #2: Equation (B)
 For J As Int32 = 1 To NE Step 1
 VOLi(J) = (Xi(J) - Xi(J - 1)) * Abarrel
 Next J
 '
 ' Step #3: Burning equations
 For J As Int32 = 1 To NE Step 1
 ' Equation (C)
 Bi(J) = Math.Exp((_
 (0.046696597 * ((Math.Log(Pi_previous(J) / Patm)) ^ 2)) + _
 (0.34808898 * Math.Log(Pi_previous(J) / Patm)) + _
 -0.572295873)) / 1000
 ' Direct calculations for Equation (D)
 ' Calculate the new radius of the grain after the burning in this time step
 Rgraini(J) = Rgraini_previous(J) - (Bi(J) * deltaT)
 ' Calculate the new unburned propellant volume
 PropVOLi(J) = Math.PI * (Rgraini(J) ^ 2) * LgrainEff
 ' Calculate the decrease in volume and corresponding mass burned
 deltaMi(J) = RHOgrain * (PropVOLi_previous(J) - PropVOLi(J))
 '
 ' Check that burning does not consume more than 100% of the remaining mass
 If (deltaMi(J) > MiP_previous(J)) Then
 Rgraini(J) = 0
 PropVOLi(J) = 0
 deltaMi(J) = MiP_previous(J)
 End If
 ' Equation (E)
 MiP(J) = MiP_previous(J) - deltaMi(J)
 MiG(J) = MiG_previous(J) + deltaMi(J)
 fi(J) = MiG(J) / MiP0
 Next J
 '
 ' Step #4: Equation (F)
 For J As Int32 = 1 To NE Step 1
 deltaQi(J) = Q0 * deltaMi(J)
 Next J
 '
 ' Step #5: Density
 For J As Int32 = 1 To NE Step 1
 ' Equation (G)
 VOLGasi(J) = VOLi(J) - (MiP(J) / RHOgrain)
 ' Equation (H)
 RHOi(J) = (MiG(J) + AirMi) / VOLGasi(J)
 Next J
 '
 ' Step #6: Co-volume correction
 For J As Int32 = 1 To NE Step 1
 ' Equation (I)
 BCoVoli(J) = Bcovolume * (MiG(J) + AirMi) / (1 + (2 * RHOi(J) / 500))
 ' Equation (J)
 deltaNi(J) = 40 * deltaMi(J)
 ' Equation (K)
 Ni(J) = Ni_previous(J) + deltaNi(J)

~ 47 ~

 Next J
 '
 ' Step #7: Adiabtaic Index
 For J As Int32 = 1 To NE Step 1
 ' Equation (L)
 GAMMAi(J) = 1.333 + (0.567 * RHOi(J) / 1200)
 Next J
 '
 ' Step #8: Internal energy and pressure
 For J As Int32 = 1 To NE Step 1
 Dim MaxNumOfIterations As Double = 1000
 Dim NumOfIterations As Double = 0
 ' Starting guess
 Pi(J) = Pi_previous(J)
 ' Loop
 Do
 ' Equation (M)
 Si(J) = Math.Sqrt(GAMMAi(J) * Pi(J) / RHOi(J))
 ' Carry out the relative speed test
 Dim deltaV As Double
 If (J = 1) Then
 deltaV = -Vi(J)
 Else
 deltaV = Vi(J - 1) - Vi(J)
 End If
 ' Equation (N)
 If (deltaV > 0) Then
 Wi(J) = RHOi(J) * (_
 (C1 * deltaV * deltaV) + _
 (C2 * Si(J) * Math.Abs(deltaV)))
 Else
 Wi(J) = 0
 End If
 ' Equation (O)
 Dim lFactor1 As Double
 Dim lFactor2 As Double
 lFactor1 = Pi(J) + Wi(J) + Pi_previous(J) + Wi_previous(J)
 lFactor2 = VOLi(J) - VOLi_previous(J)
 Ui(J) = Ui_previous(J) + deltaQi(J) - (0.5 * lFactor1 * lFactor2)
 ' Equation (P)
 Dim lFactor3 As Double
 Dim P_New As Double
 lFactor3 = VOLGasi(J) - BCoVoli(J)
 P_New = (GAMMAi(J) - 1) * Ui(J) / lFactor3
 ' Test for negative pressure
 If (P_New <= 0) Then
 MsgBox("Error: Negative pressure. Reduce time step.")
 Exit Sub
 End If
 ' Test for convergence
 If (Math.Abs((P_New - Pi(J)) / Pi(J)) < 0.000000001) Then
 Pi(J) = P_New
 Exit Do
 End If
 ' Restrict the per-iteration adjustment in pressure
 Dim MaxAbsChange As Double
 MaxAbsChange = Math.Min(0.1 * Pi(J), Math.Abs(P_New - Pi(J)))
 If (P_New > Pi(J)) Then

~ 48 ~

 Pi(J) = Pi(J) + MaxAbsChange
 Else
 Pi(J) = Pi(J) - MaxAbsChange
 End If
 ' Test for too many iterations
 NumOfIterations = NumOfIterations + 1
 If (NumOfIterations > MaxNumOfIterations) Then
 MsgBox("Error: Too many iterations.")
 Exit Sub
 End If
 Loop
 Next J
 '
 ' Step #9: Temperature
 ' Equation(Q)
 For J As Int32 = 1 To NE Step 1
 Ti(J) = Pi(J) * (VOLGasi(J) - BCoVoli(J)) / (Ni(J) * Rigc)
 Next J
 '
 ' Step #10: Acceleration of the shell
 ' Equation(R)
 Dim EffectiveMshell As Double = Mshell / (1 - Cfr)
 Pshell = Pi(NE)
 ACCshell = (Pshell - Patm) * Abarrel / EffectiveMshell
 '
 ' Step #11: Advance the speeds
 ' Equation (S)
 For J As Int32 = 1 To (NE - 1) Step 1
 Dim lFactor1 As Double
 lFactor1 = Pi(J + 1) + Wi(J + 1) - Pi(J) - Wi(J)
 Vi(J) = Vi_previous(J) - (deltaT * lFactor1 * Abarrel / MiT)
 Next J
 ' Equation (T)
 If (CanShellMove = True) Then
 Vshell = Vshell_previous + (ACCshell * deltaT)
 Else
 Vshell = 0
 End If
 Vi(NE) = Vshell
 End Sub

 Public Sub ShiftAllValuesToPreviousVariables()
 ' This subroutine is called at the end of every time step. It moves the values
 ' just calculated into their "previous" variants, in preparation for the next
 ' time step.
 Xi_previous(0) = Xi(0)
 For J As Int32 = 1 To NE Step 1
 ' Gas element variables
 MiP_previous(J) = MiP(J)
 MiG_previous(J) = MiG(J)
 Ni_previous(J) = Ni(J)
 Xi_previous(J) = Xi(J)
 Vi_previous(J) = Vi(J)
 Pi_previous(J) = Pi(J)
 Wi_previous(J) = Wi(J)
 VOLi_previous(J) = VOLi(J)
 VOLGasi_previous(J) = VOLGasi(J)
 BCoVoli_previous(J) = BCoVoli(J)

~ 49 ~

 Ti_previous(J) = Ti(J)
 Ui_previous(J) = Ui(J)
 RHOi_previous(J) = RHOi(J)
 GAMMAi_previous(J) = GAMMAi(J)
 Si_previous(J) = Si(J)
 deltaQi_previous(J) = deltaQi(J)
 deltaNi_previous(J) = deltaNi(J)
 ' Propellant variables
 Bi_previous(J) = Bi(J)
 Rgraini_previous(J) = Rgraini(J)
 PropVOLi_previous(J) = PropVOLi(J)
 deltaMi_previous(J) = deltaMi(J)
 fi_previous(J) = fi(J)
 Next J
 ' Projectile variables
 Pshell_previous = Pshell
 Xshell_previous = Xshell
 Vshell_previous = Vshell
 ACCshell_previous = ACCshell
 End Sub

 Public Sub FindMaximumPressure(_
 ByRef MaxP As Double, ByRef MaxPIndex As Int32)
 ' This function is called at the end of every time step. It looks through the
 ' current values of the pressure in all elements. It returns the maximum value
 ' and the index of the element with the maximum pressure.
 MaxP = Val("-1E+20")
 For J As Int32 = 1 To NE Step 1
 If (Pi(J) > MaxP) Then
 MaxP = Pi(J)
 MaxPIndex = J
 End If
 Next J
 End Sub

 Public Sub OpenAllOutputTextFiles()
 ' Log of screen display
 FileWriterMaster = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "Master.txt")
 ' Gas element variables
 FileWriterMiP = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "MiP.txt")
 FileWriterMiG = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "MiG.txt")
 FileWriterNi = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "Ni.txt")
 FileWriterXi = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "Xi.txt")
 FileWriterVi = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "Vi.txt")
 FileWriterPi = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "Pi.txt")
 FileWriterWi = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "Wi.txt")
 FileWriterVOLi = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "VOLi.txt")
 FileWriterVOLGasi = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "VOLGasi.txt")

~ 50 ~

 FileWriterBCoVoli = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "BCoVoli.txt")
 FileWriterTi = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "Ti.txt")
 FileWriterUi = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "Ui.txt")
 FileWriterRHOi = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "RHOi.txt")
 FileWriterGAMMAi = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "GAMMAi.txt")
 FileWriterSi = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "Si.txt")
 FileWriterdeltaQi = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "deltaQi.txt")
 FileWriterdeltaNi = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "deltaNi.txt")
 ' Propellant variables
 FileWriterBi = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "Bi.txt")
 FileWriterRgraini = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "Rgraini.txt")
 FileWriterPropVOLi = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "PropVOLi.txt")
 FileWriterdeltaMi = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "deltaMi.txt")
 FileWriterfi = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "fi.txt")
 ' Projectile variables
 FileWriterShell = New System.IO.StreamWriter(_
 ThisDirectory & "\" & TextOutputFileName & "Shell.txt")
 End Sub

 Public Sub CloseAllOutputTextFiles()
 ' Log of screen display
 FileWriterMaster.Close()
 ' Gas element variables
 FileWriterMiP.Close()
 FileWriterMiG.Close()
 FileWriterNi.Close()
 FileWriterXi.Close()
 FileWriterVi.Close()
 FileWriterPi.Close()
 FileWriterWi.Close()
 FileWriterVOLi.Close()
 FileWriterVOLGasi.Close()
 FileWriterBCoVoli.Close()
 FileWriterTi.Close()
 FileWriterUi.Close()
 FileWriterRHOi.Close()
 FileWriterGAMMAi.Close()
 FileWriterSi.Close()
 FileWriterdeltaQi.Close()
 FileWriterdeltaNi.Close()
 ' Propellant variables
 FileWriterBi.Close()
 FileWriterRgraini.Close()
 FileWriterPropVOLi.Close()
 FileWriterdeltaMi.Close()

~ 51 ~

 FileWriterfi.Close()
 ' Projectile variables
 FileWriterShell.Close()
 End Sub

 Public Sub WriteHeadersToAllOutputTextFiles()
 ' Log of screen display
 FileWriterMiP.Write("Time, ")
 ' Gas element variables
 FileWriterMiG.Write("Time, ")
 FileWriterNi.Write("Time, ")
 FileWriterXi.Write("Time, ")
 FileWriterVi.Write("Time, ")
 FileWriterPi.Write("Time, ")
 FileWriterWi.Write("Time, ")
 FileWriterVOLi.Write("Time, ")
 FileWriterVOLGasi.Write("Time, ")
 FileWriterBCoVoli.Write("Time, ")
 FileWriterTi.Write("Time, ")
 FileWriterUi.Write("Time, ")
 FileWriterRHOi.Write("Time, ")
 FileWriterGAMMAi.Write("Time, ")
 FileWriterSi.Write("Time, ")
 FileWriterdeltaQi.Write("Time, ")
 FileWriterdeltaNi.Write("Time, ")
 ' Propellant variables
 FileWriterBi.Write("Time, ")
 FileWriterRgraini.Write("Time, ")
 FileWriterPropVOLi.Write("Time, ")
 FileWriterdeltaMi.Write("Time, ")
 FileWriterfi.Write("Time, ")
 ' Projectile variables
 FileWriterShell.WriteLine("Time, Xshell, Vshell, ACCshell, Pshell")
 For K As Int32 = 0 To (NE - 1) Step deltaNESave
 Dim ElementIndex As Int32
 If (K = 0) Then
 ElementIndex = 1
 Else
 ElementIndex = K
 End If
 ' Gas element variables
 FileWriterMiP.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterMiG.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterNi.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterXi.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterVi.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterPi.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterWi.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterVOLi.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterVOLGasi.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterBCoVoli.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterTi.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterUi.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterRHOi.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterGAMMAi.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterSi.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterdeltaQi.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterdeltaNi.Write(Trim(Str(ElementIndex)) & ", ")

~ 52 ~

 ' Propellant variables
 FileWriterBi.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterRgraini.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterPropVOLi.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterdeltaMi.Write(Trim(Str(ElementIndex)) & ", ")
 FileWriterfi.Write(Trim(Str(ElementIndex)) & ", ")
 Next K
 ' Gas element variables
 FileWriterMiP.WriteLine(Trim(Str(NE)))
 FileWriterMiG.WriteLine(Trim(Str(NE)))
 FileWriterNi.WriteLine(Trim(Str(NE)))
 FileWriterXi.WriteLine(Trim(Str(NE)))
 FileWriterVi.WriteLine(Trim(Str(NE)))
 FileWriterPi.WriteLine(Trim(Str(NE)))
 FileWriterWi.WriteLine(Trim(Str(NE)))
 FileWriterVOLi.WriteLine(Trim(Str(NE)))
 FileWriterVOLGasi.WriteLine(Trim(Str(NE)))
 FileWriterBCoVoli.WriteLine(Trim(Str(NE)))
 FileWriterTi.WriteLine(Trim(Str(NE)))
 FileWriterUi.WriteLine(Trim(Str(NE)))
 FileWriterRHOi.WriteLine(Trim(Str(NE)))
 FileWriterGAMMAi.WriteLine(Trim(Str(NE)))
 FileWriterSi.WriteLine(Trim(Str(NE)))
 FileWriterdeltaQi.WriteLine(Trim(Str(NE)))
 FileWriterdeltaNi.WriteLine(Trim(Str(NE)))
 ' Propellant variables
 FileWriterBi.WriteLine(Trim(Str(NE)))
 FileWriterRgraini.WriteLine(Trim(Str(NE)))
 FileWriterPropVOLi.WriteLine(Trim(Str(NE)))
 FileWriterdeltaMi.WriteLine(Trim(Str(NE)))
 FileWriterfi.WriteLine(Trim(Str(NE)))
 End Sub

 Public Sub WriteDataRowToAllOutputTextFiles()
 ' Gas element variables
 FileWriterMiP.Write(Trim(Str(Time)) & ", ")
 FileWriterMiG.Write(Trim(Str(Time)) & ", ")
 FileWriterNi.Write(Trim(Str(Time)) & ", ")
 FileWriterXi.Write(Trim(Str(Time)) & ", ")
 FileWriterVi.Write(Trim(Str(Time)) & ", ")
 FileWriterPi.Write(Trim(Str(Time)) & ", ")
 FileWriterWi.Write(Trim(Str(Time)) & ", ")
 FileWriterVOLi.Write(Trim(Str(Time)) & ", ")
 FileWriterVOLGasi.Write(Trim(Str(Time)) & ", ")
 FileWriterBCoVoli.Write(Trim(Str(Time)) & ", ")
 FileWriterTi.Write(Trim(Str(Time)) & ", ")
 FileWriterUi.Write(Trim(Str(Time)) & ", ")
 FileWriterRHOi.Write(Trim(Str(Time)) & ", ")
 FileWriterGAMMAi.Write(Trim(Str(Time)) & ", ")
 FileWriterSi.Write(Trim(Str(Time)) & ", ")
 FileWriterdeltaQi.Write(Trim(Str(Time)) & ", ")
 FileWriterdeltaNi.Write(Trim(Str(Time)) & ", ")
 ' Propellant variables
 FileWriterBi.Write(Trim(Str(Time)) & ", ")
 FileWriterRgraini.Write(Trim(Str(Time)) & ", ")
 FileWriterPropVOLi.Write(Trim(Str(Time)) & ", ")
 FileWriterdeltaMi.Write(Trim(Str(Time)) & ", ")
 FileWriterfi.Write(Trim(Str(Time)) & ", ")

~ 53 ~

 For K As Int32 = 0 To (NE - 1) Step deltaNESave
 Dim ElementIndex As Int32
 If (K = 0) Then
 ElementIndex = 1
 Else
 ElementIndex = K
 End If
 ' Gas element variables
 FileWriterMiP.Write(Trim(Str(MiP(ElementIndex))) & ", ")
 FileWriterMiG.Write(Trim(Str(MiG(ElementIndex))) & ", ")
 FileWriterNi.Write(Trim(Str(Ni(ElementIndex))) & ", ")
 FileWriterXi.Write(Trim(Str(Xi(ElementIndex))) & ", ")
 FileWriterVi.Write(Trim(Str(Vi(ElementIndex))) & ", ")
 FileWriterPi.Write(Trim(Str(Pi(ElementIndex))) & ", ")
 FileWriterWi.Write(Trim(Str(Wi(ElementIndex))) & ", ")
 FileWriterVOLi.Write(Trim(Str(VOLi(ElementIndex))) & ", ")
 FileWriterVOLGasi.Write(Trim(Str(VOLGasi(ElementIndex))) & ", ")
 FileWriterBCoVoli.Write(Trim(Str(BCoVoli(ElementIndex))) & ", ")
 FileWriterTi.Write(Trim(Str(Ti(ElementIndex))) & ", ")
 FileWriterUi.Write(Trim(Str(Ui(ElementIndex))) & ", ")
 FileWriterRHOi.Write(Trim(Str(RHOi(ElementIndex))) & ", ")
 FileWriterGAMMAi.Write(Trim(Str(GAMMAi(ElementIndex))) & ", ")
 FileWriterSi.Write(Trim(Str(Si(ElementIndex))) & ", ")
 FileWriterdeltaQi.Write(Trim(Str(deltaQi(ElementIndex))) & ", ")
 FileWriterdeltaNi.Write(Trim(Str(deltaNi(ElementIndex))) & ", ")
 ' Propellant variables
 FileWriterBi.Write(Trim(Str(Bi(ElementIndex))) & ", ")
 FileWriterRgraini.Write(Trim(Str(Rgraini(ElementIndex))) & ", ")
 FileWriterPropVOLi.Write(Trim(Str(PropVOLi(ElementIndex))) & ", ")
 FileWriterdeltaMi.Write(Trim(Str(deltaMi(ElementIndex))) & ", ")
 FileWriterfi.Write(Trim(Str(fi(ElementIndex))) & ", ")
 Next K
 ' Gas element variables
 FileWriterMiP.WriteLine(Trim(Str(MiP(NE))))
 FileWriterMiG.WriteLine(Trim(Str(MiG(NE))))
 FileWriterNi.WriteLine(Trim(Str(Ni(NE))))
 FileWriterXi.WriteLine(Trim(Str(Xi(NE))))
 FileWriterVi.WriteLine(Trim(Str(Vi(NE))))
 FileWriterPi.WriteLine(Trim(Str(Pi(NE))))
 FileWriterWi.WriteLine(Trim(Str(Wi(NE))))
 FileWriterVOLi.WriteLine(Trim(Str(VOLi(NE))))
 FileWriterVOLGasi.WriteLine(Trim(Str(VOLGasi(NE))))
 FileWriterBCoVoli.WriteLine(Trim(Str(BCoVoli(NE))))
 FileWriterTi.WriteLine(Trim(Str(Ti(NE))))
 FileWriterUi.WriteLine(Trim(Str(Ui(NE))))
 FileWriterRHOi.WriteLine(Trim(Str(RHOi(NE))))
 FileWriterGAMMAi.WriteLine(Trim(Str(GAMMAi(NE))))
 FileWriterSi.WriteLine(Trim(Str(Si(NE))))
 FileWriterdeltaQi.WriteLine(Trim(Str(deltaQi(NE))))
 FileWriterdeltaNi.WriteLine(Trim(Str(deltaNi(NE))))
 ' Propellant variables
 FileWriterBi.WriteLine(Trim(Str(Bi(NE))))
 FileWriterRgraini.WriteLine(Trim(Str(Rgraini(NE))))
 FileWriterPropVOLi.WriteLine(Trim(Str(PropVOLi(NE))))
 FileWriterdeltaMi.WriteLine(Trim(Str(deltaMi(NE))))
 FileWriterfi.WriteLine(Trim(Str(fi(NE))))
 ' Projectile variables
 FileWriterShell.WriteLine(Trim(Str(Time)) & ", " & Trim(Str(Xshell)) & ", " & _

~ 54 ~

 Trim(Str(Vshell)) & ", " & Trim(Str(ACCshell)) & ", " & Trim(Str(Pshell)))
 End Sub

End Module

