
~ 1 ~ 

 

Interior ballistics of a large naval gun or artillery piece 

 

Interior ballistics describes what happens inside the barrel.  The behaviour of the gas released as the 

propellant burns lies at the heart of the problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following cross-section of a 12-inch gun was taken from Ordnance and Gunnery: A textbook 

prepared for the Cadets of the United States Military Academy, by Ormon Lissak, 1907.  The layout is 

typical of large naval guns and artillery pieces, even a century later.      

 

 

The projectile, which I will call the "shell", for this gun weighs about 1,130 pounds.  The powder charge, 

which I will call the "propellant", weighs 360 pounds.  For ease in manhandling, the charge is stowed in 

four silk bags each containing 90 pounds.  After the shell is rammed home through the breech, the bags of 

propellant are thrown into the chamber.  It can be seen that the propellant does not fill the chamber 

completely.  The propellant for this gun is about 90% nitrocellulose.  Nitrocellulose burns relatively 

slowly, so there are additives like nitroglycerin to help get the burning started quickly over the entire 

exposed surface area of the propellant.  There are also chemical stabilizers and gelatinizing agents.  The 

propellant is molded into small cylinders, called "grains".  For this gun, the grains have a diameter of 

about 7/8-inch and a length of about 1-1/2 inch.    

 

The physical shape and size of the grains is not a trivial matter.  The objective of their geometry is to 

control, and particularly to slow down, the rate at which they burn.  Contrary to popular belief, the 

propellant does not explode.  Nor does it burn up quickly compared with the time it takes the shell to 

travel down the barrel.  In the ideal case, the propellant would continue to burn during the entire time the 

shell remains inside the barrel.  Indeed, it sometimes occurs that unburned propellant is ejected along with 

the shell. 

Interior ballistics 

Exterior ballistics 
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The following figure shows the simplifications to the geometry I am going to make.  Certain of the basic 

quantities are also defined. 

 

 

 

 

 

 

 

 

 

 

 

 

 

I am going to analyze the gas in one-dimension, along the central axis of the gun.  Distance along this axis 

will be measured by the -co-ordinate, as shown in the following figure.  I will assume that the properties 

of the gas are the same all across the circular cross-section at each longitudinal -station.  It is therefore 

convenient to assume that the chamber (in which the propellant is placed) has the same radius as the 

barrel, as is shown in the figure above. 

 

 

 

 

 

 

 

 

 

 

 

 

It is apparent that the breech is at .  At the time of ignition, the aft face of the shell is at the forward 

end of the chamber, that is, at .  The shell travels a distance  inside the barrel, and leaves the 

influence of the propellant when its aft face is at co-ordinate .  It may be that the rear end of 

the shell is tapered so there is a gap between the circumference at the rear end and the inside of the barrel 

while the shell is exiting.  If so, that can be compensated for in the modeling by setting the length of the 

barrel  to some value a little less than the physical length of the barrel. 

 

The mathematical model for firing this gun can be captured in seven relationships, relating to: 

1. Conservation of mass of the gas 

2. Conservation of momentum of the gas 

3. Conservation of internal energy of the gas 

4. Description of the heat generated as the propellant is burned 

5. Dynamic equation governing the acceleration of the shell 

6. Thermal equation of state for the gas, relating its physical parameters to temperature 

7. Calorific equation of state for the gas, relating its physical properties to energy 

 

I will deal with each relationship in a separate section. 

 

Breech is at  

 

The properties of the gas are 

constant across each section. 
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Part 1 – Conservation of mass of the gas 

 

The bags containing the grains of propellant are cylindrical.  Typically, a flat pancake made from another 

kind of explosive is inserted into a pocket at each end of the bag.  The gun is fired by igniting these flat 

pancakes, which are used because they are easier to ignite than the propellant itself.  Since the objective 

of the pancakes is to initiate burning on the entire surface area of all the grains in all the bags, there will 

be a great commotion during ignition.  The pressure inside the chamber will rise sharply.  Typically, the 

shell will be held back until the pressure reaches a certain value, determined by the engraving band, after 

which the shell will be allowed to begin accelerating down the barrel. 

 

I have given this description of the ignition to justify the assumption I will make about the location of the 

propellant grains.  I will assume that, at all times, the grains of propellant are uniformly distributed 

throughout the volume between the breech and the rear face of the shell.  In other words, the commotion 

inside the barrel jostles the grains in such a way that they do not remain inside the chamber once the shell 

begins moving.  They move apart from one another, taking advantage of the increased volume as it 

becomes available. 

 

This assumption allows us to build conservation of mass into the behaviour of the gas right from the 

outset.  Here is what I will do.  I will divide the volume occupied by the gas at any instant of time into  

(a large number) of "elements", each of which will be a thin disk.  Initially, the  thin disks will have the 

same thickness and, since the length of the chamber is , that thickness will be equal to .  Since the 

total original mass of the propellant is , the mass of (unburned) propellant initially contained 

inside each thin disk will be equal to .   

 

I am going to arrange things so that the total mass contained inside each thin disk does not change with 

time.  It remains constant at .  The proportion between unburned propellant and gas molecules 

will change as time progresses, but the total mass will remain unchanged.  What does change with time is 

the -locations of the faces of the disks.  The numbering scheme I propose to use is illustrated in the 

following figure.  I will use the symbol  for the -location of the shell-end face of the 
th
 element at a 

particular time .  The figure shows the locations of the faces of element #  at time  and again at a later 

time .  This 
th
 element is shaded in grey.  Unless both faces moved by the same distance from time  

to time , the volume of element #  will have changed.  The important thing is that we will cause the 

equations of motion to move the faces so that the same gas is always present inside element # .  Hence, 

mass will be conserved. 

 

 

 

 

 

 

 

 

 

 

 

It follows from these definitions that the location of the breech end of the 
st
 element, that is , will be 

zero at all times .  It will not move.  The barrel end of the last element, that is element # , is located at 

.  At all times, this will be the rear face of the shell. 
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  Part 2 – Conservation of momentum of the gas 

 

In this section, I will look at conservation of momentum of the gas.  Taken along with conservation of 

mass from the previous section, the two ideas will ensure the conservation of the gas's kinetic energy.  If 

we were considering potential energy in our model of the gun, we would include the potential energy of 

the gas here, along with its kinetic energy.  Even if the barrel of the gun is not horizontal, though, the 

potential energy of the gas is insignificant compared with its kinetic energy.  I mention the potential 

energy just to put it into its proper place.  This Part 2 deals with the energy of the gas's motion and 

location; Part 3 will deal with its internal energy. 

 

As we get into this discussion, we are going to be faced with a bit of a problem about how to describe the 

locations of things.  Some quantities of interest, like the mass of the gas, which relate to a whole element, 

are best treated as if they exist or apply at the physical "center" of the elements.  Other quantities, like the 

location of each element, are best expressed by reference to the faces which are the boundaries of the 

element.  In essence, this is a question of how we discretize phenomena which we would prefer to model 

mathematically in a continuous and differential form.  I am going to skirt around the problem by 

developing the equation of motion directly in discrete form. 

 

Consider the boundary face between elements #  and # .  (I will always assume that the breech end of 

the gun lies to our left, the shell exits to the right, and the location indices are numbered from left to 

right.)  In accordance with our numbering scheme, this boundary face is located at -co-ordinate  at 

time .  I will use the symbol  for the speed of this boundary face at time .  (I will reserve the capital 

letter  for volumes and use the small letter  for speeds.)  We will have solved the equation of motion 

for the gas if we can calculate the speeds at all the boundary faces.   

 

To the left of this boundary face is element # , with total mass .  To the right lies element # , with 

total mass .  The situation look like this. 

 

Notionally, we are going to assign some mass to the boundary face 

shaded in pink.   Suppose we assign to this face half of the mass of the 

element to the left and half of the mass of the element to the right.  So 

long as we make the right adjustments to the left-most face (at the 

breech) and right-most face (at the shell), and assign only half masses to 

them, this approximation scheme will approach perfection as the size of 

the elements is reduced. 

 

The mechanical momentum (mass multiplied by speed) of this "massy" boundary face can be written as: 

 

 

 

Since the masses are constant with respect to time, per Section 1, we can write the rate-of-change of this 

momentum as: 

 

 

 

According to Newton's Laws, this rate-of-change of momentum will be equal to the net force which acts 

on this massy boundary face.  Since I have set up the distance and speed convention as increasing towards 

the right, a net force will be algebraically positive if it also acts towards the right.  Therefore: 
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Since we are conducting a one-dimensional analysis, we need concern ourselves only with forces which 

act parallel to the long axis of the gun.  There is gas to the left and gas to the right, so the only force will 

be exerted by static pressure.  The force acting on the left side of this massy face will be the pressure 

inside element # , say , multiplied by the area of the face.  The force acting on the right side of this 

massy face will be the pressure inside element # , , again multiplied by area .  This latter 

pressure acts towards the left, however, tending to decelerate the massy face.  Under the influence of 

these pressures, the massy face will accelerate in accordance with: 

 

 

 

Note that I have added the superscript  to the pressures to denote that these are their values at time .  No 

such superscript is needed on the masses, since the total mass inside each element remains constant. 

 

In some situations, a numerical integration of this expression would work out just fine.  In our situation, I 

expect that the process will fail, with the failure manifesting itself in infinite speeds, negative pressures 

and other such impossible results.  Since the gas inside the barrel is compressed under tremendous and 

rapidly changing pressures, shock fronts will almost certainly form.  There will be sharp changes in the 

pressure, density and temperature of the gas over short distances.  Such discontinuities are shock waves.   

 

A remedy was proposed in 1950 by Messrs. Richtmyer and von Neumann.  They proposed to add a kind 

of additional pressure.  They formulated the added pressure in such a way that it would dissipate some of 

the gas's energy, just like a shock wave does.  From the point-of-view of the numerical integration, the 

effects of a discontinuity would then be spread over several adjacent elements in the discretized model of 

the gas.  The arbitrary nature of this remedy was reflected in the name they gave the added pressure, 

"artificial viscosity".  Like all viscosities, the added pressure term removes energy from the gas at a 

microscopic level. 

 

The added pressure is artificial, but not wholly arbitrary.  There is a difference.  Equation  is not an 

adequate model of the gas's behaviour when it becomes supersonic, so some correction must be made.  

The need for a correction exists and making a correction is not arbitrary.  But there are different ways to 

implement the correction.  The way I am going to implement the correction is this.  Letting  be the 

artificial viscosity inside the 
th
 element at time , I will revise the equation of motion to be: 

 

 

 

where the discretized expression for  is:  

 

 

 

In this expression,  is the density of the gas inside element #  and  is the local speed of sound there, 

both at time .   and  are constants chosen to assist the realism of the new terms. 
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__________________________________________________________________________________ 

Aside: Heuristic derivation of an appropriate form for  

 

As I say, different forms can be used for the artificial viscosity.  The form I have chosen makes intuitive 

sense to me, as the following heuristic derivation shows.  Consider two finite masses  and  which 

have initial speeds  and , respectively.   is on the left.  If , the two masses will never hit 

each other.  A collision will occur only if the mass on the left, , is travelling faster than  and 

eventually overtakes it.  This is analogous to our gaseous situation if the gas is being compressed faster 

than it is being accelerated, causing some elements to overtake their counterparts further down the barrel.   

 

 

 

 

 

If the collision between the two masses is elastic, then they will bounce off each other without any loss in 

their combined kinetic energy.  This is analogous to our gaseous situation as described in Equation (1) 

which is, in effect, the "elastic" version of encounters between gas elements in the barrel.  On the other 

hand, an inelastic collision between masses  and , in which the total kinetic energy is reduced, 

becomes analogous to our gaseous situation when our goal is to incorporate some form of energy 

dissipation.  So, let's look more closely at inelastic collisions between  and . 

 

First, recognize that we do not know how much inelasticity to build into the collision.  Is a lot of the 

initial total kinetic energy lost, or just a little bit?  The way to handle this uncertainty is to build in some 

flexibility.  Let's assume that a little bit of mass , in an amount , encounters a little bit of mass , 

in an amount .  Let's assume that the collision between  and  is perfectly inelastic.  They 

stick together, at some final speed .  This final speed can be calculated using simple mechanics.  Their 

combined initial and final momenta are: 

 

 

 

The initial and final momenta must be the same whether the collision is elastic or not.  Equating them, we 

get: 

 

 

 

Now, let's notionally separate the two component submasses  and , both now moving at speed , 

and recombine them with their parent masses.  Physically, this is quite close to what happens with our 

gaseous elements in the gun.  The masses are adjacent elements on either side of a boundary face, and 

they are in constant contact with one another.  After recombining the prodigal submasses, the final 

momenta of the parent masses are as follows: 

 

 

 

Subtracting the parents' initial momenta gives the following changes in momentum: 

 

 

  
  

-axis 
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Substituting the expression for speed  into the change in momentum of the first mass gives: 

 

 

 

Similar algebra for the second mass shows that its change in momentum is: 

 

 

 

which is equal in magnitude but opposite in sign, as one would expect. 

 

Let's start to apply these changes in momentum to the gas elements in our gun.  First, let's figure out what 

we want to represent the so-called parent masses.  Since we have already chosen to use boundary faces 

between elements as the loci for measuring speeds, let's continue to do so.  Then,  would represent the 

speed of the right-hand boundary face of some particular element and  would represent the speed of its 

left-hand boundary face.  In talking about "massy" faces above, I have already assigned effective masses 

to both boundary faces.  In other words, the masses which correspond to  and  are the masses of the 

massy boundary faces on the left side and right side, respectively, of this particular element.  The 

interaction between the two submasses  and  therefore takes place at what is the center of this 

particular element.  That is handy, because we will have to talk about the density of the gas (below), and 

the density we calculate will be the average of conditions throughout the element's volume.  We will 

localize the density to the center of the element, right where the interaction between  and  takes 

place.  For now, let's say that the density at the center of this particular element is . 

 

Secondly, recall that we chose the magnitude of the interacting masses  and  arbitrarily.  There is 

nothing to prevent them from being the same, so that .  If  is the density of the gas at the 

spot where these masses interact, then we can express the masses  as the product of the density and a 

volume.  An appropriate volume for this purpose could be a very thin circular cylinder, with the circle 

being the open barrel.  The area of the cylinder is the same area of the barrel  we used above.  The 

thickness of the cylinder can be chosen to suit.  Let's say the thickness is .  With these definitions, we 

can express the masses  and  in terms of the density  as follows: 

 

 
 

Having expressed the submasses in this way, the changes in the momenta of the parent masses are: 

 

 

 

Remember that there will not be any collision at all unless .  In that case, the change in 

momentum of  will be algebraically negative (it loses momentum) and the change in momentum of  

will be algebraically positive (it gains momentum).   
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The thickness  is still arbitrary.  We can, without limiting anything we have done so far, express this 

distance as the product of a speed and a time.  We already have a speed at hand, , which is the 

relative speed at which the submasses approach each other.  There will be a corresponding time period, an 

"interaction time" , if you will, which can be used along with the relative speed to calculate a "depth"  

of the interaction.  With these definitions, we can express the depth as: 

 

 
 

Since the interaction distance only makes physical sense if it is a positive number, this expression only 

makes sense if .  Making the substitution into Equation , the changes in momenta can be 

written as: 

 

 

 

Yes, I realize that the speed-difference terms can be combined as squares.  And, in due course I will 

combine them, but not just yet.  I am not ready to pick which one of  or  should come first in the 

subtraction.  

 

What do we get if we divide both sides of one of these equations by the interaction time ?  The result is 

the rate-of-change in the momentum during the interaction period.  That sounds like exactly the kind of 

artificial adjustment we hoped to make to the equation of motion , namely, a dissipation of energy 

during a short interaction time.  Executing the division on both equations, we get: 

 

 

 

If the particular element we have been looking at is the 
th
 element, the relevant density in the discretized 

versions of these equations would be denoted by  or, since the density changes with time, then as  at 

time .  Speed  corresponds to the speed of the right-hand boundary face of this element, .  Speed  

corresponds to the speed of the left-hand boundary face of this element, .  Combining the factor  

into a more general constant  means that the artificial viscosity to be added to the right-hand side of 

Newton's equation  has the form: 

 

 

 

This will always be algebraically negative.  But the whole concept only applies if  or, in terms of 

the speeds at the element's boundary faces, .   

 

Observe that Equation  corresponds to the first of the two terms in my expression for the artificial 

viscosity in Equation .  But, there is a second term in Equation  as well.  Here's why.  The 

correction (that is, dissipation of energy) in Equation  is said to "capure strong shocks and prevent 

zone inversions", but can still leave "unphysical oscillations" behind the shock front.  A second term, 

similar in form but only linear in the speed-difference term , is sometimes added to deal with 

this.  Relative speeds get higher as one approaches a shock front, so a term which is linear in the relative 

speed rather than squared will decrease less rapidly as one gets further away from the shock front.  In 

other words, a linear correction term would extend its ameliorating influence further away from the shock 

front than does Equation . 
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A good place to begin is back at Equation .  In Equation , the change in momentum due to 

inelastic, or viscous, effects was expressed in terms of an interaction distance .  In the first run-

through, I expressed the interaction distance in terms of the local relative speed  muliplied by an 

interaction time .  There are other ways to drum up estimates for interaction distances.  For example, one 

could use the product of the local speed of sound  and the interaction time .  Just like the density , the 

local speed of sound is a quantity that we can deal with on an element-centered basis.  I will set aside for 

the moment the question of how we go about calculating the speed of sound, and just assume that we 

know its value.  The interaction distance can then be written as: 

 

 
 

Working through the same steps as before, we arrive at the following expression for the rate-of-change in 

the momentum through the interaction zone: 

 

 

 

where  is the speed of sound at the center of element #  at time  and  is a different constant for this 

different formulation of the artificial viscosity.  This expression will also be algebraically negative in the 

circumstance of interest to us, when .  Note that Equation  corresponds to the second of the 

two terms in my expression for the artificial viscosity in Equation . 

 

I believe the best way to add up the effects in Equations  and  to avoid continuing confusion over 

algebraic signs is as follows: 

 

 

 

All the factors are guaranteed to be positive and the dissipative nature of the correction shows up in the 

explicit minus signs.  As always, the dissipation occurs only when the relative speeds dictate, namely, 

when . 

 

But, this is not quite the end of the story.  The story so far has tracked through what the gas would do if 

the elements interacted in an inelastic manner.  Our problem is the reverse of this.  What we really want to 

do is to artificially introduce the effect of inelasticity, so that our otherwise perfectly colliding elements 

respond as if they experienced inelastic collisions.  We need to add the reverse of the inelastic effects 

described in Equation .  It is for that reason that the addition I made to adjust Equation (2) is the 

negative of Equation  and not Equation  itself. 

 

Let me explain this using a different approach.  The following figure shows four successive elements in 

the barrel which are subject to a gradient of static pressure which is high on the left-side and low on the 

right-side.  I have shown the elements at four successive times. 

 

Under the influence of the static pressure only, the 

boundary end-faces of the elements at the high pressure 

end will be accelerated more quickly than the end-faces at 

the low pressure end.  The high pressure faces will 

overtake their counterparts at the low pressure end.  If the 

time steps of the numerical integration are "too long" in 

duration, or the elements "too big" in size, it can happen 

that the high pressure faces pass right through the low 

pressure ones.  Obviously, we cannot permit that.   

High pressure Low pressure 
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The purpose of artificial viscosity is to add some extra, artificial, pressure inside those elements which are 

being compressed most vigorously.  The extra pressure inside the elements which are being squeezed 

retards the advance of the elements, and their boundary end-faces, which are crushing in from the left.  

The "end" of this act is to increase the pressure inside the elements which are being squeezed; the 

"means" by which this is done is to use the viscosity concept to slow down the on-coming end-faces.  

They are two sides of the same coin. 

 

An element which is being squeezed is one whose left face, which is moving at speed , is moving 

faster than its right face, which is moving at speed .  The relative speed at which the faces are closing 

on each other is .  When this is positive, the element is being compressed.  The extra pressure 

needs to be added to the inside of this element.  Hence the algebraic sign of the addition of artificial 

viscosity in Equation . 

 

_____________________________________End of aside____________________________________ 

 

We are not quite done with our equation of motion.  Equation  still contains the derivative , 

which needs to be discretized before we can use it in a numerical procedure.  Suppose the time step used 

in the numerical integration is .  The usual way to discretize the derivative would be to make the 

approximation: 

 

 

 

I am going to make a slightly different approximation.  I am going to center the derivative on time  by 

offsetting the speeds used in the approximation one-half time step forwards and backwards, like this: 

 

 

 

In the limit as  shrinks to zero, the two approximations are the same.  But, before  gets all the way 

to zero, they are not quite the same.  In practice, particularly when the time step is not as short as one 

would like, the second approximation avoids the lopsided bias built into the first approximation.  Using 

the second approximation, our equation of motion can be written as: 

 

 

 

where  and  are still computed using Equation .  In effect, this means that the speeds will be 

calculated at half-integral time steps, while all other quantities will be calculated at integral time steps.  I 

believe that some practitioners call this method "leap-frogging". 

 

Once the speeds have been calculated using Equation , the locations of the boundary faces can then 

be advanced through the next time step.  For example: 

 

 

 

The benefits of having calculated the speeds at half-integral time steps is a little clearer in Equation , 

where  enters as the speed at the middle of the time step, and not the speed at the start of the time 

step. 
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Once the locations of the boundary faces at time  have been calculated using Equation , the 

total volume of each element can be computed, as follows: 

 

 

 

Equations  and  are the equations which ensure that mass and momentum are conserved.  In our 

numerical procedure, we will use them to advance the speed and location variables from one time step to 

the next.  Because of the special geometry of our gun, their use automatically advances the total volumes 

of the elements, too, via Equation .   

 

Note that the variables which are the ingredients in these equations, on the right-hand side, are referenced 

to time .  Once we have solved for all quantities at time , these three equations will be our first foray 

into time .   

 

Constants  and  must be specified before the artificial viscosities can be calculated.  My heuristic 

derivation suggests setting  to a value of ½.  If the speed of sound is expected to be greater than the 

relative closing speeds of adjacent boundary faces, then the two viscosity approaches will make equal 

contributions if  is set to a fraction of .  I observe that some investigators suggest starting with 

 and . 

 

A word or two about the air inside the chamber 

 

In the previous section, we dealt with the total mass of "stuff" inside the 
th
 element, and used the symbol 

 for it.  It will remain constant during the entire firing process.  Whatever was inside the 
th
 element 

when firing commenced stayed inside that element for the duration of the entire process. 

 

The "stuff" inside each element consists of three things.  It consists of unburned propellant, the gas 

produced by the propellant which has been burned and, not to be forgotten, is the ambient air which was 

inside the chamber when the bags of propellant were placed inside.  The amount of ambient air is quite 

small compared to the amount of gas which will be generated when the propellant burns.  But, its effect 

on the peak pressures which will be experienced during the process are not necessarily insignificant.  

When an element is severely compressed by its neighbouring elements, the pressure and density will 

increase dramatically.  The increase will be particularly acute near shock fronts.  It is best if we try to 

account for the things we do know, so we do not needlessly present ourselves with surprises. 

 

The total mass inside element #  can be expanded as: 

 

 

 

where the superscripts record that these three terms represent the unburned Propellant, the propellant Gas 

and the original Air, respectively.  The total mass  and its component of air  will be constant with 

time and so do not need a " " superscript.  The total mass of unburned and burned propellant  

will also be constant, but the proportions will change.  In fact, the numerical simulation is based on 

dividing the chamber into elements with the same size, so ,  and the sum  will actually 

be the same for all elements, as well as being constant with time. 
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The following figure shows the chamber just before firing, as I have modeled it.  The equations are 

simpler when the entire barrel, including the chamber, has a constant cross-section.  The red ellipse marks 

the rear face of the shell. 

 

A more exact physical model would include chambrage – the fact that the chamber sometimes has a 

larger diameter than the barrel.  This is shown in the following figure.   

 

The difference between these two physical models is the proportion of the chamber's real volume which is 

occupied by solid propellant.  This proportion is usually expressed in terms of the "loading density"  of 

the propellant.  This should not be confused with one's normal definition of density, which in this case is 

usually called the "crystalline density"  of the propellant.  In the numerical simulation, I will use the 

following values: 

 

 

Let me talk about the crystalline density first.  Water has a density of , so propellant does 

not float.  A given volume of this propellant weighs 66% more than an equivalent volume of water.  In the 

numerical simulation, I will model a 5-inch naval gun which has the following parameters: 

 

 

 

The volume of the chamber in our model is the length of the chamber multiplied by the cross-sectional 

area of the barrel: .  The physical volume of the propellant is the total mass 

of propellant divided by its crystalline density: .  Solid propellant occupies 

 of the volume of the chamber in our model. 

 

Now, let me talk about the loading density.   of propellant is placed into a space in which it 

comprises  per cubic meter of the available space.  It follows that the available space must be 

Mass of propellant  

Radius  

Area  

Length of 

chamber  

Mass of propellant  

Radius  

Area  

Length of 

chamber  
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equal to .  It is coincidence that the effective volume in this case happens to be 

equal to the volume of the chamber in our model.  (Well, it is not a mere coincidence.  The 5-inch gun I 

will be simulating has no chambrage – the chamber has the same diameter as the barrel.)   

 

In our case, the  of the chamber's volume which is not filled with solid propellant will be filled 

with air.  The actual volume filled with air will be .  More generally, 

including cases where the chambrage is non-zero, the physcial volume occupied by air would be 

calculated as follows: 

 

 

 

I will treat the air in the chamber as an ideal gas.  We can use the Ideal Gas Law to determine how many 

moles of air will accompany the propellant.  In order to use the Ideal Gas Law in this circumstance, we 

need to know the pressure and temperature.  In the numerical simulation, I assume that the ambient 

pressure is  (standard atmosphere at sea level) and that the temperature is  (a little 

higher than standard, perhaps due to heat left over from a previous firing).  The general formula and the 

particular result for the numerical simulation are: 

 

 

 

The molar weight of (dry) air is  which means that the mass of the air inside the 

chamber is .  This is quite small compared to the  of propellant, 

which be be gaseous if and when it has been completely burned.  In any event, this  mass of 

air, when divided by the number of elements, gives the value  for all elements.  A similar division 

can be done for the number of moles of air to give , which I will refer to below as the number of 

moles of air inside each element. 

 

Part 3 – Conservation of internal energy of the gas 

 

I will use the symbol  for the internal energy density of the gas inside element #  at time .   is the 

total material energy ( ) of the gas in the element divided by the mass of that gas.  There are different 

phenomena which can change the material energy.  Energy can be conveyed from one element to another 

by radiation, the exchange of electrons, and so on, but I am going to ignore all causes of changes in 

internal energy except one.  The one I am going to focus on is the mechanical work performed by the 

pressure as the volume of the element changes.  The pressure which does this work is not just the static 

pressure  but includes the artificial viscosity  as well.  Although it is called a viscosity,  affects 

the gas in exactly the same way as the static pressure.  Their combined outward effect (from the point-of-

view of an element pressing on its neighbours) leads to the equation of motion.  Their combined inward 

effect (from the point-of-view of an element experiencing pressure exerted by its two neighbours) 

changes the internal energy of an element. 
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Consider the one-dimensional travel of a rigid body.  If a force  causes the body to move through a 

distance , the mechanical work done on the object is the product .  Similarly, if a pressure  

causes the volume of a fixed amount of gas to expand by , the work done is the product .  Some 

agent must do the work, of course.  In our case, the agent driving the expansion is the internal energy of 

the gas.  The work done as the volume increases reduces the internal energy of the gas.  Over a given 

interval of time, the equality can be written as: 

 

 
 

Since these are changes take place with respect to time, let's set a starting time  and an ending time 

 for the interval.  If we have solved the equations in Part 2 already, then we will know the volumes 

of each element at the start and end of this time interval.  They will be  and , respectively.  

Starting to make substitutions into Equation , we get: 

 

 

 

What shall we do about the  inside element # ?  It is not .   is the total mass of material 

inside the element.  Only some of it is a gas, capable of doing work by expansion.  In the previous 

section, we separated the total mass into three components: 

 

 

 

where the two gaseous components are .  It is this mass whose internal energy is changed by 

the change in volume. 

 

Now, what shall we do about the ?  We know it is going to be a sum like , but that sum 

changes with time.  A suitable quantity for our purpose would be the simple average of the pressures at 

the start and the end of the interval.  That will converge to perfection as the time intervals are made 

smaller and smaller.  Therefore: 

 

 

 

Oops, I have forgotten something very important.  As the propellant burns, it releases heat.  The addition 

of heat to the gas increases its internal energy.  I am going to ignore the heat that is absorbed by the metal 

in the barrel, and assume that the gas absorbs all of the heat generated. 

 

To be precise about things, we should treat the gas trapped inside the barrel as a closed system.  We 

should use the First Law of Thermodynamics to revise Equation  to: 

 

 

 

My first version of Equation  only included the  term, which is the mechanical work done.  The 

correct version Equation  includes the heat added.  We can remedy Equation  by adding a term 

to represent the heat added during the  to  time step.  I will use the following symbol: 
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In due course (below), we will have to figure out how to calculate how much heat is added.  For now, I 

will simply amend Equation  by including the heat term.  The result is: 

 

 

 

Equation  is our equation of conservation of internal energy.  In the numerical procedure, we will use 

it to advance the internal energy from one time step to the next.  Note that the variables which are the 

ingredients in this equation, on the right-hand side, include some which are referenced to time .   

We will have to figure out (below) whether we can calculate the internal energy  first or the 

pressure  first or, alternatively, whether a simultaneous solution will be needed.  

 

A word or two about the volume of a particular element 

 

It is time to get more precise about what we mean by the "volume" of an element.  We will be refering to 

volume in two senses.  The absolute volume of element #  is the distance between its two end-faces 

multiplied by the cross-sectional area of the barrel.  The other volume of interest is the volume occupied 

by gas.  As long as there is unburned propellant, the volume occupied by gas will be less than the absolute 

volume of the element.  The following figure highlights the difference from a conceptual point-of-view. 

 

The absolute volume of element #  at time  is .  The mass of 

unburned propellant at time  is .  Dividing this mass by the 

crystalline density of the propellant  gives the absolute volume of 

the unburned propellant, .  The difference between these two 

volumes is the volume of free space which is available to the 

molecules of gas.   

 

 

 

The molecules of gas consist of a mass  of propellant combustion products and the mass  of 

original air.  We will have occasion to talk about the number of moles of these two constituents.  I have 

already mentioned , the number of moles of ambient air inside the element.  The stoichiometric ratio 

for converting the propellant from solid to gas is this: burning one kilogram of propellant produces 40 

moles of gas.  Therefore: 

 

 

 

It is obvious that the process of burning changes the volume of free space which is available for gas.  A 

question arises: does this change in volume contribute to the  mechanical work discussed in the 

previous section?  My answer is no, it does not.  I refer to the following figure in support of my answer. 

 

The mechanical work discussed above derived from the 

pressure acting uniformly across the two end-faces of the 

element.  The pressures gave rise to forces on the neighbouring 

elements.  If the end-faces moved, mechanical work was done.  

In the case of the combustion which occurs inside the element, 

the conversion of a certain volume of solid into an equivalent 

volume of gas did not arise from a displacement-due-to-pressure process.  It did not constitute mechanical 

Unburned 

propellant 

Element #  

Free 

space 

  

Element #  
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work.  Accordingly, the volumes refered to in Equation , which are the absolute volumes of the 

elements, are satisfactory as they stand.  

 

  Part 4 – Heat generated as the propellant is burned 

 

Nitrocellulose is often called "gun cotton".  Indeed, it usually made from cotton.  Cotton is a polymer, 

made up of hundreds of glucose units bonded to one another in a long chain.  The following diagram 

shows the glucose backbone of the chain. 

 

 

 

 

 

 

 

 

The raw cotton is treated with sulphuric acid and nitric acid.  The treatment is called "nitration" and it 

adds an  nitro group to each glucose unit.  My diagram shows the nitro group on only one of the 

glucose units, but every glucose unit will have its own nitro group. 

 

When the molecule is oxidized (that is, burns), the beauty of this arrangement becomes clear.  The oxygen 

atoms needed during the oxidation process are physically nearby.  The oxygen does not have to be 

extracted from the ambient air, and then mixed with molecules of fuel, as must happen in internal 

combustion engines.  There are two important consequences: the combustion of nitrocellulose is fast and 

leaves little residue. 

 

When used as a propellant, nitrocellulose is usually mixed with a smaller quantity of a similar compound, 

as well as gelatins and stabilizing agents.  Nitroglycerin is often used as the additive.  The resulting 

compound is easily molded or extruded and, when dried, makes ideal grains.  Because there are two 

explosive compounds, both with their own combination of fuel and oxygen, these propellants are called 

"double-based" propellants.  Furthermore, by adjusting the ratio of nitrocellulose and the additive, the 

"heat of explosion" or "calorimetric value" of a given mass of propellant can be varied.  This has led to 

such propellants being called "cool" or "hot" or "extremely hot". 

 

Propellants used in large naval guns are at the "cool" end of the range.  The heat released when one gram 

of naval propellant is converted into a gas is about 820 calories.  Hotter variants are used as solid rocket 

fuel.  I am going to use the symbol  as the heat of explosion of the propellant for our gun.  Converting 

from calories to Joules at the rate of , we have: 

 

 

 

I am going to describe the rate of burning using a so-called "burn rate" .  I envision that burning is 

something that occurs uniformly over a surface.  As the thin layer which is burning is consumed, and 

converted into gas, the burning surface eats its way down into the unburned propellant.   

 

The burn rate  can be thought of as the speed, in meters per second, say, 

at which the burning surface penetrates the unburned propellant.  In the 

diagram shown to the left, burning began on the top surface.  The burning 

surface (rendered in red) is moving downwards at speed . 

 Glu  Glu  Glu  Glu  Glu  Glu  Glu  Glu 

 N 
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Unburned propellant 
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The following graph is useful for our purpose.  It shows the burn rate for double-base propellants of 

various warmth.  The speed  is measured along the vertical axis; the static pressure being exerted on the 

burning surface is measured along the horizontal axis.  Both axes are logarithmic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I am going to use the "cool propellant" data points in the graph as representative of our propellant.  Its 

heat of explosion is .  I am going to fit a quadratic curve to these data points.  The proposed 

equation has the form: 

 
 

To calculate the coefficients ,  and , I have selected three particular data points, which are idenified on 

the graph with red crosshairs.  The co-ordinates of the three points and the solutions for the coefficients 

are as follows: 

 

 

 

 

 

I intend to do all calculations in S.I. units.  Before using this expression, it will be necessary to convert 

the pressures inside the elements from  into atmospheres.  Then, after computing  in , it 

will be necessary to convert it into the  of our burn rate .  The complete burn rate equation is: 
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It will be convenient if we introduce variable  as the fraction (by mass or, equivalently, by unburned 

volume) of the propellant which has been burned by time .   starts at zero when the gun is fired and 

will rise to one when all of the propellant has been consumed.  Since the burn rate depends on pressure, 

the rate at which the propellant burns will vary from element to element as well as with time.  To be 

precise, we need to define the fraction  so that every element has its own.  Among other uses, it will 

help us keep track of the masses of burned and unburned propellant in each element at time , as follows: 

 

 

 

We can also use the fractions  to determine the area of propellant burning at any particular time.  

Suppose the cylindrical grains of unburned propellant have diameter  and length .  The grains will 

burn from the outside inwards.  I will ignore any holes in the web, which extend axially through the grain.  

(This is a much more important assumption than it seems.)  I  will also ignore burning of the end-faces.  

(This is not such an important assumption, since the area of the end-faces is small compared with the area 

of the curved surface.  And, this assumption will be even less significant if the propellant is extruded into 

long strands or cords, and called cordite.)  Some time after ignition, a typical grain will look like this: 

 

 

 

 

 

 

 

 

 

 

The original grain is outlined with a dashed line.  The unburned portion at this particular time is outlined 

with the solid line.  The burning surface at this time is the curved surface of the cylinder with diameter  

and length .  The fraction of propellant burned is equal to the ratio of the burned and original volumes: 

 

 

 

Given the diameter , the area of the burning surface of this grain  at this time is: 

 

 

 

This is a good time to generalize things to include all the propellant in the gun.  Here's how we can do 

that.  We know that the unburned propellant originally has a total mass .  Suppose that the 
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crystalline density of the unburned propellant is .  The original mass of each grain  is therefore 

equal to: 

 

 

 

and the total number of grains in the gun  is equal to: 

 

 

 

Since we have divided the available volume inside the barrel into  elements, and since each element 

always contains the same propellant solids and gases, the number of grains contained inside each element 

is .  The total burning surface area of all the grains in element #  when the burn fraction is  can be 

found by simple multiplication: 

 

 

 

If the burn rate inside element #  during a particular time step is , then the volume of solid propellant 

burned in a short time interval  will be equal to: 

 

 

 

Since the density of the unburned propellant is , then the mass of solid propellant burned inside element 

#  during time interval  is equal to: 

 

 

 

Since the heat given off during the conversion is  Joules per unit mass, then the heat released inside 

element #  during time interval  is: 
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Notice that the "heat released in element #  during time interval " is exactly the same as the quantity 

 which we talked about in the previous section, and which is one of the variables required to 

evaluate Equation . 

 

 

 

This is the principal equation we will use to describe the burning process.  In the computer code, we will 

need to advance the burn fraction from one time step  to the next .  To do that, we will have to 

use a couple of the preceding equations in their discretized form. 

 

Part 5 – Thermal equation of state of the gas 

 

The "state" of a gas is the collection of values which describe its physical characteristics.  In the simplest  

models, the variables which are of interest for some fixed quantity of gas at some time  are its pressure 

, volume , temperature  and quantity.  The quantity of gas can be measured in different ways.  The 

one I will use is the cardinal number of molecules.  However, I will not report the number of molecules 

simply as  molecules, say, but will first divide the number of molecules by the constant 

.  The constant is called Avogadro's number and the quotient after the division is said to 

be the number of moles of gas.  It is customary to use the symbol , or  at time , for the number of 

moles.  I will do so even at the risk of possible confusion with the number of elements into which I 

discretized the gas.  

 

One of the most valuable and widely-used mathematical models for the state of a gas is:   

 

 
 

where –  is the Ideal Gas Constant.  A gas which behaves like this is an 

Ideal Gas.  Conceptually, and briefly, an ideal gas is one in which the individual molecules are small 

compared with the distance they travel between collisions.  Since this expression relates the pressure-

times-volume product to the temperature, it is called the thermal equation of state.  

 

At and around standard ambient conditions, virtually all gases can be treated as ideal.  At extreme 

temperatures and pressures, virtually all gases depart from the ideal.  Messr. van der Waals proposed a 

form of correction to the ideal which greatly expanded the envelope of applicability.  His correction 

(Nobel in 1910 for it) is often written as: 

 

 

 

The first correction term, the one with the coefficient , arises from the existence of a pairwise attraction 

force between molecules.  It is this pairwise attraction which leads to the condensation of the gas into a 

liquid at a sufficiently low temperature.  Basically, the correction term arises from the asymmetry 

experienced by molecules as they get nearer to the boundary walls of the container. 

 

The second correction term, the one with the coefficient , is needed when the assumption that the 

molecules are mathematical points becomes unrealistic.  When subjected to high pressure, for example, 

the size of the molecules becomes a more significant fraction of the total available volume, and cannot be 
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neglected.  Van der Waals handled this by assuming that individual molecules were hard spheres with 

radius  and volume .  The absolute volume of space occupied by substance would therefore be this 

molecular volume multiplied by the number of molecules.  Note, though, that the center-to-center 

distance between two colliding molecules at their point of closest approach is not , but twice . This 

means that the "zone of exclusion" between hard molecular centers has radius of  and a volume of 

.   Since molecules collide in pairs, the  center-to-center distance can be shared by two 

molecules, with the result that the volume occupied by two colliding molecules is .  If there 

are  moles of molecules in the container, then the volume of space which is "occupied" (possible 

positions which are denied to molecular centers) is reduced by .  This denied volume is 

called the "co-volume".  Van der Walls recognized that molecules are not hard spheres.  He treated the 

factor  in his correction  as an upper bound.  

 

The gas in our gun will be under very high pressure and temperature.  The inter-molecular attraction force 

correction will be insignificant compared with the co-volume correction.  I will write the equation of state 

for the gas in the 
th
 element in the following way.  Since this is a "state" equation, which should apply at 

every instant in time. 

 

 

 

The volume  is the volume inside element #  which is free space available for gas.  This is the total 

volume of element #  less he volume of unburned propellant. 

 

 is the correction for co-volume.  In Equation , the volume  is an absolute volume, which could 

be measured in cubic meters, for example.  However we go about quantifying it, the co-volume  will 

also be an absolute volume. 

 

It is worth noting that almost all of the byproducts from the combustion of nitrocellulose are diatomic 

gases.  Although the molecules of nitrocellulose are complex, what remains after buring is not.  A 

commonly used co-volume correction factor for simple gases is .  If this is 

multiplied by the mass of gas inside a container, it yields an absolute volume.  Note that  has units that 

are the reciprocal of density.  The effective denisty which corresponds to this value of  is 1053 .   

 

Often, the value of  is assumed to be constant.  That is not a good assumption in our case.  The gases in 

the barrel are going to be under tremendous pressure.  Under high pressure, molecules are able to penerate 

more deeply into one another when they interact.  As the ambient pressure increases, the volume of space 

which is denied to molecules of gas decreases.  Usually, this effect is taken into account by treating  as a 

value which depends on the density of the gas.  I am going to use the following dependence: 

 

 

 

At small densities, this function is close to the usual value .  The function decreases 

inversely with the density.  When the density reaches , the evaluated value is one-third of the 

low-density value.  Note that the density of air under standard conditions is , so this 

adjustment to  is definitely a high-density phenomenon. 

 

Since the mass of gas inside element #  is the sum , and the free space volume available to 

the gas is , we can carry out the follwing algebra: 
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  Part 6 – Calorific equation of state of the gas 

 

In the previous section, we related the pressure-times-volume product to the temperature of a fixed 

quantity of gas.  In this section, we will do something similar, but relate the pressure-times-volume 

product to the internal energy of the gas.  Since the related state variable is energy, this new relationship 

is called the calorific equation of state.  Let me state the result first: 

 

 

 

The numerator on the right-hand side is the pressure inside the 
th
 at time  multiplied by the volume of 

gas (with the co-volume corresction) inside the element at that time.  The denominator is the Adiabatic 

Index  of the gas, less one.  A gas whose energy can be expressed in this way is called a gamma-law gas. 

 

I will give a rough justification for this relationship to shed some light on the assumptions which are 

involved.  Start by considering element #  at a temperature of absolute zero.  The pressure will be zero 

and the internal energy will be zero.  It does not matter what volume the gas occupies; the pressure and 

internal energy will still be zero.  It is convenient to start things off with the element's volume being  

and the volume occupied by the gas being . 

 

Now, let's add some quantity of heat , which raises the temperature from zero to  and the pressure of 

from zero to .  The first Law of Thermodynamics tells us that the amount of heat added must be equal 

to the sum of: (i) the work done by the gas during the process and (ii) the internal energy added to it.  In 

this particular thought experiment, the gas does not do any work.  Its volume stays constant.  Work would 

have been done by the pressure if the volume had expanded, but that did not happen.  It follows that all of 

the heat added is absorbed by the gas as internal energy.  Since the internal energy was initially zero, we 

can say that the gas's internal energy after this process is: 

 

 

 

The specific heat of a substance is defined as the rate at which the addition of heat  raises the 

temperature by . 

 

 

 

The specific heat depends on the details of the process.  For example, if the pressure of a gas is allowed to 

change as the heat is being added, the specific heat will be different from the measurement made if the 

pressure is held constant.  In our thought experiment, we held the volume of the gas constant while the 

heat was added.  The specific heat which is measured in this constant-volume process is called the 

"specific heat at constant volume" and is usually represented by the symbol .  In our case, then: 
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The specific heat  is not necessarily the same at all temperatures.  In fact, usually it is not.  It 

varies as the temperature changes.  An important assumption we are going to make is that the specific 

heat  is constant and does not vary with temperature. 

 

Next, we are going to invoke Meyer's Law.  For an Ideal Gas, and for some other models of gases as well: 

 

 

 

where  is the number of moles of gas,  is the Ideal Gas Constant (both as used in 

the previous section) and  is the specific heat at constant pressure.  Substituting this relationship into 

the thermal equation of state from Part 5 above, we get: 

 

 

 

We can combine Equations  and  to write: 

 

 

 

where the ratio of the specific heats  is called the Adiabatic Index of the gas, and is usually 

represented by the symbol .  Although we have assumed that  is constant with temperature, it does not 

follow that the Adiabatic Index  is also constant.  It depends on .  It is possible to investigate how  

changes separately with temperature and with pressure.  Often, the effects are combined and  is said to 

be a function of the density. 

 

For the purposes of this paper, I am going to that  varies linearly with density.  As a starting point, let's 

consider the gas as if it was an ideal diatomic gas.  The gas products resulting from the burning of 

nitrocellulose are mainly , , ,  and .  Recall that  is a colinear molecule (the three 

atoms lie on a straight line), so carbon dioxide has the same dynamic characteristics as a diatomic 

molecule.  The ambient air trapped inside the barrel before firing is mostly  and  so it, too, is 

virtually all diatomic.  The Adiabatic Index of an ideal diatomic gas at room temperature and pressure has 

a theoretical value of , arising from three translational and two rotational degrees of 

freedom.  At high temperatures, a vibrational mode of motion begins to absorb energy, so the number of 

degrees of freedom increases to six, and the Adiabatic Index of an ideal diatomic gas falls to 

3 at high temperatures.  I have seen a report that suggests the Adiabatic Index rises to 1.9 when the 

gas density is .  The straight line which connects these two data points is: 
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This is the expression I have used in the numerical simulation for the Adiabatic Index. 

 

Part 7 – Equation of motion for the shell 

 

I am going to treat the shell as a rigid body being accelerated in one direction by a uniform pressure 

exerted on its rear face.  We have already defined the mass and speed of the shell as  and , 

respectively.  Newton's Law for the acceleration of the shell down the axis of the barrel is: 

 

 

 

Writing down Newton's Law is not the hard part.  The hard part is trying to model the various effects 

which contribute to the net accelerating force.  I have included some of the usual suspects in the following 

expression. 

 

 

 

Here,  is the pressure force acting on the rear face of the shell.   is the ambient air pressure of 

the day, which is a reasonable first approximation for the pressure which acts on the projected frontal area 

of the shell.   is only a first approximation because the air initially present in the barrel in front of the 

shell will be compressed and heated as the progress of the shell drives it out of the barrel.   

 

There will be friction  as the metal projectile slides through the metal barrel.  The rifling 

 will increase the metal-to-metal friction, but will have a second retarding effect as well.  Even 

if there was no friction at all between the rifling and the projectile, the rifling will give rise to a retarding 

force.  The rifling extracts mechanical power from the forward motion of the shell and diverts it into 

rotational acceleration around the shell's spin axis.  This diversion of energy from the forward motion is a 

consequence of simple dynamics of motion, and is not related to friction.  The metals in contact will also 

be heated by the friction, and some deformation  is to be expected. 

 

For the purposes of this paper, I am going to collect together all of the retarding forces under the heading 

"friction".  I am going to use a simple model for the friction not unlike the one often used to describe 

frictional forces due to gravitational weight.  Let me review the traditional model, which is illustrated 

here. 

 

Gravity pulls mass  down against a flat surface with weight .  The 

mass is pulled towards the right by some other force .  The 

interface between the mass and the flat surface resists the pulling 

force with a frictional force .  Surprisingly, the magnitude of the 

frictional force is not related to the magnitude of the pulling force.  

Instead, it is proportional to the transverse force – the weight.  A 

coefficient of friction  is often used as the constant of 

proportionality, so that . 

 

I have shown to the left how one can apply the traditional model to 

the shell inside the barrel.  The frictional force  is, once again, 

opposite in direction to the velocity of the shell.  One would expect 

the magnitude of the frictional force to be proportional, not to the 

pushing force , but to the transverse force  with which 
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the barrel seizes the shell.  If so, then the expression would be , where the constant of 

proportionality might or might not be the same coefficient of friction as above. 

 

This interpretation makes sense, but what to do about  is far from clear.  Let me describe three 

alternatives, each of which makes sense in its own right, but all of which have quite different 

consequences. 

 

1. In the traditional gravitational case, the mass of the object is very often a constant.  It follows that 

the frictional force is also constant.  Often, one uses two versions of the coefficient of friction, a 

"static" coefficient of friction which applies while the weight is at rest, and another, but also 

constant, "dynamic" coefficient which applies once the weight begins moving.  If this type of 

behaviour applies to the shell in the barrel, and if the compression force is constant, then the 

result would be a frictional force which remains constant while the shell accelerates down the 

barrel. 

 

2. An alternative would be to focus on the very thin gap which may exist between the circumference 

of the shell and the barrel.  Perhaps there was no gap at all when the shell was rammed into the 

breech.  But, under the enormous pressure of the expanding gas, the barrel will be forcibly 

enlarged.  That will create a gap which will quickly be filled by the high pressure propellant gas.  

If this is what happens, then an appropriate model would be to treat the thin gap as a thin layer of 

viscous fluid between two moving surfaces.  The frictional force would then have the 

characteristics of a viscous force.  It would be proportional to three variables and inversely 

proportional to a fourth.  The frictional force would be proportional to: (i) the surface area of 

contact, which we would estimate as the circumference of the inside of the barrel multiplied by 

the length of the shell, (ii) the relative speed of the two surfaces which, in our case, would be the 

speed of the shell, and (iii) the dynamic viscosity of the high temperature high pressure gases 

from combustion.  As for the fourth variable, the frictional force would be inversely proportional 

to the distance between the surfaces.  The formula we would use for the frictional force would be 

something like this: 

 

 

 

The pressure driving the shell  enters into this relationship in two ways.  Firstly, it affects 

the viscosity.  The viscosity will increase with pressure, but only gradually.  Secondly, the 

distance  between the surfaces will increase in step with the increase in pressure.  Basically, 

the frictional force will be driven in the following way: 

 

 

 

The frictional force will vary as the shell travels down the barrel as shown in the following figure.  

(I have run a few runs already, and can say that the pressure peaks when the shell is about half-

way down the barrel.  The reciprocal of the pressure has a dip.)  The frictional force in this 

alternative is not constant at all. 
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3. A third alternative is to imagine that the thin gap between the shell and the barrel behaves like a 

rubber or plastic seal between two moving parts.  If that is the case, then the pressure  acting 

on the rear face of the shell also acts on the end-face of this "seal" where it peeks out through the 

gap around the circumference of the rear end of the shell.  As hydraulic pressure does, the 

pressure on the end-face would be transmitted throughout the volume of the "seal".  In particular, 

it would act radially outwards, and would be the main cause of the compression force .  

Taking into account the contact area  between the surfaces, we could write: 

 

 

 

Noting that the area of the barrel is , and that it is equal to , we can express the main 

dependence as follows: 

 

 

 

Then, the frictional force as the shell travels down the barrel looks like the following.  In this 

alternative, the frictional force is greatest when the pressure peaks. 

 

 

 

 

 

 

 

 

 

 

In my opinion, none of these three alternatives is satisfactory.  I will explore in a subsequent paper an 

approach I believe is more credible.  It leads to a frictional force which is more like the third alternative 

above than the first two.  Because of that, I will use a frictional force having the characteristics of 

Equation .  I will make just two changes.  I will use  as the constant of proportionality.  I will also 

use the pressure difference , rather than just , as the dependent variable.  That is a very 

minor change, but greatly simplifies the equation for the shell's dynamics, as I will now demonstrate.  

 

Let me substitute this form of frictional force into Equation  for Newton's Law.  We get: 

 

 

 

This has exactly the same form as Newton's Law without any frictional force at all.  Friction has been 

taken into account by increasing the mass of the shell from  to a larger mass .  

This "effective" mass, being larger, causes the "effective" mass to accelerate more slowly in response to 

the driving pressure than it would in the absence of any friction.  We can express the effective mass as 

follows: 

 

time or 

distance 
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Calculations done by some investigators show that the effective mass can be as much as 20% greater than 

the rest mass.  In the computer code for this paper, I have set , which gives a 20% increase in 

effective mass. 

 

Implementation of the numerical procedure 

 

Suppose we have just completed calculating the speeds of all the boundary faces at some half-time step, 

say time .  We therefore know  for all boundary faces .  Speed  

will be equal to zero, since it is the breech plate.  Speed  will be the speed of the shell.  The other 

speeds will have been calculated using the equations for gas dynamics.     

 

Step #1 – Advance the locations of the boundary faces 

Advance the locations of all boundary faces from time  through one whole time step to time . 

 

 

 

Step #2 – Calculate the absolute volumes of the elements 

Calculate the absolute volumes of all the elements at time . 

 

 

 

Step #3 – Analyze the rate at which burning occurs 

Calculate the burn rate  inside each element during this time step. 

 

 

 

Calculate the mass of propellant burned inside each element during this time step. 

 

 

 

Advance the burned and unburned masses in each element, and the burned fraction. 
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Step #4 – Calculate the heat generated 

Calculate the heat released inside each element by the burning which takes place during this time step.  

This heat by will absorbed by the gas. 

 

 

 

Step #5 – Calculate the density of the gas 

It is necessary first to calculate the volume which is available as free space for the gas.  This is Equation 

, which adjusts the absolute volumes of the elements for the volume occupied by the unburned solid 

propellant. 

 

 

 

Calculation of the density does not require any co-volume correction.  That correction is needed for the 

equations of state, but the definition of density is straight-forward. 

 

 

 

Step #6 – Calculate the co-volume correction 

Calculate the co-volume correction. 

 

 

 

This is probably a good place to update the number of moles of gas inside each element.  Since gas is 

added at the rate of  moles per kilogram of solid propellant burned, the number of moles added by 

combustion during the ime step is: 

 

 

 

Advance the total number of moles of gas inside each element.  Do do forget that the total number of 

moles includes the original air. 

 

 

 

Step #7 – Calculate the Adiabatic Index inside each element 

We can calculate the Adiabatic Index using Equation .  I did not say so above, but a separate index is 

needed for each element. 
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Step #8 – Calculate the pressure and internal energy 

I am going to use an iterative procedure to calculate the pressure  and internal energy  inside 

each element.  In effect, this is a simultaneous solution of the equation ensuring conservation of internal 

energy and the calorific equation of state.  The following procedure, for element # , can only be carried 

out after the procedure has been completed for element # , to the left of this element.  To begin the 

process, assume that the pressure is the same as it was in this element during the last time step.  That is, 

.  Then, the sub-steps are: 

 

Step #8A 

Calculate the speed of sound, which is one of the ingredients of the artificial viscosity.  

 

 

 

Note that this formulation for the speed of sound is accurate only for ideal gases at modest 

temperatures and pressures.  At high temperatures and pressures, something more complex should 

be used.  The only reason this approximation is adequate for our purpose is that the speed of 

sound is not a required result in its own right, but is only used as an estimating parameter in the 

calculation of the artificial viscosity.  

 

Step #8B 

Calculate the artificial viscosity. 

 

 

 

This calculation only matters if the relative velocity condition is met.  If the velocity condition is 

not met, and the element is expanding, then the artificial viscosity will be zero. 

 

Step #8C 

Calculate the internal energy using the equation ensuring conservation of internal energy. 
 

 

 

Step #8D 

Use the calorific equation of state to calculate a new, revised, pressure. 

 

 

 

Step #8E 

Using this new value for the pressure, go back and start over at Step #8A.  Terminate the 

iterations when the changes in  and  during one iteration become acceptably small, 

either in absolute terms or in relative terms.  Note that, once element #  has been sorted out, it 

will be necessary to move on to element # . 

 

Step #9 

As a loose end for the gas dynamics, the temperature inside element #  can be computed using the thermal 

equation of state. 
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Step #10 

Calculate the acceleration of the shell.    

 

 

 

Step #11 

We are now ready to advance the speeds of the boundary faces through the next time step.  For the 

boundary faces which are enclosed within gas, the relevant equation is Equation . 

 

 

 

The quantities  and  will have been finalized during Step #6 and can be used here without 

further ado.  The speed of the last boundary face  is the speed of the shell, advanced using: 

 

 

 

Equation  completes the calculations done during one time step.  The new speeds, at time , 

are the starting point for the next time step. 

 

The use of adaptive time steps 

 

I quickly discovered that it is not practical to use a constant time step.  There are times during the process 

when the time step needs to be very small, on the order of tens of nanoseconds.  Running the entire 

simulation at this time scale is not practical.  I handled the problem in the following way.  At the end of 

every time step, I searched through the pressures in all the elements to identify which element 

experienced the greatest relative change in pressure during the time step just finished.  If this percentage 

change exceeded a certain preset threshold, I then reduced the length of the time step to be used during 

the next iteration.  On the other hand, if this percentage change in pressure was less than another certain 

preset threshold, then I increased the length of the time step for the next iteration.  The parameters I used, 

which seemed to generate consistent and reasonably quick simulations, were the following: 

 

 

 

In the final version of the code, I applied this same test, with these same preset thresholds, to the density 

of the gas inside each element as well as to the static pressure.  I insisted on the reduction in the duration 

of the next time step if the maximum relative change in either pressure or density required it.  On the 

other hand, I permitted the duration of the time step to be increased only if both the pressure test and the 

density test were satisfactory.  
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Other features of the code 

 

I have listed in Appendix "A" the source code for the numerical simulation of the base case, whose 

parameters have been discussed above.  The code was developed in Visual Basic 2010 Express.  The 

number of elements is set to 2000.  A limited selection of key values is displayed on the screen every 250 

time steps.   

  

The principal variables are written into text files for later analysis.  As an example, the variable  is 

written into a text file with the name "Naval_gun_simulation_Bi.txt".  The user can set the time interval 

between successive writes to the output text files.  Similarly, the user can set the interval between element 

indices to be saved, so that all 2000 values are not written.  The numbers are written as comma-separated 

values ("csv") to make it easy to import into Excel or other analysis programs. 

 

Note this.  In the base case, I set the artificial viscosity constant to zero, .  Despite my 

expectation, the run concluded with no mathematical errors.   

 

Results from the simulation of the base case 

 

The following graph shows three pressures and the shell's speed with respect to time.  The red curve is the 

pressure at the breech, inside element #1.  The black curve is the pressure inside the last element, element 

#2000, which is the one which actually presses on the rear face of the shell.  The green curve, which is 

almost completely hidden by the breech pressure, is the maximum of the pressures inside all the elements.    

The maximum pressure experienced inside the barrel during firing is just under 2100 atmospheres.   

 

Since the shell is held in place by its engraving band until the pressure inside the chamber reaches 400 

atmospheres, the shell's speed (blue curve) is zero until that time.  This occurs 6.70 milliseconds into the 

simulation.  The shell accelerates in proportion to the pressure, and reaches a speed of about 595 meters 

per second when it exits the barrel, 24.36 milliseconds after ignition. 
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The cusps in the pressure curves represent mild shock waves.  As I stated above, the numerical integration 

ran without a hitch even though I set the artificial viscosity to zero.  The shock waves are a little clearer in 

the following surface plot.  It shows the pressure (vertical axis) as a function of time (horizontal axis) and 

element number (depth axis, projected into the page).  The colour bands are 100 bar, or approximately 

100 atmospheres, high.  The numbers along the depth axis are element numbers, with the breech element 

#1 being at the front side of the graph.  The depth axis corresponds to the distance between the breech and 

the shell, but it is not the actual distance in meters.  As time passes and the shell moves further down the 

barrel, the elements get longer in the -direction.  This increase in their length is not shown in the graph.   

 

 

The pressure is always a little higher at the breech-end than at the shell-end.  I have indicated with arrows 

raised above the surface, the progress of a shock wave from the breech to the shell, where it is reflected 

back to the breech.  That particular shock wave starts at the moment when the pressure reaches its peak 

value at the breech.  There is a similar shock wave on the "front" side of this hill, while the pressure is 

still rising, but that wave is not so clear with the graph oriented as it is. 

 

I have tried in the following graph to track the progress of the shock wave as it travels up and down the 

barrel.  To prepare this graph, I first looked through the elements along the barrel to find out which one 

had the highest pressure.  I repeated this at every time step.  If a shock wave front is well-defined, and 

moving smartly through the gas, then the peak pressure will pass smoothly and uniformly along 

successive neighbouring elements.  Next, I converted elements #'s into distances in meters.  I did this by 

multiplying the breech-to-shell distance at every time by the appropriate fraction of tube length, 

calculated by dividing the element # by the total number of elements.  The following graph shows the 

location of the instantaneous peak-pressure element with respect to simulation time.  
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The two red arrows identify the same pair of shock waves that were identified with red arrows in the 

surface plot above.  It looks like the shock wave that took place while the gas was still being compressed 

was much better defined than the one (marked with the red arrows) which took place while the gas was 

starting to expand.  The noise in the element locations which happens before the shell is released (6.70 

ms) and again after about 15 ms indicates that there is no shock front present, so the location of the 

instantaneous peak pressure is set randomly by hot spots in the burning propellant. 

 

We can calculate the speed of these shock waves.  Take the first one, which leaves the breech at about 9.0 

ms into the simulation.  It reaches the shell at about 10.5 ms, by which time the rear face of the shell has 

moved out to about 1.2 meters from the breech.  The shock wave travelled 1.2 meters in 1.5 ms, which is 

a speed of 800 meters per second. 

 

Look at the shock which is reflected back from the shell about 13 ms into the run.  At first blush, it looks 

like the shock front made a sudden leap, at nearly infinite speed.  No, that is the wrong interpretation.  

What is happening is that the shock wave is starting to dissipate, and the identity of the element which 

had the highest instantaneous pressure changed.  It was out-of-sequence, and the shock wave front is no 

longer well-defined. 

 

This simulation is not a good representation of what one would expect for this gun.  Here is what one 

would expect. 

 The peak pressure should be around 3,750 atmospheres, almost twice what is predicted here. 

 The shell's exit speed should be around 750 meters per second, at which speed it would have 

 times as much kinetic energy as it has when it exits the gun at 595 meters per 

second, as predicted here. 

 

There is a reason for this shortfall.  It is illustrated in the following graph, which shows that only about 

one-half of the propellant was burned.  Slightly more propellant was burned at the breech (57.6%) than 

inside the last element (53.0%)., but the fact is that burning was too slow. 

 

Shell is 

released 

Maximum pressure 

during firing 

Shell is moving 

down the barrel 
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And, there is a good reason why more propellant was not consumed.  In this paper, I modeled the grains 

of propellant as solid cylinders.  I ignored the fact that the grains are pierced by several holes drilled 

through from one end-face to the other.  These holes provide additional surface area on which burning 

takes place.  The holes allow the grains to be burned from the inside out, as well as from the outside in.  

The net result is that more propellant is consumed, more heat is generated more quickly than from solid 

grains, and there is higher pressure and greater shell speed.  I will look at the effect of these holes in the 

next paper. 

_______________________________________________ 

 

As I have said, the numerical procedure did not require the use of artificial viscosity.  Apparently, the 

time steps were short enough that the pressures calculated using the normal unadjusted equations of state 

were able to change quickly enough to withstand on-coming shocks.  The time steps got as low as 60 ns 

(nanoseconds) during the run. 

 

Even though artificial viscosity was not necessary, it is still interesting to look at its effects.  I have placed 

on the following page three "Pressure and shell speed w.r.t. time" graphs, all of which are comparable to 

the one above with that caption.  The three graphs show the results of using non-zero artificial viscosity.  

The  artificial viscosity coefficient is set to ½, 10 and 100, respectively, in the three cases.  In all cases, 

the second artificial viscosity coefficient  (which is based on a speed-of-sound factor), is set to one-

tenth of . 

 

The main observation is this.  The  case shows some softening of the sharpness at the shock 

wave fronts.  If one looks closely, there is slight evidence of this kind of softening at .  At 

, the shock fronts look as sharp as they were with no artificial viscosity at all.  It is worth bearing 

in mind that the purpose of the artificial viscosity is not to make the shock waves somehow disappear, but 

only to soften them just enough to permit the numerical integration to survive. 
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Also note that the use of artificial viscosity, and the dissipation which accompanies it, did not cause any 

change in the speed at which the shell exits from the barrel. 

_______________________________________________ 

 

In the next paper, I will add holes to the web of the grains. 

 

 

 

 

Jim Hawley 

© February 2015 

 

If you found this description helpful, please let me know.  If you spot any errors or omissions, please send 

an e-mail.  Thank you. 
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Appendix "A" 

 

Listing of the VB2010 code for the numerical simulation 

 

The program consists of a Windows Forms application (Form1) and two modules, Variables and 

Procedures. 

 

Listing of form Form1 

 
Option Strict On 
Option Explicit On 
 
Public Class Form1 
    Inherits System.Windows.Forms.Form 
 
    Public Sub New() 
        InitializeComponent() 
        With Me 
            Text = "Naval gun simulation" 
            FormBorderStyle = Windows.Forms.FormBorderStyle.None 
            Size = New Drawing.Size(1000, 700) 
            CenterToScreen() 
            MinimizeBox = True 
            MaximizeBox = True 
            FormBorderStyle = Windows.Forms.FormBorderStyle.Fixed3D 
            With Me 
                Controls.Add(buttonSimulate) : buttonSimulate.BringToFront() 
                Controls.Add(buttonExit) : buttonExit.BringToFront() 
                Controls.Add(labelResult) : labelResult.BringToFront() 
            End With 
            Visible = True 
            PerformLayout() 
            BringToFront() 
        End With 
    End Sub 
 
    '//////////////////////////////////////////////////////////////////////////////////// 
    '//////////////////////////////////////////////////////////////////////////////////// 
    '// Controls for MainForm. 
 
    Private WithEvents buttonSimulate As New Windows.Forms.Button With _ 
        {.Size = New Drawing.Size(120, 30), _ 
         .Location = New Drawing.Point(5, 5), _ 
         .Text = "Simulate", .TextAlign = ContentAlignment.MiddleCenter} 
 
    Private WithEvents buttonExit As New Windows.Forms.Button With _ 
        {.Size = New Drawing.Size(120, 30), _ 
         .Location = New Drawing.Point(5, 40), _ 
         .Text = "Exit", .TextAlign = ContentAlignment.MiddleCenter} 
 
    Public labelResult As New Windows.Forms.Label With _ 
        {.Size = New Drawing.Size(950, 600), _ 
         .Location = New Drawing.Point(125, 5), _ 
         .Text = "", .TextAlign = ContentAlignment.TopLeft, .Visible = True} 
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    '//////////////////////////////////////////////////////////////////////////////////// 
    '//////////////////////////////////////////////////////////////////////////////////// 
    '// Handlers for controls for MainForm. 
 
    Private Sub buttonSimulate_Click() Handles buttonSimulate.MouseClick 
        RunCompleteSimulation() 
    End Sub 
 
    Private Sub buttonExit_Click() Handles buttonExit.MouseClick 
        Application.Exit() 
    End Sub 
 
End Class 
 

Listing of module Variables 

 
Option Strict On 
Option Explicit On 
 
Public Module Variables 
 
    ' Simulation parameters: 
    '   NE = Number of gas elements 
    '   MaxSimTime = Maximum length of simulation, in seconds 
    '   deltaT = Initial duration of a time step, in seconds 
    '   Time = Simulation time, in seconds 
    '   deltaTSave = Time interval between writes to output text files 
    '   TimeOfNextSave = Time of next write to output text files 
    '   deltaNESave = Spatial interval between gas elements which will be saved 
    Public NE As Int32 = 2000 
    Public MaxSimTime As Double = 0.05 
    Public deltaT As Double = 0.0000001 
    Public Time As Double 
    Public deltaTSave As Double = 0.00001 
    Public TimeOfNextSave As Double 
    Public deltaNESave As Int32 = 20 
 
    ' Variables used to calculate the length of a time step 
    '   MaxChangeAllowed = If per-step change in Pi() or RHOi() exceeds this, reduce TS 
    '   MinChangeAllowed = If per-step change in Pi() and RHOi() are less, increase TS 
    '   DecreaseInTS = Fraction to decrease time step if pressure change is too high 
    '   IncreaseInTS = Fraction to increase time step is pressure change is too low 
    '   MaxPressure = Maximum of pressure in all elements, for display purposes only 
    '   MaxPressureIndex = Index of element with maximum pressure, for display only 
    Public MaxChangeAllowed As Double = 0.001 
    Public MinChangeAllowed As Double = 0.00025 
    Public DecreaseInTS As Double = 0.9 
    Public IncreaseInTS As Double = 1.01 
    Public MaxPressure As Double 
    Public MaxPressureIndex As Int32 
 
    ' Important times: 
    '   TimeOfShellStart = Time at which the shell starts to move 
    '   TimeOfShellExit = Time at which the shell leaves the barrel 
    Public TimeofShellStart As Double 
    Public TimeOfShellExit As Double 
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    ' Physical parameters of the gun: 
    '   Lchamber = Length of chamber 
    '   Lbarrel = Shell travel distance 
    '   Abarrel = Area of open barrel 
    '   Mshell = Mass of the shell 
    '   Pengband = Engraving band pressure 
    Public Lchamber As Double = 1.03        ' meters 
    Public Lbarrel As Double = 5.97         ' meters 
    Public Abarrel As Double = 0.0127       ' square meters 
    Public Mshell As Double = 31.8          ' kilograms 
    Public Pengband As Double = Val("4E7")  ' Newtons per square meter 
 
    ' Physical parameters of the propellant: 
    '   Mcharge = Total mass of propellant 
    '   Dgrain = Diameter of a grain of propellant 
    '   Lgrain = Original length of a grain of propellant 
    '   RHOgrain = Crystalline density of solid propellant 
    '   RHOLoad = Loading denisty of solid propellant 
    '   Q0 = Heat released from burning one kilogram of propellant 
    '   Rgrain = Original radius of a grain of propellant 
    '   LgrainEff = Effective length of one grain, per element 
    '   AgrainEff = Effective cross-sectional area of one grain, per element 
    Public Mcharge As Double = 8.85         ' kilograms 
    Public Dgrain As Double = 0.0069        ' meters 
    Public Lgrain As Double = 0.012         ' meters 
    Public RHOgrain As Double = 1660        ' kilograms per cubic meter 
    Public RHOLoad As Double = 680          ' kilograms per cubic meter 
    Public Q0 As Double = 3430000           ' Joules per kilogram 
    Public Rgrain As Double = Dgrain / 2    ' meters 
    Public LgrainEff As Double 
    Public AgrainEff As Double 
 
    ' Physical parameters of the gas: 
    '   StoichRatio = Moles of gas produced per kilogram of propellant 
    '   Ridc = R, the Ideal Gas Constant 
    '   C1, C2 = Artificial viscosity coefficients 
    '   Cfr = Mass compensation coefficient for frictional forces 
    '   Bcovolume = Basic ideal gas co-volume correction "b" 
    Public StoichRatio As Double = 40       ' moles per kilogram 
    Public Rigc As Double = 8.31446         ' Joules per mole-degK 
    Public C1 As Double = 0                 ' Artificial viscosity coefficient #1 
    Public C2 As Double = C1 / 10           ' Artificial viscosity coefficient #2 
    Public Cfr As Double = 0.167            ' Mass compensation for frictional forces 
    Public Bcovolume As Double = 0.00095    ' cubic meters per kilogram    
 
    ' Initial conditions of the ambient air inside the barrel: 
    '   Patm = Atmospheric pressure 
    '   Tatm = Temperature inside the chamber 
    '   AirMW = Molecular weight of dry air 
    '   AirNi = Number of moles of original air inside each element 
    '   AirMi = Mass of original air inside each element 
    Public Patm As Double = 101300          ' Newtons per square meter 
    Public Tatm As Double = 100             ' degC 
    Public AirMW As Double = 0.02897        ' kilograms per mole 
    Public AirNi As Double                  ' moles 
    Public AirMi As Double                  ' kilograms 
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    ' Gas element variables: 
    ' Values for all elements and for two consecutive time steps are stored 
    ' in the following variables.  
    '   MiT = Total mass of "stuff" inside element #i (constant) 
    '   MiP0 = Original mass of propellant inside element #i 
    '   MiP(NE) = Mass of unburned propellant inside element #i at time T 
    '   MiG(NE) = Mass of propellant gas inside element #i at time T 
    '   Ni(NE) = Total moles of gas inside element #i at time T 
    '   Xi(NE) = Location of boundary faces at time T (At breech, Xi(0)=0 always) 
    '   Vi(NE) = Speed of boundary faces at time T-deltaT/2 (Vi(0)= 0 always) 
    '   Pi(NE) = Static pressure inside element #i at time T 
    '   Wi(NE) = Artificial viscosity inside element #i at time T 
    '   VOLi(NE) = Total volume of element #i at time T 
    '   VOLGasi(NE) = Gas volume of element #i at time T 
    '   BCoVoli(NE) = Co-volume correction inside element #i at time T 
    '   Ti(NE) = Temperature inside element #i at time T 
    '   Ui(NE) = Internal energy of element #i at time T 
    '   RHOi(NE) = Density inside element #i at time T 
    '   GAMMAi(NE) = Ratio of specific heats inside element #i at time T 
    '   Si(NE) = Speed of sound inside element #i at time T 
    '   deltaQi(NE) = Heat added to element #i during one time step 
    '   deltaNi(NE) = Moles of gas added to element #i during one time step 
    Public MiT As Double                                ' kilograms 
    Public MiP0 As Double                               ' kilograms 
    Public MiP(NE), MiP_previous(NE) As Double          ' kilograms 
    Public MiG(NE), MiG_previous(NE) As Double          ' kilograms 
    Public Ni(NE), Ni_previous(NE) As Double            ' moles 
    Public Xi(NE), Xi_previous(NE) As Double            ' meters 
    Public Vi(NE), Vi_previous(NE) As Double            ' meters per second 
    Public Pi(NE), Pi_previous(NE) As Double            ' Newtons per square meter 
    Public Wi(NE), Wi_previous(NE) As Double            ' Newtons per square meter 
    Public VOLi(NE), VOLi_previous(NE) As Double        ' cubic meters 
    Public VOLGasi(NE), VOLGasi_previous(NE) As Double  ' cubic meters 
    Public BCoVoli(NE), BCoVoli_previous(NE) As Double  ' cubic meters 
    Public Ti(NE), Ti_previous(NE) As Double            ' degK 
    Public Ui(NE), Ui_previous(NE) As Double            ' Joules 
    Public RHOi(NE), RHOi_previous(NE) As Double        ' kilograms per cubic meter 
    Public GAMMAi(NE), GAMMAi_previous(NE) As Double 
    Public Si(NE), Si_previous(NE) As Double            ' meters per second 
    Public deltaQi(NE), deltaQi_previous(NE) As Double  ' Joules 
    Public deltaNi(NE), deltaNi_previous(NE) As Double  ' moles 
 
    ' Propellant variables: 
    ' Values for all elements and for two consecutive time steps are stored in the 
    ' following variables.  
    '   Bi(NE) = Burn rate inside element #i at time T 
    '   Rgraini(NE) = Radius of grains in element #i at time T 
    '   PropVOLi(NE) = Volume of propellant in element #i at time T 
    '   deltaMi(NE) = Mass of propellant burned during one time step 
    '   fi(NE) = Fraction of propellant burned in element #i at time T  
    Public Bi(NE), Bi_previous(NE) As Double                ' meters per second 
    Public Rgraini(NE), Rgraini_previous(NE) As Double      ' meters 
    Public PropVOLi(NE), PropVOLi_previous(NE) As Double    ' cubic meters 
    Public deltaMi(NE), deltaMi_previous(NE) As Double      ' kilograms 
    Public fi(NE), fi_previous(NE) As Double 
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    ' Projectile variables: 
    ' Values for the projectile for two consecutive time steps are stored in the 
    ' following variables. 
    '   Pshell = Pressure on rear face of shell at time T 
    '   Xshell = Location of rear face of shell at time T 
    '   Vshell = Speed of shell at time T-deltaT/2 
    '   ACCshell = Acceleration of shell at time T 
    '   CanShellMove is True when the shell has broken free from its band 
    Public Pshell, Pshell_previous As Double            ' Newtons per square meter 
    Public Xshell, Xshell_previous As Double            ' meters 
    Public Vshell, Vshell_previous As Double            ' meters per second 
    Public ACCshell, ACCshell_previous As Double        ' meters per second^2 
    Public CanShellMove As Boolean 
 
    ' Text file processing 
    Public ThisDirectory As String = FileSystem.CurDir.ToString 
    Public TextOutputFileName As String = "Naval_gun_simulation_" 
    ' Log of screen display 
    Public FileWriterMaster As System.IO.StreamWriter 
    ' Gas element variables 
    Public FileWriterMiP As System.IO.StreamWriter 
    Public FileWriterMiG As System.IO.StreamWriter 
    Public FileWriterNi As System.IO.StreamWriter 
    Public FileWriterXi As System.IO.StreamWriter 
    Public FileWriterVi As System.IO.StreamWriter 
    Public FileWriterPi As System.IO.StreamWriter 
    Public FileWriterWi As System.IO.StreamWriter 
    Public FileWriterVOLi As System.IO.StreamWriter 
    Public FileWriterVOLGasi As System.IO.StreamWriter 
    Public FileWriterBCoVoli As System.IO.StreamWriter 
    Public FileWriterTi As System.IO.StreamWriter 
    Public FileWriterUi As System.IO.StreamWriter 
    Public FileWriterRHOi As System.IO.StreamWriter 
    Public FileWriterGAMMAi As System.IO.StreamWriter 
    Public FileWriterSi As System.IO.StreamWriter 
    Public FileWriterdeltaQi As System.IO.StreamWriter 
    Public FileWriterdeltaNi As System.IO.StreamWriter 
    ' Propellant variables 
    Public FileWriterBi As System.IO.StreamWriter 
    Public FileWriterRgraini As System.IO.StreamWriter 
    Public FileWriterPropVOLi As System.IO.StreamWriter 
    Public FileWriterdeltaMi As System.IO.StreamWriter 
    Public FileWriterfi As System.IO.StreamWriter 
    ' Projectile variables 
    Public FileWriterShell As System.IO.StreamWriter 
 
End Module 
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Listing of module Procedures 

 
Option Strict On 
Option Explicit On 
 
' List of subroutines: 
'   InitializeForSimulation() 
'   RunFullSimulation() 
'   ExecuteOneTimeStep() 
'   ShiftAllValuesToPreviousVariables() 
'   FindMaximumPressure() 
'   OpenAllOutputTextFiles() 
'   CloseAllOutputTextFiles() 
'   WriteHeadersToAllOutputTextFiles() 
'   WriteDataRowToAllOutputTextFiles() 
 
Public Module Procedures 
 
    Public Sub InitializeForSimulation() 
        ' This subroutine sets all quantities to their initial values, so  
        ' everything is ready to start the first time step. 
        ' 
        ' -------------------------------------------------------- 
        ' Deal with the ambient air in the chamber prior to firing 
        Dim TotalVolumeOfAir As Double = _ 
            Mcharge * ((1 / RHOLoad) - (1 / RHOgrain)) 
        Dim TotalMolesOfAir As Double = _ 
            Patm * TotalVolumeOfAir / (Rigc * (Tatm + 273.15)) 
        Dim TotalMassOfAir As Double = AirMW * TotalMolesOfAir 
        AirNi = TotalMolesOfAir / NE 
        AirMi = TotalMassOfAir / NE 
        ' -------------------------------------------------------- 
        ' 
        ' Set the initial MASS of propellant inside each element 
        MiP0 = Mcharge / NE 
        MiT = MiP0 + AirMi 
        For J As Int32 = 1 To NE Step 1 
            MiP(J) = MiP0 
            MiG(J) = 0 
        Next J 
        ' 
        ' Set the initial VOLUME of propellant inside each element 
        For J As Int32 = 1 To NE Step 1 
            PropVOLi(J) = MiP(J) / RHOgrain 
            Rgraini(J) = Rgrain 
        Next J 
        ' 
        ' Set the effective area and length of grains in each element 
        ' This is done for the sole purpose of calculating the volume of propellant 
        AgrainEff = Math.PI * (Rgrain ^ 2) 
        LgrainEff = ((Mcharge / NE) / RHOgrain) / AgrainEff 
        ' 
        ' Set the unburned fractions 
        For J As Int32 = 1 To NE Step 1 
            fi(J) = 1 
        Next J 
        ' 
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        ' Set initial locations of boundary faces 
        Xi(0) = 0 
        For J As Int32 = 1 To NE Step 1 
            Xi(J) = Lchamber * J / NE 
        Next J 
        Xshell = Lchamber 
        ' 
        ' Set the initial speeds 
        For J As Int32 = 1 To NE Step 1 
            Vi(J) = 0 
        Next J 
        Vshell = 0 
        ' 
        ' Set the initial pressure, volume, density and number of moles of air 
        For J As Int32 = 1 To NE Step 1 
            Pi(J) = Patm 
            VOLi(J) = Abarrel * (Xi(J) - Xi(J - 1)) 
            RHOi(J) = AirMi / (VOLi(J) - PropVOLi(J)) 
            Ni(J) = AirNi 
        Next J 
        ' 
        ' Set the internal energies 
        For J As Int32 = 1 To NE Step 1 
            Ui(J) = (Ni(J) * Rigc * (Tatm + 273.15)) / (1.333 - 1) 
        Next J 
    End Sub 
 
    Public Sub RunCompleteSimulation() 
        Form1.labelResult.Text = "Starting simulation ..." 
        Form1.labelResult.Refresh() 
        ' 
        ' Initialize the vectors 
        InitializeForSimulation() 
        ' 
        ' Open the text output files 
        OpenAllOutputTextFiles() 
        WriteHeadersToAllOutputTextFiles() 
        ' 
        ' Save the starting values 
        Time = 0 
        WriteDataRowToAllOutputTextFiles() 
        TimeOfNextSave = Time + deltaTSave 
        ' 
        ' Set the control parameters 
        CanShellMove = False 
        Dim ScreenUpdateInterval As Int32 = 250 
        Dim ScreenUpdateCounter As Int32 = 250 
        Do 
            Time = Time + deltaT 
            ' Test to see if the simulation has timed out 
            If (Time >= MaxSimTime) Then 
                Exit Do 
            End If 
            ' Shift the present variables into their "previous" variants 
            ShiftAllValuesToPreviousVariables() 
            ' Run one time step 
            ExecuteOneTimeStep() 
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            ' Find the change in maximum pressure 
            FindMaximumPressure(MaxPressure, MaxPressureIndex) 
            ' Test to see if it is time to write to the output text files 
            If (Time >= TimeOfNextSave) Then 
                WriteDataRowToAllOutputTextFiles() 
                TimeOfNextSave = Time + deltaTSave 
            End If 
            ' Test to see if the shell can start moving 
            If ((CanShellMove = False) And _ 
                (Pi(NE) >= Pengband)) Then 
                CanShellMove = True 
                TimeofShellStart = Time 
                Form1.labelResult.Text = Strings.Right( _ 
                    Form1.labelResult.Text & vbCrLf & _ 
                    "Shell starts moving at time = " & Trim(Str(Time)), 6000) 
                Form1.labelResult.Refresh() 
                FileWriterMaster.WriteLine( _ 
                    "Shell starts moving at time = " & Trim(Str(Time))) 
                Threading.Thread.Sleep(2000) 
            End If 
            ' Test to see if the shell has left the barrel 
            If (Xshell > (Lchamber + Lbarrel)) Then 
                TimeOfShellExit = Time 
                Form1.labelResult.Text = Strings.Right( _ 
                    Form1.labelResult.Text & vbCrLf & _ 
                    "Shell exits at time = " & Trim(Str(Time)), 6000) 
                Form1.labelResult.Refresh() 
                FileWriterMaster.WriteLine( _ 
                    "Shell exits at time = " & Trim(Str(Time))) 
                ' Write the final values to the output text files 
                WriteDataRowToAllOutputTextFiles() 
                Exit Do 
            End If 
            ' Update the screen display 
            ScreenUpdateCounter = ScreenUpdateCounter + 1 
            If (ScreenUpdateCounter >= ScreenUpdateInterval) Then 
                Form1.labelResult.Text = Strings.Right( _ 
                    Form1.labelResult.Text & vbCrLf & _ 
                    "T(us)= " & FormatNumber(Time * 1000000, 2) & _ 
                    "  dT(us)= " & FormatNumber(deltaT * 1000000, 6) & _ 
                    "  MaxP= " & FormatNumber(MaxPressure, 0, , TriState.True) & _ 
                    "  MaxPIndex= " & Trim(Str(MaxPressureIndex)) & _ 
                    "  P1= " & FormatNumber(Pi(1), 0, , , TriState.True) & _ 
                    "  Pne= " & FormatNumber(Pi(NE), 0, , , TriState.True) & _ 
                    "  Bne= " & FormatNumber(Bi(NE), 4) & _ 
                    "  fne= " & FormatNumber(fi(NE), 5) & _ 
                    "  f1= " & FormatNumber(fi(1), 5) & _ 
                    "  Vs= " & FormatNumber(Vshell, 2) & _ 
                    "  Wne= " & FormatNumber(Wi(NE), 0, , , TriState.True), _ 
                    6000) 
                Form1.labelResult.Refresh() 
                ' Save the new line to the Master text output file as well 
                FileWriterMaster.WriteLine( _ 
                    "Time= ," & Trim(Str(Time)) & _ 
                    ", with deltaT= ," & Trim(Str(deltaT)) & _ 
                    ", MaxP= ," & Trim(Str(MaxPressure)) & _ 
                    ", MaxPIndex= ," & Trim(Str(MaxPressureIndex)) & _ 
                    ", P1= ," & Trim(Str(Pi(1))) & _ 
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                    ", Pne= ," & Trim(Str(Pi(NE))) & _ 
                    ", Wne= ," & Trim(Str(Wi(NE))) & _ 
                    ", Une= ," & Trim(Str(Ui(NE))) & _ 
                    ", Bne= ," & Trim(Str(Bi(NE))) & _ 
                    ", fne= ," & Trim(Str(fi(NE))) & _ 
                    ", f1= ," & Trim(Str(fi(1))) & _ 
                    ", Xs= ," & Trim(Str(Xshell)) & _ 
                    ", Vs= ," & Trim(Str(Vshell))) 
                ScreenUpdateCounter = 0 
            End If 
            ' Based on change in maximum pressure, change the time step if necessary 
            ' Equation (?????*****) 
            Dim lRelChangeInP As Double 
            Dim lMaxRelChangeInP As Double 
            Dim lRelChangeInRHO As Double 
            Dim lMaxRelChangeInRHO As Double 
            lMaxRelChangeInP = Val("-1E+20") 
            lMaxRelChangeInRHO = Val("-1E+20") 
            For J As Int32 = 1 To NE Step 1 
                lRelChangeInP = _ 
                    Math.Abs((Pi(J) - Pi_previous(J)) / Pi_previous(J)) 
                lRelChangeInRHO = _ 
                    Math.Abs((RHOi(J) - RHOi_previous(J)) / RHOi_previous(J)) 
                If (lRelChangeInP > lMaxRelChangeInP) Then 
                    lMaxRelChangeInP = lRelChangeInP 
                End If 
                If (lRelChangeInRHO > lMaxRelChangeInRHO) Then 
                    lMaxRelChangeInRHO = lRelChangeInRHO 
                End If 
            Next J 
            If ((lMaxRelChangeInP > MaxChangeAllowed) Or _ 
                (lMaxRelChangeInRHO > MaxChangeAllowed)) Then 
                deltaT = DecreaseInTS * deltaT 
            End If 
            If ((lMaxRelChangeInP < MinChangeAllowed) And _ 
                (lMaxRelChangeInRHO < MinChangeAllowed)) Then 
                deltaT = IncreaseInTS * deltaT 
            End If 
        Loop 
        ' Close the output text file 
        CloseAllOutputTextFiles() 
    End Sub 
 
    Public Sub ExecuteOneTimeStep() 
        ' This subroutine advances the simulation from time t to time t+deltaT once the 
        ' speeds of the boundary faces at time t+deltaT/2 have been calculated. 
        ' For example, Vi(j) is the speed of boundary face #j at time t+deltaT/2 
        '              Pi(j) is the pressure in element #j at time t+deltaT 
        ' If the Boolean flag CanShellMove is False, then the shell, and the RHS 
        ' boundary face of element #NE, are not permitted to move. 
        ' 
        ' Step #1: Equation (A) 
        Xi(0) = 0 
        For J As Int32 = 1 To (NE - 1) Step 1 
            Xi(J) = Xi_previous(J) + (Vi(J) * deltaT) 
        Next J 
        If (CanShellMove = True) Then 
            Xi(NE) = Xi_previous(NE) + (Vshell * deltaT) 
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        Else 
            Xi(NE) = Xi_previous(NE) 
        End If 
        Xshell = Xi(NE) 
        ' 
        ' Step #2: Equation (B) 
        For J As Int32 = 1 To NE Step 1 
            VOLi(J) = (Xi(J) - Xi(J - 1)) * Abarrel 
        Next J 
        ' 
        ' Step #3: Burning equations 
        For J As Int32 = 1 To NE Step 1 
            ' Equation (C) 
            Bi(J) = Math.Exp(( _ 
                (0.046696597 * ((Math.Log(Pi_previous(J) / Patm)) ^ 2)) + _ 
                (0.34808898 * Math.Log(Pi_previous(J) / Patm)) + _ 
                -0.572295873)) / 1000 
            ' Direct calculations for Equation (D) 
            ' Calculate the new radius of the grain after the burning in this time step 
            Rgraini(J) = Rgraini_previous(J) - (Bi(J) * deltaT) 
            ' Calculate the new unburned propellant volume 
            PropVOLi(J) = Math.PI * (Rgraini(J) ^ 2) * LgrainEff 
            ' Calculate the decrease in volume and corresponding mass burned 
            deltaMi(J) = RHOgrain * (PropVOLi_previous(J) - PropVOLi(J)) 
            ' 
            ' Check that burning does not consume more than 100% of the remaining mass 
            If (deltaMi(J) > MiP_previous(J)) Then 
                Rgraini(J) = 0 
                PropVOLi(J) = 0 
                deltaMi(J) = MiP_previous(J) 
            End If 
            ' Equation (E) 
            MiP(J) = MiP_previous(J) - deltaMi(J) 
            MiG(J) = MiG_previous(J) + deltaMi(J) 
            fi(J) = MiG(J) / MiP0 
        Next J 
        ' 
        ' Step #4: Equation (F) 
        For J As Int32 = 1 To NE Step 1 
            deltaQi(J) = Q0 * deltaMi(J) 
        Next J 
        ' 
        ' Step #5: Density 
        For J As Int32 = 1 To NE Step 1 
            ' Equation (G) 
            VOLGasi(J) = VOLi(J) - (MiP(J) / RHOgrain) 
            ' Equation (H) 
            RHOi(J) = (MiG(J) + AirMi) / VOLGasi(J) 
        Next J 
        ' 
        ' Step #6: Co-volume correction 
        For J As Int32 = 1 To NE Step 1 
            ' Equation (I) 
            BCoVoli(J) = Bcovolume * (MiG(J) + AirMi) / (1 + (2 * RHOi(J) / 500)) 
            ' Equation (J) 
            deltaNi(J) = 40 * deltaMi(J) 
            ' Equation (K) 
            Ni(J) = Ni_previous(J) + deltaNi(J) 
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        Next J 
        ' 
        ' Step #7: Adiabtaic Index 
        For J As Int32 = 1 To NE Step 1 
            ' Equation (L) 
            GAMMAi(J) = 1.333 + (0.567 * RHOi(J) / 1200) 
        Next J 
        ' 
        ' Step #8: Internal energy and pressure 
        For J As Int32 = 1 To NE Step 1 
            Dim MaxNumOfIterations As Double = 1000 
            Dim NumOfIterations As Double = 0 
            ' Starting guess 
            Pi(J) = Pi_previous(J) 
            ' Loop 
            Do 
                ' Equation (M) 
                Si(J) = Math.Sqrt(GAMMAi(J) * Pi(J) / RHOi(J)) 
                ' Carry out the relative speed test 
                Dim deltaV As Double 
                If (J = 1) Then 
                    deltaV = -Vi(J) 
                Else 
                    deltaV = Vi(J - 1) - Vi(J) 
                End If 
                ' Equation (N) 
                If (deltaV > 0) Then 
                    Wi(J) = RHOi(J) * ( _ 
                        (C1 * deltaV * deltaV) + _ 
                        (C2 * Si(J) * Math.Abs(deltaV))) 
                Else 
                    Wi(J) = 0 
                End If 
                ' Equation (O) 
                Dim lFactor1 As Double 
                Dim lFactor2 As Double 
                lFactor1 = Pi(J) + Wi(J) + Pi_previous(J) + Wi_previous(J) 
                lFactor2 = VOLi(J) - VOLi_previous(J) 
                Ui(J) = Ui_previous(J) + deltaQi(J) - (0.5 * lFactor1 * lFactor2) 
                ' Equation (P) 
                Dim lFactor3 As Double 
                Dim P_New As Double 
                lFactor3 = VOLGasi(J) - BCoVoli(J) 
                P_New = (GAMMAi(J) - 1) * Ui(J) / lFactor3 
                ' Test for negative pressure 
                If (P_New <= 0) Then 
                    MsgBox("Error: Negative pressure.  Reduce time step.") 
                    Exit Sub 
                End If 
                ' Test for convergence 
                If (Math.Abs((P_New - Pi(J)) / Pi(J)) < 0.000000001) Then 
                    Pi(J) = P_New 
                    Exit Do 
                End If 
                ' Restrict the per-iteration adjustment in pressure 
                Dim MaxAbsChange As Double 
                MaxAbsChange = Math.Min(0.1 * Pi(J), Math.Abs(P_New - Pi(J))) 
                If (P_New > Pi(J)) Then 
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                    Pi(J) = Pi(J) + MaxAbsChange 
                Else 
                    Pi(J) = Pi(J) - MaxAbsChange 
                End If 
                ' Test for too many iterations 
                NumOfIterations = NumOfIterations + 1 
                If (NumOfIterations > MaxNumOfIterations) Then 
                    MsgBox("Error: Too many iterations.") 
                    Exit Sub 
                End If 
            Loop 
        Next J 
        ' 
        ' Step #9: Temperature 
        ' Equation(Q) 
        For J As Int32 = 1 To NE Step 1 
            Ti(J) = Pi(J) * (VOLGasi(J) - BCoVoli(J)) / (Ni(J) * Rigc) 
        Next J 
        ' 
        ' Step #10: Acceleration of the shell 
        ' Equation(R) 
        Dim EffectiveMshell As Double = Mshell / (1 - Cfr) 
        Pshell = Pi(NE) 
        ACCshell = (Pshell - Patm) * Abarrel / EffectiveMshell 
        ' 
        ' Step #11: Advance the speeds 
        ' Equation (S) 
        For J As Int32 = 1 To (NE - 1) Step 1 
            Dim lFactor1 As Double 
            lFactor1 = Pi(J + 1) + Wi(J + 1) - Pi(J) - Wi(J) 
            Vi(J) = Vi_previous(J) - (deltaT * lFactor1 * Abarrel / MiT) 
        Next J 
        ' Equation (T) 
        If (CanShellMove = True) Then 
            Vshell = Vshell_previous + (ACCshell * deltaT) 
        Else 
            Vshell = 0 
        End If 
        Vi(NE) = Vshell 
    End Sub 
 
    Public Sub ShiftAllValuesToPreviousVariables() 
        ' This subroutine is called at the end of every time step.  It moves the values 
        ' just calculated into their "previous" variants, in preparation for the next 
        ' time step. 
        Xi_previous(0) = Xi(0) 
        For J As Int32 = 1 To NE Step 1 
            ' Gas element variables 
            MiP_previous(J) = MiP(J) 
            MiG_previous(J) = MiG(J) 
            Ni_previous(J) = Ni(J) 
            Xi_previous(J) = Xi(J) 
            Vi_previous(J) = Vi(J) 
            Pi_previous(J) = Pi(J) 
            Wi_previous(J) = Wi(J) 
            VOLi_previous(J) = VOLi(J) 
            VOLGasi_previous(J) = VOLGasi(J) 
            BCoVoli_previous(J) = BCoVoli(J) 
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            Ti_previous(J) = Ti(J) 
            Ui_previous(J) = Ui(J) 
            RHOi_previous(J) = RHOi(J) 
            GAMMAi_previous(J) = GAMMAi(J) 
            Si_previous(J) = Si(J) 
            deltaQi_previous(J) = deltaQi(J) 
            deltaNi_previous(J) = deltaNi(J) 
            ' Propellant variables 
            Bi_previous(J) = Bi(J) 
            Rgraini_previous(J) = Rgraini(J) 
            PropVOLi_previous(J) = PropVOLi(J) 
            deltaMi_previous(J) = deltaMi(J) 
            fi_previous(J) = fi(J) 
        Next J 
        ' Projectile variables 
        Pshell_previous = Pshell 
        Xshell_previous = Xshell 
        Vshell_previous = Vshell 
        ACCshell_previous = ACCshell 
    End Sub 
 
    Public Sub FindMaximumPressure( _ 
        ByRef MaxP As Double, ByRef MaxPIndex As Int32) 
        ' This function is called at the end of every time step.  It looks through the 
        ' current values of the pressure in all elements.  It returns the maximum value 
        ' and the index of the element with the maximum pressure. 
        MaxP = Val("-1E+20") 
        For J As Int32 = 1 To NE Step 1 
            If (Pi(J) > MaxP) Then 
                MaxP = Pi(J) 
                MaxPIndex = J 
            End If 
        Next J 
    End Sub 
 
    Public Sub OpenAllOutputTextFiles() 
        ' Log of screen display 
        FileWriterMaster = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "Master.txt") 
        ' Gas element variables 
        FileWriterMiP = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "MiP.txt") 
        FileWriterMiG = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "MiG.txt") 
        FileWriterNi = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "Ni.txt") 
        FileWriterXi = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "Xi.txt") 
        FileWriterVi = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "Vi.txt") 
        FileWriterPi = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "Pi.txt") 
        FileWriterWi = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "Wi.txt") 
        FileWriterVOLi = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "VOLi.txt") 
        FileWriterVOLGasi = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "VOLGasi.txt") 
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        FileWriterBCoVoli = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "BCoVoli.txt") 
        FileWriterTi = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "Ti.txt") 
        FileWriterUi = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "Ui.txt") 
        FileWriterRHOi = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "RHOi.txt") 
        FileWriterGAMMAi = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "GAMMAi.txt") 
        FileWriterSi = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "Si.txt") 
        FileWriterdeltaQi = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "deltaQi.txt") 
        FileWriterdeltaNi = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "deltaNi.txt") 
        ' Propellant variables 
        FileWriterBi = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "Bi.txt") 
        FileWriterRgraini = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "Rgraini.txt") 
        FileWriterPropVOLi = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "PropVOLi.txt") 
        FileWriterdeltaMi = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "deltaMi.txt") 
        FileWriterfi = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "fi.txt") 
        ' Projectile variables 
        FileWriterShell = New System.IO.StreamWriter( _ 
            ThisDirectory & "\" & TextOutputFileName & "Shell.txt") 
    End Sub 
 
    Public Sub CloseAllOutputTextFiles() 
        ' Log of screen display 
        FileWriterMaster.Close() 
        ' Gas element variables 
        FileWriterMiP.Close() 
        FileWriterMiG.Close() 
        FileWriterNi.Close() 
        FileWriterXi.Close() 
        FileWriterVi.Close() 
        FileWriterPi.Close() 
        FileWriterWi.Close() 
        FileWriterVOLi.Close() 
        FileWriterVOLGasi.Close() 
        FileWriterBCoVoli.Close() 
        FileWriterTi.Close() 
        FileWriterUi.Close() 
        FileWriterRHOi.Close() 
        FileWriterGAMMAi.Close() 
        FileWriterSi.Close() 
        FileWriterdeltaQi.Close() 
        FileWriterdeltaNi.Close() 
        ' Propellant variables 
        FileWriterBi.Close() 
        FileWriterRgraini.Close() 
        FileWriterPropVOLi.Close() 
        FileWriterdeltaMi.Close() 
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        FileWriterfi.Close() 
        ' Projectile variables 
        FileWriterShell.Close() 
    End Sub 
 
    Public Sub WriteHeadersToAllOutputTextFiles() 
        ' Log of screen display 
        FileWriterMiP.Write("Time, ") 
        ' Gas element variables 
        FileWriterMiG.Write("Time, ") 
        FileWriterNi.Write("Time, ") 
        FileWriterXi.Write("Time, ") 
        FileWriterVi.Write("Time, ") 
        FileWriterPi.Write("Time, ") 
        FileWriterWi.Write("Time, ") 
        FileWriterVOLi.Write("Time, ") 
        FileWriterVOLGasi.Write("Time, ") 
        FileWriterBCoVoli.Write("Time, ") 
        FileWriterTi.Write("Time, ") 
        FileWriterUi.Write("Time, ") 
        FileWriterRHOi.Write("Time, ") 
        FileWriterGAMMAi.Write("Time, ") 
        FileWriterSi.Write("Time, ") 
        FileWriterdeltaQi.Write("Time, ") 
        FileWriterdeltaNi.Write("Time, ") 
        ' Propellant variables 
        FileWriterBi.Write("Time, ") 
        FileWriterRgraini.Write("Time, ") 
        FileWriterPropVOLi.Write("Time, ") 
        FileWriterdeltaMi.Write("Time, ") 
        FileWriterfi.Write("Time, ") 
        ' Projectile variables 
        FileWriterShell.WriteLine("Time, Xshell, Vshell, ACCshell, Pshell") 
        For K As Int32 = 0 To (NE - 1) Step deltaNESave 
            Dim ElementIndex As Int32 
            If (K = 0) Then 
                ElementIndex = 1 
            Else 
                ElementIndex = K 
            End If 
            ' Gas element variables 
            FileWriterMiP.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterMiG.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterNi.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterXi.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterVi.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterPi.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterWi.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterVOLi.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterVOLGasi.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterBCoVoli.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterTi.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterUi.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterRHOi.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterGAMMAi.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterSi.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterdeltaQi.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterdeltaNi.Write(Trim(Str(ElementIndex)) & ", ") 
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            ' Propellant variables 
            FileWriterBi.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterRgraini.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterPropVOLi.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterdeltaMi.Write(Trim(Str(ElementIndex)) & ", ") 
            FileWriterfi.Write(Trim(Str(ElementIndex)) & ", ") 
        Next K 
        ' Gas element variables 
        FileWriterMiP.WriteLine(Trim(Str(NE))) 
        FileWriterMiG.WriteLine(Trim(Str(NE))) 
        FileWriterNi.WriteLine(Trim(Str(NE))) 
        FileWriterXi.WriteLine(Trim(Str(NE))) 
        FileWriterVi.WriteLine(Trim(Str(NE))) 
        FileWriterPi.WriteLine(Trim(Str(NE))) 
        FileWriterWi.WriteLine(Trim(Str(NE))) 
        FileWriterVOLi.WriteLine(Trim(Str(NE))) 
        FileWriterVOLGasi.WriteLine(Trim(Str(NE))) 
        FileWriterBCoVoli.WriteLine(Trim(Str(NE))) 
        FileWriterTi.WriteLine(Trim(Str(NE))) 
        FileWriterUi.WriteLine(Trim(Str(NE))) 
        FileWriterRHOi.WriteLine(Trim(Str(NE))) 
        FileWriterGAMMAi.WriteLine(Trim(Str(NE))) 
        FileWriterSi.WriteLine(Trim(Str(NE))) 
        FileWriterdeltaQi.WriteLine(Trim(Str(NE))) 
        FileWriterdeltaNi.WriteLine(Trim(Str(NE))) 
        ' Propellant variables 
        FileWriterBi.WriteLine(Trim(Str(NE))) 
        FileWriterRgraini.WriteLine(Trim(Str(NE))) 
        FileWriterPropVOLi.WriteLine(Trim(Str(NE))) 
        FileWriterdeltaMi.WriteLine(Trim(Str(NE))) 
        FileWriterfi.WriteLine(Trim(Str(NE))) 
    End Sub 
 
    Public Sub WriteDataRowToAllOutputTextFiles() 
        ' Gas element variables 
        FileWriterMiP.Write(Trim(Str(Time)) & ", ") 
        FileWriterMiG.Write(Trim(Str(Time)) & ", ") 
        FileWriterNi.Write(Trim(Str(Time)) & ", ") 
        FileWriterXi.Write(Trim(Str(Time)) & ", ") 
        FileWriterVi.Write(Trim(Str(Time)) & ", ") 
        FileWriterPi.Write(Trim(Str(Time)) & ", ") 
        FileWriterWi.Write(Trim(Str(Time)) & ", ") 
        FileWriterVOLi.Write(Trim(Str(Time)) & ", ") 
        FileWriterVOLGasi.Write(Trim(Str(Time)) & ", ") 
        FileWriterBCoVoli.Write(Trim(Str(Time)) & ", ") 
        FileWriterTi.Write(Trim(Str(Time)) & ", ") 
        FileWriterUi.Write(Trim(Str(Time)) & ", ") 
        FileWriterRHOi.Write(Trim(Str(Time)) & ", ") 
        FileWriterGAMMAi.Write(Trim(Str(Time)) & ", ") 
        FileWriterSi.Write(Trim(Str(Time)) & ", ") 
        FileWriterdeltaQi.Write(Trim(Str(Time)) & ", ") 
        FileWriterdeltaNi.Write(Trim(Str(Time)) & ", ") 
        ' Propellant variables 
        FileWriterBi.Write(Trim(Str(Time)) & ", ") 
        FileWriterRgraini.Write(Trim(Str(Time)) & ", ") 
        FileWriterPropVOLi.Write(Trim(Str(Time)) & ", ") 
        FileWriterdeltaMi.Write(Trim(Str(Time)) & ", ") 
        FileWriterfi.Write(Trim(Str(Time)) & ", ") 
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        For K As Int32 = 0 To (NE - 1) Step deltaNESave 
            Dim ElementIndex As Int32 
            If (K = 0) Then 
                ElementIndex = 1 
            Else 
                ElementIndex = K 
            End If 
            ' Gas element variables 
            FileWriterMiP.Write(Trim(Str(MiP(ElementIndex))) & ", ") 
            FileWriterMiG.Write(Trim(Str(MiG(ElementIndex))) & ", ") 
            FileWriterNi.Write(Trim(Str(Ni(ElementIndex))) & ", ") 
            FileWriterXi.Write(Trim(Str(Xi(ElementIndex))) & ", ") 
            FileWriterVi.Write(Trim(Str(Vi(ElementIndex))) & ", ") 
            FileWriterPi.Write(Trim(Str(Pi(ElementIndex))) & ", ") 
            FileWriterWi.Write(Trim(Str(Wi(ElementIndex))) & ", ") 
            FileWriterVOLi.Write(Trim(Str(VOLi(ElementIndex))) & ", ") 
            FileWriterVOLGasi.Write(Trim(Str(VOLGasi(ElementIndex))) & ", ") 
            FileWriterBCoVoli.Write(Trim(Str(BCoVoli(ElementIndex))) & ", ") 
            FileWriterTi.Write(Trim(Str(Ti(ElementIndex))) & ", ") 
            FileWriterUi.Write(Trim(Str(Ui(ElementIndex))) & ", ") 
            FileWriterRHOi.Write(Trim(Str(RHOi(ElementIndex))) & ", ") 
            FileWriterGAMMAi.Write(Trim(Str(GAMMAi(ElementIndex))) & ", ") 
            FileWriterSi.Write(Trim(Str(Si(ElementIndex))) & ", ") 
            FileWriterdeltaQi.Write(Trim(Str(deltaQi(ElementIndex))) & ", ") 
            FileWriterdeltaNi.Write(Trim(Str(deltaNi(ElementIndex))) & ", ") 
            ' Propellant variables 
            FileWriterBi.Write(Trim(Str(Bi(ElementIndex))) & ", ") 
            FileWriterRgraini.Write(Trim(Str(Rgraini(ElementIndex))) & ", ") 
            FileWriterPropVOLi.Write(Trim(Str(PropVOLi(ElementIndex))) & ", ") 
            FileWriterdeltaMi.Write(Trim(Str(deltaMi(ElementIndex))) & ", ") 
            FileWriterfi.Write(Trim(Str(fi(ElementIndex))) & ", ") 
        Next K 
        ' Gas element variables 
        FileWriterMiP.WriteLine(Trim(Str(MiP(NE)))) 
        FileWriterMiG.WriteLine(Trim(Str(MiG(NE)))) 
        FileWriterNi.WriteLine(Trim(Str(Ni(NE)))) 
        FileWriterXi.WriteLine(Trim(Str(Xi(NE)))) 
        FileWriterVi.WriteLine(Trim(Str(Vi(NE)))) 
        FileWriterPi.WriteLine(Trim(Str(Pi(NE)))) 
        FileWriterWi.WriteLine(Trim(Str(Wi(NE)))) 
        FileWriterVOLi.WriteLine(Trim(Str(VOLi(NE)))) 
        FileWriterVOLGasi.WriteLine(Trim(Str(VOLGasi(NE)))) 
        FileWriterBCoVoli.WriteLine(Trim(Str(BCoVoli(NE)))) 
        FileWriterTi.WriteLine(Trim(Str(Ti(NE)))) 
        FileWriterUi.WriteLine(Trim(Str(Ui(NE)))) 
        FileWriterRHOi.WriteLine(Trim(Str(RHOi(NE)))) 
        FileWriterGAMMAi.WriteLine(Trim(Str(GAMMAi(NE)))) 
        FileWriterSi.WriteLine(Trim(Str(Si(NE)))) 
        FileWriterdeltaQi.WriteLine(Trim(Str(deltaQi(NE)))) 
        FileWriterdeltaNi.WriteLine(Trim(Str(deltaNi(NE)))) 
        ' Propellant variables 
        FileWriterBi.WriteLine(Trim(Str(Bi(NE)))) 
        FileWriterRgraini.WriteLine(Trim(Str(Rgraini(NE)))) 
        FileWriterPropVOLi.WriteLine(Trim(Str(PropVOLi(NE)))) 
        FileWriterdeltaMi.WriteLine(Trim(Str(deltaMi(NE)))) 
        FileWriterfi.WriteLine(Trim(Str(fi(NE)))) 
        ' Projectile variables 
        FileWriterShell.WriteLine(Trim(Str(Time)) & ", " & Trim(Str(Xshell)) & ", " & _ 
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            Trim(Str(Vshell)) & ", " & Trim(Str(ACCshell)) & ", " & Trim(Str(Pshell))) 
    End Sub 
 
End Module 

 


