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A High-Voltage Buck-Boost Capacitor Charger 

 

Reference is made to an associated paper titled A High-Voltage Boost Capacitor Charger.  The earlier 

paper examined a capacitor charger in which the primary and secondary circuits worked in phase.  In this 

paper, an alternative configuration will be examined, in which the primary and secondary circuits operate 

out of phase.   

 

The following schematic diagram shows the principal components of the circuit.  The component values 

shown are the same as used in the earlier paper, where details about their selection and construction can 

be found.  The primary winding of the toroid transformer is represented by its ideal inductance  and 

series resistance .  The secondary winding is represented by its ideal inductance  and series 

resistance .  When conditions in the secondary circuit permit, diode  conducts and the flow of current 

adds charge to the load capacitor .  Diode  is represented by an ideal diode in series with a constant 

forward voltage drop of .  The load capacitor  is represented by an ideal  capacitor and an 

equivalent series resistance of .  In the primary side, the current from the  dc power supply is 

limited by current-limiting resistor .  The MOSFET which turns the primary circuit on and off is 

represented in this schematic by a simple SPST switch  which is accompanied in series by the 

MOSFET’s ON-resistance . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The circuit looks very similar to the circuit in the earlier paper and, indeed, it is.  The only difference is 

the reversal of the orientation of the primary and secondary windings.  Previously, in the “boost” 

configuration, an increasing current on the primary side developed a positive voltage at node .  In this 

“buck-boost” configuration, an increasing current on the primary side develops a negative voltage at  

node .  The dotted ends of the transformer are reversed in this schematic from their relative positions in 

the earlier circuit. 

 

Let us make sure we are clear about our current conventions.  In the primary circuit, the current  

and magnetizing current  are defined to be algebraically positive when they flow out of voltage source 
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.  We will define the secondary current  to be algebraically positive when it flows in the direction in 

which diode  conducts. 

 

The voltage drop over the primary winding  will be positive when the magnetizing current in the 

primary circuit increases.  It would be convenient to set up the circuit equations so that the voltage drop 

over the secondary winding  is positive when diode  conducts.  We can do this by thinking through 

the following steps, starting with the “normal” transformer orientation and ending with the orientation in 

the circuit above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The “normal” orientation shown on the left is, well, normal.  The step-up in voltage and current are as 

shown in the equations on the left-hand side.  The orientation in the middle figure is identical to the 

normal orientation.  The secondary coil has been re-drawn upside down, but the sense of the voltage and 

current is unchanged.  The figure at the right is the same as the one in the middle, but both secondary 

variables, and , have been reversed in their direction.  The equations on the right-hand side reflect the 

reversal the algebraic signs. 

 

That is all there is to it.  But, getting it right at the outset avoids much heartache later on. 

 

 

Part #1 – A single charging cycle 

 

We will begin by looking at a single charging cycle.  By a “charging cycle”, we mean one event in which 

the current flowing through the primary side starts at zero (or low), and increases.  The primary current 

must then be reduced back to zero (or low) in a following “discharging cycle” before another “charging 

cycle” can take place.  It will take a great number of such cycles to charge the load capacitor up. 

 

What we are doing in a charging cycle is “charging up” the energy in the magnetic field of the 

transformer.  While the magnetic field is charging up, no current flows in the secondary circuit.   

 

Let us assume that switch  closes at time-base , before which time the circuit was at rest.  For 

mathematical purposes, the MOSFET is modeled by its ON-resistance, .  When switch  

closes, the primary circuit ceases to be an open circuit and is closed by resistor .  Lastly, but very 

importantly, we will assume that the load capacitor is charged up to some voltage  at time .  The 

  

    

 

 

  

  

“Normal” arrangement Identical to “normal” Our circuit 
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load capacitor’s voltage will increase slightly during each charging / discharging cycle.  As we make 

progress charging up the load capacitor, its voltage at the start of each charging cycle will be different, 

and slightly higher, than it was at the start of the preceding charging cycle.   

 

As in the earlier paper, there are six circuit variables of interest: 

 

  is the total current flowing through the primary circuit; 

  is the magnetizing current flowing through the primary winding; 

  is the voltage drop over the ideal inductance in the primary winding; 

  is the voltage drop over the ideal inductance in the secondary winding; 

  is the total current flowing in the secondary circuit and 

  is the voltage drop over the load capacitor. 

 

The mathematical analysis is very simple if we recognize (and later confirm) that no current flows in the 

secondary circuit during the charging cycle.  If that is so, then there are only two non-trivial circuit 

equations. 

 

Sum of the voltage drops around the primary circuit 

 

 

 

The magnetizing current flowing through the primary winding 

 

Since there is no secondary current, the magnetizing current flowing through the primary winding will be 

the same as the total current flowing through the primary winding.  Furthermore, the magnetizing current 

will have its traditional relationship with the voltage drop over the inductor, namely: 

 

 

 

These two circuit equations can be combined by inspection to give a first-order differential equation in the 

single variable : 

 

 

 

or, using the time-constant , 

 

 

 

We have seen this form of equation before, and can write down the solution as: 
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The constant coefficient  will be determined by the initial state of the circuit.  If the circuit was 

completely reset during the preceding discharging cycle, then we can assume that the current flowing in 

the primary circuit is zero immediately before switch  is closed.  Since the magnetizing current flows 

through the inductor, it cannot change instantaneously, and  will still be zero immediately after 

switch  is closed, and time  starts ticking.  Setting  at time  in the equation above 

allows us to solve for , and allows the waveform for  to be written as: 

  

 

 

Substituting  into the other circuit equation, Equation , gives: 

 

 

 

It is to be noted that neither  nor  depend on the initial voltage over the capacitor.  (Why 

not?  Because no current flows through the secondary circuit during the charging cycle, it is as if the 

secondary circuit, and the load capacitor in it, do not exist at all.)  The current  rises exponentially 

from zero to its steady-state value  with the time-constant .  The voltage drop over the primary 

winding  decreases exponentially with the time-constant  from its initial value .   

 

The following graph from the SPICE simulation of the circuit above shows the expected waveforms for 

the primary current and voltage drop.  (In my version of SPICE, the voltage source  rises from zero to 

 during the first  of the simulation.  In order to avoid this practical but non-ideal behavior, 

switch  is the circuit is not closed until  after the simulation begins, and the results are graphed 

from that instant.) 

It is often said that exponential changes like these are completed within five time-constants.  Using our 

component values, five time-constants is equal to . 

 

Before we leave this section, it is worthwhile to make a note of the voltage drop which exists in the 

secondary circuit during the charging cycle.  As always, the voltage drops over the ideal primary and 

secondary inductances are related by the turns-ratio of the transformer, which is equal to the square root 

of the inductance-ratio.  Therefore: 
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As described above, the minus sign reflects the relative orientation of the windings.  Using our component 

values: 

 

 

 

The voltage drop over the secondary winding, at the start of the charging cycle, is .  It then 

decays exponentially to zero.  As in the earlier paper, this slightly exceeds the  target voltage for the 

load capacitor because the secondary winding was given a few extra turns.  Although there is a voltage 

over the secondary winding, it is in the direction which reverse-biases diode , and no current should 

flow in the secondary circuit.  The following graph from the SPICE simulation shows the secondary 

voltage drop (the SPICE variable V(vs) is shown in blue) and current (the SPICE variable I(D1) is shown 

in red). 

The secondary voltage drop is just as expected.  However, there is a small current flowing in the 

secondary circuit.  This is current leaking through diode  under reverse bias.  Note that the leakage 

current is not very large, and does not exceed about .   

 

 

Part #2 – A single discharging cycle 

 

In a buck-boost configuration, the interesting things do not happen when the primary circuit is 

“charging”.  They happen when the primary current is turned off.  During charging, the magnetic field 

inside the transformer’s core will build up to its steady-state value.  When the primary circuit is cut off, 

this magnetic field will collapse.  In the buck-boost configuration, there is a natural path for the escaping 

energy to take.  It will flow into the secondary circuit, where some part of it will find its way into the load 

capacitor. 

 

The circuit which we will use for the mathematical analysis and the SPICE simulation is the following. 
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This is the same schematic as above.  The only difference is the timing of switch .  This is shown in the 

PULSE directive for voltage source .  Switch  will be closed  into the simulation, after the 

main voltage source  has stabilized at .  The closing of switch  starts the charging cycle.  This 

time, however, switch  opens at a time  into the simulation, starting the discharge cycle which is 

the topic of this section.  The SPICE waveforms shown out below in this Part #2 show the waveforms 

starting  into the simulation. 

 

Notice that the OFF-resistance of switch , which models the OFF-resistance  of the MOSFET, has 

been set to a very large resistance ( ).  This is so much higher than the ON-resistance  

that I left  in the circuit during the discharging cycle, simply to avoid the trouble of removing it, as I 

could have done.   

 

Just to be clear about the timing, the time-base  for the mathematics in this Part #2 will be the 

instant at which the MOSFET stops conducting and its resistance changes (instantaneously) from  to 

. 

 

In order to perform the analysis this time around, for the discharging cycle, we will need the full 

complement of six circuit equations. 

 

Sum of the voltage drops around the primary circuit 

 

 

 

We have introduced a new symbol, , for the sum of the series resistances around the primary 

circuit when the MOSFET stops conducting.  Just so there is no uncertainty, note that: 
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While we are at it, let us define a corresponding time-constant as well.   continues to be the time-

constant based on the primary circuit’s inductance and resistance during the charging cycle;  is the 

corresponding time-constant during the discharging cycle. 

  

 

 

Sum of the currents flowing through the primary winding 

 

The current flowing through the primary winding will be the sum of: (i) the magnetizing current  and 

(ii) the current flowing through the secondary circuit, scaled up by the turns-ratio.  Because of the 

orientation of the two windings, this is shown algebraically with a negative sign as: 

  

 

 

The magnetizing current of the primary winding 

 

The magnetizing current is determined by the self-inductance of the primary winding.  It is related to the 

voltage drop over the primary winding by: 

 

 

 

The ratio of voltages between the two sides of the transformer 

 

The voltage drops over the ideal inductances of the transformer are related by the turns-ratio, with the 

orientation of the two windings reflected in the minus sign, thus: 

 

 

 

Sum of the voltage drops around the secondary circuit 

 

There are two cases to consider, depending on whether or not diode  is conducting: 

 

 

 

V-I characteristic of the load capacitor 

 

The voltage drop over the load capacitor is related to the current flowing into it, and to its initial voltage, 

in the traditional manner.  Recall that we defined  as the voltage drop over the load capacitor at the 

start of a charging cycle.  Since no current flows in the secondary circuit during the charging cycle, the 
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voltage over the load capacitor remains unchanged at the end of the charging cycle, when the discharging 

cycle starts. 

 

 

 

As a first step to combining these six equations, we can use Equation  to replace , Equation 

 to replace  and Equation  to replace , in each case replacing them wherever else 

they occur.  It is also useful to take the derivative of both Equations  and .  We are left with 

three independent equations: 

 

 

 

It is convenient to separate the conducting and non-conducting cases, and to pursue them separately.   

 

 

Part #2A – A single discharging cycle; conducting phase 

 

We can re-arrange Equation  to isolate circuit variable , as follows: 

 

 

 

We can set equal Equation  and Equation , which will eliminate the derivative 

of .  We get: 

 

 

 

Substituting  from Equation  into Equation  then gives the following second-order 

differential equation in the magnetizing current . 

 

 

 

Collecting terms in the various derivatives of  gives: 
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One further re-arrangement, in which we substitute time-constants as defined in the earlier paper, gives: 

 

 

 

Little is to be gained by dancing around with  and .  The former is extremely large and the 

latter is extremely small.  In the limit, as the MOSFET becomes ideal in its non-conducting mode, the 

differential equation reduces to: 

 

 

 

In fact, the approximation is so good that I have not troubled to use the “approximately equal to” sign.   

 

The characteristic equation is obtained by substituting a general solution of form .  Since the 

differential equation is of the second order, the characteristic equation will be a quadratic.  Its roots are: 

 

 

 

and the solution for  can then be written as: 

 

 

 

The initial conditions will determine the value of the two constant coefficients  and .  Now that we 

have an expression for , we can, as before, work our way through the circuit equations to obtain 

expressions for the other five circuit variables.  We get: 

 

 

 

Take a look at the last equation, Equation , for the total primary current.   is extremely large, 

but it is the only thing that stands between  and zero, so I have left it in place.  Clearly, the total 

primary current is going to be extremely small.   

 

The next circuit variable is , which Equation  shows is proportional to .  Since  

is so small, one can ignore it in Equation , which leaves: 
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The last circuit variable is the voltage  over the load capacitor.  It is determined by integration, which 

leads to a third unknown constant , which will have to be found from a third initial condition: 

 

 

 

In fact, let us look now at the initial conditions.  This is best done by referring back to the schematic 

diagram.  At the end of the preceding charging cycle, just before the MOSFET is turned off, the total 

current flowing through the primary circuit will be equal to the steady-state current, .  Since there 

is no current flowing in the secondary circuit, the total current flowing through the primary circuit is equal 

to the magnetizing current flowing through the primary inductor.  The magnetizing current flowing 

through the primary inductor cannot change instantaneously.  This means that, immediately after the 

MOSFET is turned off, the magnetizing current will still be equal to the steady-state current: 

 

 

 

The voltage  over the load capacitor is  immediately before the MOSFET is turned off and it, too, 

cannot change instantaneously.  This means that: 

 

 

 

The third initial condition depends on the relationship between the voltage drops in the primary and 

secondary circuits, through the transformer, immediately after the MOSFET is turned off.  Taking the 

sum of the voltage drops around the primary circuit at time , from Equation , gives: 
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Similarly, taking the sum of the voltage drops around the secondary circuit at time  gives: 

 

 

 

These voltage drops, over the ideal primary and secondary windings, are related by the turns-ratio as set 

out in Equation : 

 

 

 

Substituting the expressions for both sides gives: 

 

 

 

This is the third initial condition.  The three initial conditions in Equations  through  involve 

the three unknown constants ,  and .  The solutions for  and  are: 

 

 

 

I have not expanded  here, but will return to it below. 

 

We can make some simplifying assumptions based on the relative values of the time-constants.  The 

relative values are determined by the two principal characteristics of this type of circuit: (i) that the 

secondary inductance is much larger than the primary inductance and (ii) that the load capacitance is 

relatively large.  To see the relative values, let us evaluate the time-constants using our component values.  

We get: 
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These inequalities are very general and will almost certainly obtain for any circuit of this type: 

 

 

 

Let us begin by applying these inequalities to the angular frequencies  and . 

 

 

 

These roots have the following implication for the waveform of , where they first arose.   will be 

linear combination of two sinusoidal terms having an angular frequency of  and whose 

amplitudes decrease exponentially with a time-constant of . 

 

Let us substitute these approximated forms for  and  into the expressions for  and .  We get: 

 

 

 

It will be useful to have in our back pocket the following expressions involving the ’s: 
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and the following expressions involving the ’s and the ’s: 

 

 

 

And, we can also make a simplifying assumption regarding time.  , for example, is a waveform which 

decays exponentially with time.  But, the discharging cycle occupies only a small part of the complete 

decay process.  We can approximate the exponential function, which is a curve, by a linear function of 

time, which is a straight line, for the small part in which we are interested.  If  and  are small, then 

we can use the Taylor series expansion and approximation for the exponential function, that  

for small .  Then, we can approximate as follows: 
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With the two sets of simplifying assumptions, we can go back to Equations  and expand the 

expressions for the circuit variables. 

 

For , we get: 

 

 

 

For , we get: 

 

 

 

And, for , we get: 

 

 

 

And, lastly: 
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All of these expressions have linear dependence on time.  The one of immediate interest is the secondary 

current .  Equation  shows that it is initially positive and that it decreases linearly with time 

thereafter.  This has two consequences: (i) that  is initially positive, which means that current flows 

through diode  in the positive direction, in its conduction mode, and (ii) that, at some time after the 

discharging cycle begins, the secondary current will fall to zero. 

 

We can calculate the time  at which the secondary current reaches zero and at which diode  

stops conducting.  This will happen when the expression in Equation , for , reaches zero. 

 

 

 

How does the duration of the conduction period vary with the initial voltage on the capacitor?  Using our 

component values, Equation  becomes: 

 

 

 

 will be a positive time for all initial capacitor voltages.  In other words, the charging procedure will 

never stop.  This has huge implications for this application.  It means that the voltage that we can place on 

the capacitor is not limited to the supply voltage  as stepped up by the turns-ratio.  In practice, though, I 

expect that the response time of the components, which we have ignored, will eventually become 

important compared with the theoretical stop time.  We will have to look more carefully at this matter 

below. 

 

When the initial capacitor voltage is zero, the stop time is .  At an 

initial capacitor voltage of , the stop time is .  By the time the load 

capacitor reaches a voltage of , the stop time will have decreased to 

.  The stop time will reach  when the capacitor’s voltage reaches .  This is 

well about the target voltage we are aiming for, but does illustrate one thing.  The period  corresponds 

to a frequency of , which is at the bottom of the A.M. radio band.  At this point, electrons will be 

racing up and down the wires in the secondary circuit fast enough for energy to begin to be radiated away.  
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This is an example of the kinds of effects which will prevent the load capacitor from charging without 

limit.  

 

Nor should we lose sight of the fact that the ferrite core of our transformer works best at cycling periods 

in the range from  to .  I am not sure about all of the implications of cycling more quickly or 

more slowly than this, but it will certainly mean that the transfer of energy from the primary side to the 

secondary side will not be as complete as predicted.  Some energy will be lost in the core, and not find its 

way into the load capacitor. 

 

It is well to ask: what capacitor voltage corresponds to a minimum cycling period for our ferrite core?  

Setting  in Equation  gives .    

 

Before running the SPICE simulation, let us evaluate the expressions for some of the circuit variables, 

using our component values, but leaving unspecified the initial capacitor voltage . 

 

For , Equation  becomes: 

 

 

 

For , Equation  becomes: 

 

 

 

For , Equation  becomes: 

 

 

 

For , Equation  becomes: 
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Now, for each of these four circuit variables, let us calculate the expressions for three different initial 

voltages over the load capacitor. 

 

 

 

Let us take one final step.  We will evaluate the four circuit variables at two times,  and .  

 

 

 

Observations: 

 

 the secondary current starts out at the primary circuit’s steady-state current, stepped down by the 

turns-ratio, and decreases linearly to zero in time ; 

 for all intents and purposes, the secondary voltage remains constant throughout the discharging 

cycle at a voltage equal to diode ’s forward voltage drop plus the initial voltage over the load 

capacitor; 

 except for very low initial capacitor voltages, the voltage drop over the ideal primary inductance 

also remains constant throughout the charging cycle and 

 the total primary current  is extremely small. 

 

To examine the accuracy of the circuit equations and the appropriateness of the approximations made, the 

SPICE model was run three times, once for each of the three initial voltages over the capacitor: ,  

and .  The following graphs show the results obtained.  In each graph, the following three circuit 

variables are shown: 

 

 the voltage drop  over the ideal primary inductance is plotted in blue.  The 

corresponding SPICE parameter names are V(vp)-V(vsw).  Note that  is multiplied by a 

scaling factor of 100 so that it is comparable in size to  in the display; 

 the voltage drop  over the ideal secondary inductance is plotted in red.  The corresponding 

SPICE parameter name is V(vs) and 

 the current  flowing in the secondary circuit is plotted in gray.  The current through diode , 

which is the SPICE parameter I(D1), is used as the proxy for . 

 

For the uncharged capacitor, the waveforms are as follows: 
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When the load capacitor is initially charged to , the waveforms are: 

 

 

 

When the load capacitor is initially charged to , the waveforms are: 

 

 

Our mathematical analysis agrees remarkably well with the SPICE simulation. 

 

 

Part 3 – The efficiency with which energy is transferred 

 

During the charging cycle, the current flowing through the primary circuit builds up to its steady state 

value in accordance with Equation : 
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The power supplied by the power supply at any instant during charging is equal to .  We can 

find the cumulative energy supplied by the power supply  by integrating the instantaneous power from 

time  until some given time , thus: 

 

 

 

At any given time, the energy stored in the magnetic field  by the current flowing through the primary 

winding is given by the traditional formula: 

 

 

 

As the steady-state is approached, the energy stored in the magnetic field approaches a constant, 

maximum value.  However, the cumulative energy supplied by the power supply continues to increase, as 

power is burned off by the resistors in the primary circuit.  It is important that we bring the charging cycle 

to an end once the primary current gets “close enough” to its steady-state value.  Otherwise, we will be 

wasting energy.  Let us choose, a little bit arbitrarily, to end the charging cycle after five  time-

constants.  By then, the cumulative energy delivered by the power supply will be equal to: 

 

 

 

and the energy stored in the magnetic field will be very close to its steady-state value: 

 

 

 

At that particular point in time, the fraction of the energy supplied which has found its way into the 

magnetic field is equal to: 
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So, during the charging cycle, only one-eighth of the energy supplied by the power supply is stored in the 

magnetic field.  The other seven-eighths have been converted into heat as the current was forced to flow 

through the resistors in the primary circuit.  The biggest contributor to those resistances and losses is  

– the current limiting resistor – which we added to the circuit purposefully to limit the current to the  

acceptable to the power supply.  Removing or reducing  would allow things to be speeded up, and 

would reduce the absolute amount of energy wasted, but would not change the efficiency.  The  

efficiency of the charging cycle is a fundamental consequence of waiting five time-constants.  But, if it 

becomes necessary to speed things up, reducing the length of the charging cycle to four time-constants, or 

perhaps even three, would be worth considering.   

 

Now, let us move on and consider the discharging cycle.  During the discharging cycle, energy from the 

magnetic field is converted into current flowing in the secondary circuit, some part of which finds its way 

onto the capacitor.  We have already determined that the secondary current flowing during the discharge 

cycle is given by: 

 

 

 

The three important characteristics of this waveform are: 

 

 the secondary current starts with a value of ; 

 it decreases linearly with time thereafter until 

 it stops at time . 

 

Geometrically, the waveform is the hypotenuse of a right triangle.  The average current which flows 

during the discharging cycle is therefore equal to one-half of the height (that is, the starting current) of the 

right triangle, thus: 

 

 

 

The average current multiplied by  is therefore equal to the charge  which is transported during 

the discharging cycle, and which is added to the charge already present in the load capacitor.  Therefore: 
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and, continuing: 

 

 

 

Now, the charge stored in the load capacitor and the voltage drop over it are related by the traditional 

formula: 

 

 
 

If we let  be the charge on the capacitor when its voltage is , then the addition of charge  

will raise the capacitor’s voltage by , and  and  will be related by: 

 

 

 

Substituting Equation  into Equation  gives: 

 

 

 

From a standing start, the change in voltage over the load capacitor during the first, second and third 

discharging cycles, respectively, are: 

 

 

 

By the time the load capacitor’s voltage has reached , the increase in voltage during one discharging 

cycle will have decreased to: 

 

 

 

Now, let us look at the energy stored in the capacitor.  The energy and voltage of the load capacitor at any 

instant in time are related by the traditional formula: 
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Suppose we define  as the change in energy during one discharging cycle.  We will use whatever 

subscript is necessary to identify the discharging cycle.  Letting  be the voltage at the start of the 

discharging cycle and  be the change in voltage during the cycle, we can write: 

 

 

 

I hesitate to approximate away the term  in the round brackets because it is the only applicable term 

when the capacitor’s initial voltage is small.  Substituting Equation  gives: 

 

 

 

The increase in the energy stored in the load capacitor during the first, second and third discharging 

cycles, respectively, are: 

 

 

 

By the time the load capacitor’s voltage has reached , the increase in energy during one discharging 

cycle will have increased to: 

 

 

 

Comparing these values for  with the values above for  show that, as the charging procedure 

advances, the successive increments to the load capacitor’s voltage decrease but the successive 

increments to the load capacitor’s energy increase.  This has huge implications for the application.  As 

time passes during the charging procedure, the rate at which energy is stored in the capacitor actually 

increases. 

 

In each of these discharging cycles, the energy which had been built up in the magnetic field during the 

preceding charging cycle [given in Equation  above] is equal to (a constant): 
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So, the efficiency with which energy is transferred from the magnetic field to the capacitor during the first 

three discharging cycles are as follows: 

 

 

 

The efficiency with which energy is transferred from the magnetic field to the load capacitor when it has 

reached  is: 

 

 

 

Observations: 

 

 The efficiency of the discharging cycle is almost .  During the discharging cycle, virtually 

all of the energy stored in the magnetic field is transferred into the capacitor.   

 The efficiency of the charging cycle is determined by the number of time-constants we, as the 

designers, are prepared to wait.  At five time-constants, one-eighth of the energy provided by the 

power supply is stored in the magnetic field. 

 

 

Part #2B – A single discharging cycle; non-conducting phase 

 

Notwithstanding that we have already completed Part #3, we should, as a formality, complete the analysis 

of the discharging cycle.  We have already seen that the current flowing in the secondary circuit declines 

linearly with time during the conducting phase of the discharging cycle.  Once the current reaches zero, at 

time , nothing further happens, in either the primary or secondary circuits.  Remember that cutting 

off the primary circuit is what started the discharging cycle.   

 

Since nothing happens during the non-conducting phase of the discharging cycle, it is simply a time of 

waiting.  Obviously, we will want to minimize the time spent waiting. 

 

 

Part 4 – Adding a real MOSFET 

 

In this part, we will use a real switch to control the primary circuit – an n-channel enhancement-mode 

MOSFET, the IFRP4886 from International Rectifier.  It is shown as component  in the following 

schematic diagram, along with its driver transistor .  Although the MOSFET is shown explicitly, the 

sub-circuit which would control its timing is not.  In the schematic, the base of transistor  is a pulsed 

voltage source , which is connected to ’s base through resistor . 
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Our old friend, resistor , is now gone, having been incorporated as one of the properties of 

the IRFP4886.  Charge is delivered to the IRFP4886’s gate through resistor , which is connected to the 

collector of its driver transistor , a common 2N2222 npn transistor.  When transistor  is active, or in 

its saturation mode, its collector is pulled down to ground potential.  That turns off the MOSFET.   

 

For simulation purposes, ’s base is driven directly by voltage source .   has a nominal voltage of 

.  Note the SPICE directive for .  At the start of the simulation,  is high, putting transistor  into 

saturation, and cutting off the MOSFET.  As before, the first  of the simulation is the time period 

during which the main power supply  comes up to speed. 

 

 into the simulation, voltage source  goes low.  As will be explained, this allows ’s gate to drift 

high.  Current will begin to flow through the primary circuit.  The charging cycle gets under way. 

 

 later, at simulation time , voltage source  goes high once again.  This cuts off the 

primary circuit and begins the discharging cycle.  The results of the simulation are graphed for the  

period starting  into the simulation.  We will look at the waveforms after we explain what should 

happen. 

 

The value of ’s base resistor  has been selected to set, or limit, the current flowing into ’s base to 

approximately .  The datasheet for the 2N2222 shows that its base-emitter saturation voltage can 

be as high as  when the base is sinking   If the base-emitter voltage is , then the voltage drop 

over  will be  and the current flowing through  will be equal to 

. 

 

When voltage source  is high, with a voltage of , transistor  will be forward-biased.  If  operates 

in its linear region, then the collector current should be equal to the base current multiplied by the 

transistor’s dc-current gain .  The datasheet for the 2N2222 shows that its dc-current gain is typically 

in the range 35-100.  Even with the minimum value of dc-current gain (35), the voltage drop over the 

collector resistor  would be equal to .  This is not possible.  The 
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impossibility will be resolved as follows: transistor  will not operate in its linear region, but in its  

saturation mode. 

 

The datasheet for the 2N2222 shows that its collector-emitter voltage in saturation mode is a maximum of 

 when the base current is .   

 

What all of this means is that, when the control voltage  is high, the IRFP4886’s gate is connected to a 

 voltage source though gate resistor .  This should drain away the charge on the 

MOSFET’s gate and turn it off. 

 

Now, let us look at the case when the control voltage  goes low.  Transistor  will be cut off.  In its 

cut-off mode, the collector terminal is free to float, and the voltage towards which the collector terminal 

will drift towards will be determined by the circuitry outside of the transistor.  In our case, the collector 

terminal will be pulled up to the supply voltage ( ) by the collector resistor .  The IRFP4886’s gate 

will then be connected to a  voltage source through the series combination of  and .  This should 

charge up the MOSFET’s gate and turn it on. 

 

The principal characteristic of the MOSFET’s gate is its capacitance, and the charge it carries.  Whereas a 

bipolar transistor is “on” when current flows into its base, a MOSFET is “on” when its gate capacitance is 

charged up.  The speed with which the MOSFET is turned “on” and “off” is determined by the speed with 

which charge is added to, or removed from, its gate capacitance.  The datasheet for the IRFP4886 shows 

that: (i) its total gate charge is typically , and (ii) its input capacitance is typically .  Note 

that these two quantities are only consistent at a voltage of .  I am told that it is better 

practice to use the gate charge in calculations and not to rely on the gate capacitance. 

 

The following sub-schematics show the essential features of the IRFP4886 gate’s charging and 

discharging circuits. 

 

If the gate capacitance is , then the gate will discharge with a time-constant of 

.  This is extremely fast.  If the gate is initially charged up to , then the initial 

discharge current will be  .  This is extremely high, but the current will not last very 

long.  In any event, the gate will discharge within five time-constants, being one-half nanosecond or so. 

 

On the other hand, during charging, the gate will charge up with a time-constant of 

.  If the gate is initially at zero volts, then the initial charging current will be equal to 
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.  In any event, the gate will charge up within five time-constants, being  or 

so. 

 

From an overall point-of-view, the MOSFET’s gate is pulled down when transistor  is turned on and 

allowed to float up when transistor  is turned off.  It would be possible to add another transistor, in a 

push-pull configuration with , so that the MOSFET’s gate is both pushed and pulled.  I do not believe 

this addition is necessary – the charge and discharge times seem to be suitably fast. 

 

The following graph shows the result of the SPICE simulation.  The variables shown are the MOSFET’s 

gate voltage  (the SPICE variable V(vg) is shown in blue), the primary current flowing through resistor 

 (the SPICE variable I(Rp) is shown in red) and the secondary current flowing through diode (the 

SPICE variable I(D1) is shown in gray).  Note that the secondary current is multiplied by 1000 and is 

equal to about  at the start of the discharging cycle. 

All is as expected.  The gate voltage rises from zero to  in a time frame too short to show on the 

graph.  Once the MOSFET is turned on, the primary current rises to its steady-state value in less than 

.  When transistor  is turned on, the MOSFET’s gate voltage decreases to zero instantaneously, 

at least on the scale visible in the chart.  This begins the discharging cycle, during which the secondary 

current decreases almost linearly with time, consistent with our calculations above. 

 

 

Part 5 – Asynchronous operation with a 555 timer 

 

In this section, we will look at the circuit with the timing controlled by a 555 timer wired for astable, or 

cyclic, operation.  The timer will generate pulses of a fixed length and fixed duty cycle.  This is going to 

require some compromise among things which do not have a fixed duration, and will therefore cause 

some loss of efficiency.   

 

There will not be a problem with the charging cycle.  We can easily configure the timer to generate pulses 

 long, which will allow five  time-constants for the charging cycle, during which the current 

flowing through the primary winding builds up to its steady-state value.  The length of the charging cycle 

does not depend on the load capacitor’s initial voltage, so the same length of pulse can be used during the 

entire charging procedure.   

 

It is the discharging cycle which presents the problem.  The length of the discharging cycle does depend 

on the capacitor’s initial voltage.  The length of the discharging cycle varies widely, from  when 

the capacitor is uncharged, to  at  and down to  by the time the capacitor has 

reached 3 .  No single length of time will suit all capacitor voltages. 
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If we end a discharging cycle before , by which time the secondary current has fallen to zero, then 

we waste energy.  We will not have given the secondary circuit enough time to transfer all of the available 

energy from the magnetic field to the load capacitor. 

 

On the other hand, if we wait until after  before beginning the next charging cycle, then we waste 

time in the non-conducting phase of the discharging cycle, when nothing happens at all. 

 

Somewhat arbitrarily, I have selected a discharge period of , twice the charging period of .  

There is no magic to this selection.  It happens that the capacitor voltage for which  is the perfect 

 is .  The following schematic diagram shows the circuit which we will simulate in this 

section. 

 

The 555 timer is wired as an astable.  With the component values shown, its output pulse (see the 

datasheet) will have the following high and low times. 

 

 

 

We need the MOSFET’s gate to be high for the duration of the low pulse, which necessitates introducing 

an inverter into the timer’s output line.  The limitations of my version of SPICE require that the inverter’s 

output, which is a logical 0-1 output, be scaled to  by using switch  and voltage source .  A 

practical  inverter would not need such conversion. 

 

The following graph is the result of the SPICE simulation for the first  (yes – two minutes) of 

operation.  The trace graphed is the voltage  over the load capacitor (the SPICE variable V(vc) is shown 

in red). 
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At the end of two minutes, the voltage over the load capacitor is slightly more than . 

 

 

Part 6 – Controlling operation with a feedback winding 

 

In this section, we will look at the following circuit, which includes a feedback mechanism.  Near the left-

hand side of the circuit, there is a coil labeled .  The subscript “ ” stands for feedback.  This coil is a 

third winding on the transformer. 

The 555 timer is still in the circuit, but it controls the length of the charging cycle only.  In this circuit, the 

555 timer is wired as a monostable, “mono” meaning one pulse only.  On a high-to-low transition of its 

trigger pin, the 555 timer generates a single high pulse at its output pin.  The duration of the pulse is 

determined by resistor  and capacitor .  With the component values shown, its output pulse (see the 

datasheet) will have the following duration: 

 

 

 

This is exactly the length of the five time-constants which we want the charging cycle to take. 

 

Now, let us consider the transformer’s third winding.  It “feeds back” into the timing control circuit, 

certain information which identifies when the discharging cycle comes to an end.  For convenience, I 

have set the self-inductance of the feedback winding to .  This is the same as the self-

inductance of the primary winding .  Physically, this means that the feedback winding will consist of 

three turns around the transformer’s toroid core, just like the primary winding. 
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The ends of the feedback winding are connected to the two input terminals of a differential comparator, 

, an LT1016.  Since the input impedance of the comparator is very high, the feedback winding is close 

to being an open circuit and should place very little load on the primary circuit.  The primary circuit 

should operate just as it has done in the previous sections of this paper. 

 

What is important here is the voltage drop over the feedback winding.  Since the feedback winding has a 

 turns-ratio with the primary winding, the magnitude of the voltage drop over the feedback winding 

should be equal at all times to the voltage drop over the primary winding.   

 

Let us step back for a moment and look at the event we are trying to detect.  The following graph was 

produced for the circuit in the preceding section, in which the 555 timer controlled the circuit 

asynchronously.  In this graph, the primary voltage drop  and secondary current  are plotted for 

several complete charging and discharging cycles. 

 

 

An important feature is that the primary voltage drop is negative while diode  is conducting.  This is 

the part of the trace inside the ellipse.  At all other times, the primary voltage drop is positive.  If we can 

detect when the primary voltage drop is negative, and in particular when it reverts from negative to 

positive, then we will know when the conducting phase of the discharging cycle ends.  That is the 

moment when we should start a new charging cycle.  (Note that I have scaled the secondary current, 

which is shown in red with its axis on the right-hand side, so that it does not interfere with the trace for 

the primary voltage drop, which is shown in blue with its axis on the left-hand side.) 

 

Incidentally, this graph shows something else as well.  Note that the current flowing through the 

secondary circuit is truncated before time  is reached.  The secondary current is not allowed to 

decline all the way to zero.  That is a limitation of the asynchronous control described in the previous 

section.  Remember, setting fixed-length times for both the charging and the discharging cycle involved 

compromise.  The waveform in the graph was produced with an initial capacitor voltage of , for 

which the selected discharging time is too short.  Energy is wasted.  That disadvantage is, of course, the 

motivation for developing the feedback mechanism in this section. 

 

In the circuit of this section, the voltage drop over the primary winding is duplicated over the feedback 

winding.  The following graph is based on the circuit in this section.  It shows the voltage drop  

over the feedback winding and the secondary current for several complete cycles, once again starting with 

a capacitor voltage of .  This time, the discharging cycle is permitted to continue until the secondary 

current reaches zero.  (Once again, I have scaled the axis for the secondary current in this graph so that it 

does not interfere with the trace for the feedback voltage drop.) 

 

discharging cycle 

charging cycle 
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The voltage drop over the comparator  has the same form as the voltage drop  over the 

primary winding.  We will now describe how the comparator processes that voltage drop and causes a 

new charging cycle to begin. 

The connection between the feedback winding and the comparator  is such that the negative terminal of 

the comparator (voltage node ) is positive with respect to the positive terminal of the comparator 

(voltage node ) when the secondary circuit is conducting.  This orientation must be correct or the 

circuit will not operate. 

 

Resistors  and  constitute a simple 50% voltage divider.  They cut the power supply’s voltage in half 

and thereby provide a  reference voltage.  In our circuit, the LT1016 comparator is wired up with a 

single voltage supply, as opposed to a dual voltage supply.  In this configuration, the LT1016 will work 

best when the input voltages are near to the mid-point of its own power supply.  Connecting the voltage 

divider’s mid-point to one end of the feedback winding raises the “cross-over” voltage to , so that it is 

well within the comparator’s envelope of operation.   

 

The purpose of the LT1016, once again, is to distinguish between positive and negative voltage drops 

over the feedback winding.  The LT1016 has a binary output.  When the voltage drop over the feedback 

winding is positive, the LT1016’s output will be “high”.  When the feedback voltage drop is negative, the 

comparator’s output will be “low”.  This shown in the following graph, which repeats the same conditions 

as the previous graph, but shows the output signal from the comparator (voltage node , shown in 

blue) along with the current flowing in the secondary circuit (shown in red). 

The “high” output from the comparator is not .  Instead, it is the mid-point of the comparator’s supply 

voltage, being only .  The “low” output is at ground potential.  In some circuits, it would be necessary 

to compensate for this reduction in the voltage which corresponds to a logic “1”.  In our circuit, that is not 

necessary because the following component is a 555 timer, which is triggered by a high-to-low transition 

on its input pin.  However, we do need to make sure that the high-to-low transition of the  waveform 

is interpreted by the 555 timer as a “one-off” high-to-low trigger pulse.  It happens that a 555 timer which 

This is the key event. 
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is powered by a  power supply will recognize and respond to a falling edge from  to ground just as 

well as it will recognize and respond to a falling edge from  to ground.   

 

But, there is something else to be wary of.  Successful operation of the 555 timer requires that the 

triggering pulse be shorter than the output pulse.  Unexpected things can happen if the triggering 

waveform is still low when the output pulse comes to an end.  Robust design requires that something be 

added to ensure that the trigger pulse returns to its high level, notwithstanding everything else.  That is the 

purpose of resistor  and capacitor .  Taken together, they have a time-constant equal to  

.  The voltage at voltage node  will rise from ground to  within about 

five time-constants, or , regardless of what happens at voltage node .  This is shown in the 

following graph, which shows the voltages at voltage nodes  and  under the same conditions 

and for the same period of time as the two preceding graphs. 

 

The operation of the -  pair is based on the principle that the voltage over capacitor  cannot change 

instantaneously.  This is handy because it gives rise to a sharp negative spike when the voltage at voltage 

node  goes negative.  On the other hand, it means there will be a similar sharp positive spike when 

the voltage at voltage node  goes high once again.  The 555 timer responds only to falling edges, 

and will ignore this positive spike. 

 

The negative spike at voltage node  triggers the 555 timer, which produces a pulse which remains 

high for , as described above.  While the output pulse from the 555 timer is high, transistor  is 

cut off, the voltage at the gate of MOSFET  drifts high and the MOSFET conducts.  Energy is stored in 

the magnetic field during this charging cycle.  When the output pulse from the 555 timer ends, the 

primary circuit is cut off and the discharging cycle begins.  At the end of the conducting phase of the 

discharging cycle, the secondary current reaches zero, the primary voltage drop reverts to a positive 

voltage, the feedback winding detects the change and the entire cycle begins once more.  The following 

graph shows what happens. 

 

 
 

 recovery takes  

555 ignores this spike 



~ 32 ~ 

 

This graph shows the operation of the circuit for 500 seconds, which is equal to eight minutes and 20 

seconds, starting with an uncharged load capacitor.  The blue trace is the voltage over the load capacitor, 

whose SPICE variable is V(vc).  The red trace is the energy stored in the capacitor, with the SPICE 

symbols used in the equation .  It takes the circuit 500 seconds to charge the capacitor to the design 

voltage of  and the design energy storage of . 

 

The charging process was going strong at 500 seconds, and the capacitor’s voltage and energy would 

have continued to rise if I had let the simulation continue.  (Incidentally, for most of this simulation, 

SPICE analyzed  of simulation time during each second of real time.  The run took about 

 seconds, or five and three-quarters days.  I did not want to wait any longer.)   

 

 

Part 7 – How does the “over-voltage” condition occur 

 

It is clear that this circuit is able to charge the capacitor above the voltage determined by the classical 

transformer relationship.  Once might expect that the voltage over the secondary winding could never 

exceed the voltage in the primary circuit  multiplied by the square-root of the inductance ratio 

( ).  The product is equal to .  (Actually, I did let the simulation 

continue longer than 500 seconds, and the voltage over the load capacitor shoots through  quite 

nicely.) 

 

I will call voltages greater than the classical transformer value “over-voltages”.  From the point-of-view 

of maximizing the energy stored in the load capacitor, over-voltages are fantastic.  They are fantastic until 

one of the components exceeds its voltage rating and burns out.   

 

In this section, I want to understand how this phenomenon occurs.  The following graph shows the 

primary voltage drop and the secondary current for a  period of time when the load capacitor is 

charged up to .  This voltage is far above the capabilities of the components I had envisioned 

using, but the circuit continues to operate. 

During the conducting phase of the discharging cycle, the secondary current still starts off at about  

and declines linearly with time.  (Once again, I have scaled the current axis so that the display of the 

current flowing through the diode does not obscure the voltage trace.)  With the capacitor charged up to 

, Equation  gives  as .  This is entirely consistent with what can be seen on the 

graph. 

 

During this period, the voltage drop over the primary winding is about .  This is entirely 

consistent with the classical transformer requirement.  The voltage over the secondary winding is , 

plus a few volts over diode .  The voltage ratio is equal .  This is the square-root of 

the inductance ratio: .  All is as it should be. 

discharging cycle 
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The resolution to the conundrum is that the primary circuit is not “driving” the secondary circuit during 

this period of time.  The voltage drop over the primary winding is not “causing” the voltage drop over the 

secondary winding in the manner of a traditional transformer.  The voltage drop over the secondary 

winding is driven by something else.  

 

That “something else” is the collapse of the magnetic field.  The magnetic field is the source of the energy 

which gives rise to the voltage drops in both windings.  When the magnetic field collapses at the end of 

the charging cycle, that energy must find somewhere else to go.  It can flow out through either or both of 

the primary or secondary circuits.  However, by turning off the MOSFET, we have effectively blocked off 

the primary circuit.  Some leakage current can flow through the primary circuit, but only if it flows 

through the extremely high resistance of the inactive MOSFET.  The easier route for the energy to escape 

through is the secondary circuit.  If escape requires creating a high voltage over the secondary winding, so 

be it.  It will create whatever voltage is needed over the secondary winding to allow the current to flow.  

The voltage that is needed for this purpose is equal to the sum of the load capacitor’s voltage, the forward 

voltage drop over the diode and the Ohmic voltage drop developed as the current flows through the 

copper of the secondary winding. 

 

As well as pumping current through the secondary winding, the collapsing field will pump some current 

through the primary winding as well.  In fact, things will fall into place so that the ratio of the voltages 

over the secondary and primary windings is equal to the turns-ratio.  In the case at hand, the  over 

the secondary winding and the (negative)  over the primary winding are a perfect fit. 

 

Achieving the necessary voltage drop over the primary winding is easy.  Because of the extremely high 

resistance of the inactive MOSFET, extremely little current needs to flow through the MOSFET to offset 

the  or so that is dropped over the primary winding. 

 

There is no theoretical limit to how high the voltage over the load capacitor can be raised.  (Sorry, wrong 

wording.  To be more precise, the components which we have included in the schematic do not present a 

theoretical limit.  But, if we add some more theory, in the form of heating, electromagnetic radiation, 

changes in component values at high voltages and frequencies, then our mathematical model will better 

reflect reality and some limits will appear.) 

 

 

Part 8 – The time to reach full the design voltage 

 

In this section, we will estimate the aggregate amount of time needed for the charging procedure to reach 

a particular voltage, beginning with an uncharged capacitor. 

 

Let us consider the charging and discharging cycles which occur when the capacitor has reached a voltage 

of .  The charging cycle takes a fixed period of time, , which we have set equal to five  

time-constants.  The feedback mechanism ensures that the discharging cycle ends when its conducting 

period ends, at time , as expressed in Equation .  During time , the voltage over 

the capacitor increases by  as expressed in Equation .  For convenience, these quantities 

are repeated here. 
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and 

 

 

 

The average change in the capacitor’s voltage per unit of time during both cycles is therefore equal to: 

 

 

 

In the limit as the changes can be thought of as being very small, we can approximate this quantity as the 

derivative: 

 

 

 

The denominator can be re-organized to give: 

 

 

 

Then, re-arranging the two sides gives: 
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If we integrate this equation, starting with  at time , then we will have our required 

expression for the time needed to charge the capacitor up to voltage . 

 

 

 

Using our component values, the expression becomes: 

 

 

 

I have not collapsed the terms.  I want the interested reader to see that the  term  is the dominant 

constant in the numerator and that the term in the denominator which depends on  is going to vanish at 

higher voltages.  In any event, completing the arithmetic gives: 

 

 

 

If we ignore that term in the denominator which depends on , then the integral can be written down by 

inspection as: 

 

 

 

When  is expressed in , this becomes: 

 

 
 



~ 36 ~ 

 

To charge the capacitor up to  should take , which is almost 

exactly what we observed in the simulation.  The graph of the simulation above shows the first 

, and it is clear that the capacitor reaches  a few simulation seconds before the end.  

Furthermore, the trace for  in that graph seems slightly flatter than a square (meaning a square function, 

of form , not a geometric square), which is due to the linear term . 
 

Please see the accompanying documents for construction details and for a discussion about the effect of 

leakage in the transformer. 
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