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Amplitude modulation of audio signals using the discrete-time Fourier Transform 

 

In this paper, I am going to examine the amplitude modulation of a carrier signal using the discrete-time 

Fourier Transform.  The numerical examples will use the computer procedure described in the earlier 

paper titled A VisualBasic subroutine which calculates a fast Fourier Transform. 
 

For the application I have in mind, the frequency of the carrier signal will not be very high.  It will be a 

high audio frequency, say , well below even the lowest radio frequencies in common use.  I 

want to set things up so that the waveform of the carrier signal itself can be adequately represented using 

the same sampling frequency that is used to sample the audio signal to be transmitted.  This is going to 

require a relatively high sampling frequency. 

 

Suppose we choose a sampling frequency that is just high enough that there are ten sampling periods in 

one complete period of the carrier.  The  carrier has a period of .  The sampling period 

must therefore be  or less.  Sampling at this frequency generates  samples per 

second.  Since the discrete-time Fourier Transform depends on the sample size being a power of two, the 

most suitable sample size would be , for sample durations of one second. 

 

For example purposes, I am going to use a simple audio signal, with just enough content to be interesting.  

Here is what I propose: 

 

Cosine component at  with amplitude  

Sine component at  with amplitude  

Cosine component at  with amplitude  

Sine component at  with amplitude  

 

This audio signal can be written as a function of continuous time as: 

 

 

  

The following graph shows the first  of this sample signal. 
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We generate  samples of this signal during the first second by using: 

 

 

 

We next apply the forward transform (subroutine DTFT_Foward() in the computer procedure) to this 

sample of voltages.  The resulting values are post-processed by: (i) removing the artifacts of machine 

imprecision by setting all values less than 10
-8

 exactly to zero, and (ii) by dividing all values by .  

The resulting frequency components are: 

 
  K=32:   DTFTRe =  0.05  DTFTIm =  0 
  K=128:   DTFTRe =  0  DTFTIm = -0.075 
  K=256:   DTFTRe = -0.1   DTFTIm =  0 
  K=1,024:  DTFTRe =  0  DTFTIm = -0.0375 
  K=261,120:  DTFTRe =  0  DTFTIm =  0.0375 
  K=261,888:  DTFTRe = -0.1  DTFTIm =  0 
  K=262,016:  DTFTRe =  0  DTFTIm =  0.075 
  K=262,112:  DTFTRe =  0.05  DTFTIm =  0 
 

The spectrum is nice and simple, but only because the frequencies I chose for the components of the 

audio signal were nice round numbers.  I have graphed the frequency spectrum as follows.  Real 

components (which arise from the cosine terms) are rendered in black; imaginary components (which 

arise from the sine terms) are rendered in red.  I have shown the "basic" range of frequency components, 

from zero to , and also the repetition of this basic range one complete cycle to the left. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The DTFT_Forward() transform generates two frequency components for each trigonometric term.  One 

component appears at the expected frequency, say .  The other appears at the frequency 

.  These higher frequency components arise because of a basic assumption that must be 

made to enjoy the benefits of a fast Fourier Transform, namely, that the set of sample data is repeated 
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indefinitely into both positive and negative times with a period of  sample times.  This gives rises 

to repeating cycles of frequency components.  Because of this periodicity, all of the frequencies which 

appear in the extended frequency spectrum are valid representations of the time-domain samples. 

 

It is customary to focus one's attention only on that part of the spectrum which is centered around zero.  

The following graph shows what is called the "baseband" of the sample data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is said that a good human ear can hear sounds in the range  to .  The principal 

frequency components in a high-quality sound track might therefore be described graphically as follows.  

The area shaded in grey is intended to represent the envelope containing the many frequency components, 

both Real and Imaginary, which would be found in such a sound track.  The components would range 

from  up to .  It is the case with real-life sources of sound that substantially all of the 

energy is to be found in the lower frequencies.  That is why I have shown the envelope being larger at its 

low-frequency end.     

 

 

 

 

 

 

 

 

 

 

 

If the sound track has a finite duration, but if the track is assumed to be repeated over-and-over in both 

positive and negative times, then the Fourier Transform will contain reflections and translations of the 

basic spectrum shown above.  We could graph them notionally somewhat like this: 
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Next, assume the sound track is digitally sampled, rather than treated as a continuous waveform.  Then 

there will be frequency components all the way up to .  The nice trigonometric functions I 

used in the sample waveform in Equation  did not result in this phenomenon, but real audio signals 

include frequencies which are not integral fractions of , and the discrete-time Fourier 

Transform will generate many high-order components as it tries to compensate for non-periodicity in the 

raw data.  A more realistic graph of the frequency components an FFT routine would generate for 

sampled real-world audio signals is as follows.  Fortunately, the spurious components typically decrease 

in magnitude as the frequency increases, so the "tails" of the lobes will be small.  

 

 

 

 

 

 

 

 

 

 

 

Before doing any processing on a frequency spectrum like this, I am going to "filter out" all frequencies 

less than, say, .  Having done a Fourier Transform, we know the specific frequency components, 

so this kind of filtering is easy to do.  We can simply ignore, or set to zero, all components at frequencies 

greater than .  We can also filter out all the negative frequencies by ignoring them, too.  After 

this filtering, the spectrum we will have for the sampled sound track should look something like this: 

 

 

 

 

 

 

 

 

 

 

 

 

 

It appears from the figure that filtering at  is draconian, and chops off a great deal of the 

information about the signal.  In practice, the situation is not usually this severe.  Although the human ear 

may work all the way up to , the human voice does not.  The top key on a piano is tuned to 

.  Classical opera is written for sopranos who can reach .  (The precision arises 

from the piano key to which their voices are matched.)  The public telephone system is filtered at about 

.  Filtering at  still captures almost all of the sounds we experience in real-life. 

 

The reason I need to filter the audio signal is to avoid overlap with the carrier, which will be at  

or so.  I have marked the carrier frequency with a red arrow in the preceding figure.  For reasons I will 

describe in the next section, we are going to need a good clear separation between the carrier frequency 

and the audio signals with which we will modulate it. 
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Amplitude modulation 

 

Of all the modulation schemes, the simplest is the Product Modulator.  A Product Modulator takes two 

signals and, in the time-domain, multiplies them together.  If we let the carrier waveform be  and the 

information waveform be , then the Product Modulator takes their instantaneous values at any 

instant of time and multiplies them together.  The result, which I will call , is: 

 

 
 

It is usually the case that the frequency of the carrier is much higher than the frequency or frequencies of 

the information to be conveyed.  When that is the case, one says that the information signal modulates the 

carrier signal, which is why I used an " " as the symbol for the information waveform .  From a 

mathematical point-of-view, however, the two signals are equal participants in the process.  Neither signal 

dominates the other in any way. 

 

The curious result of using multiplication to modulate is the effect it has on trigonometric waveforms.  

Product modulation gives rise to frequency components whose frequencies are the difference between the 

input frequencies, as well as their sum.  This is most easily demonstrated assuming the input waveforms 

are continuous and indefinite in time, for example: 

 

 

 

To permit a bit of generality, I have used a cosine function to represent the information signal.  By 

including an arbitrary phase angle , though, it represents in principle any combination of sine and cosine 

waveforms at the specified frequency .  The result of the Product Modulator is the following: 

 

 
 

This can be expanded using a couple of identities for the sum and difference of arguments of the sine 

function, namely: 

 

 

 

Using Equation  to expand Equation , we get: 

 

 

   

 

 

The expansion in Equation  is not unique.  An identity of the sine function is that .  

We could write Equation  using negative frequencies, as follows: 

 

 
 

 

 

sum of frequencies difference of frequencies 

two more frequency sums and differences 
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For a given information signal frequency , the Product Modulator generates four counterparts.  The 

concept is most easily understood if we show what happens in the frequency domain to the audio signal 

we looked at in the previous section.  After using the Product Modulator to modulate the  

carrier, we will find something like this in the frequency domain: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There will be four copies of the frequency spectrum of the filtered sound track.  Two will be "reflections" 

around the positive carrier frequency  and the other two will be reflections around the 

negative carrier frequency .  The upper pair, centered on the positive carrier frequency, is 

usually called the "passband" to distinguish it from the "baseband" signal. 

 

The envelope on the positive side of the positive carrier frequency, which is identified as the USB in the 

figure, is called the "upper sideband".  Its counterpart on the negative side of the positive carrier 

frequency is called the "lower sideband".  It is identified as LSB in the figure. 

 

First numerical example 

 

In this numerical example, I am going to try to construct something directly in the frequency domain, and 

then use the inverse DTFT transform to see if it produces the expected (and desired) waveform in the time 

domain.  I am going to try to modulate the audio signal described by the formula in Equation .   

I will use all four of the "lobes" which appear in the graph above.  The frequency spectrum we extracted 

above for this audio signal was this: 

 
 K=32:   DTFTRe =  0.05  DTFTIm =  0 
 K=128:   DTFTRe =  0  DTFTIm = -0.075 
 K=256:   DTFTRe = -0.1   DTFTIm =  0 
 K=1,024:  DTFTRe =  0  DTFTIm = -0.0375 
 K=261,120:  DTFTRe =  0  DTFTIm =  0.0375 
 K=261,888:  DTFTRe = -0.1  DTFTIm =  0 
 K=262,016:  DTFTRe =  0  DTFTIm =  0.075 
 K=262,112:  DTFTRe =  0.05  DTFTIm =  0 
 

I will first filter out the high-frequency components, being those for which .  Then, adding in 

the shift by , we will have these four components.  For now, I will leave the magnitudes alone. 

 
   K=15,000 + 32:  DTFTRe =  0.05  DTFTIm =  0 
 K=15,000 + 128: DTFTRe =  0  DTFTIm = -0.075 
 K=15,000 + 256: DTFTRe = -0.1   DTFTIm =  0 
 K=15,000 + 1,024: DTFTRe =  0  DTFTIm = -0.0375 
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These four components fall within the upper sideband lobe (USB) in the above graph.  They were all 

obtained by shifting the basic frequencies upwards by the carrier frequency.  In this case, these four 

components are all there is, so they constitute the entire USB.    As I have said, I will include the other 

three lobes as well.  The lower sideband (LSB) will be the following four components: 

   
   K=15,000 - 32:  DTFTRe =  0.05  DTFTIm = 0 
 K=15,000 - 128: DTFTRe =  0  DTFTIm = 0.075 
 K=15,000 - 256: DTFTRe = -0.1   DTFTIm = 0 
 K=15,000 - 1,024: DTFTRe =  0  DTFTIm = 0.0375 

 

Note that the Imaginary parts must be algebraically reversed for the LSB.  They correspond to sine terms, 

which are asymmetric around the carrier frequency.  The Real parts correspond to cosine terms which, 

being symmetric around the carrier frequency, are not negated. 

 

The other two lobes contain the reflections of these eight components into negative frequencies.  Since 

the DTFT_Inverse() procedure operates only on positive values of the index , we cannot use these 

negative frequencies per se.  What we do instead is use the frequencies which are a factor  greater, 

which corresponds to a graphical shift by  to the right.  For example, a component at the 

negative frequency -15,000 + 128 has exactly the same effect in a transformation as it does at the 

positive frequency 262,144 + (-15,000 + 128). 

 

Just so there is no doubt about the 16 frequency components I used as inputs to the inverse transfer in this 

example, I have listed here the code from Form1 which prepares the input vectors FreqRe() and 

FreqIm() for the inverse transform DTFT_Inverse().  
 
  NI = CInt(2 ^ 18) 
        ' First numerical example 
        ' Set the frequency domain data directly 
        For I As Int32 = 0 To (NI - 1) Step 1 
            FreqRe(I) = 0 
            FreqIm(I) = 0 
        Next I 
        ' Cosine at 32 Hz, listed from low frequency to high frequency 
        FreqRe(15000 - 32) = 0.1 / 4 
        FreqRe(15000 + 32) = 0.1 / 4 
        FreqRe(NI - (15000 + 32)) = 0.1 / 4 
        FreqRe(NI - (15000 - 32)) = 0.1 / 4 
        ' Sine at 128 Hz 
        FreqIm(15000 - 128) = 0.15 / 4 
        FreqIm(15000 + 128) = -0.15 / 4 
        FreqIm(NI - (15000 + 128)) = 0.15 / 4 
        FreqIm(NI - (15000 - 128)) = -0.15 / 4 
        ' Cosine at 256 Hz 
        FreqRe(15000 - 256) = -0.2 / 4 
        FreqRe(15000 + 256) = -0.2 / 4 
        FreqRe(NI - (15000 + 256)) = -0.2 / 4 
        FreqRe(NI - (15000 - 256)) = -0.2 / 4 
        ' Sine at 1024 Hz 
        FreqIm(15000 - 1024) = 0.075 / 4 
        FreqIm(15000 + 1024) = -0.075 / 4 
        FreqIm(NI - (15000 + 1024)) = 0.075 / 4 
        FreqIm(NI - (15000 - 1024)) = -0.075 / 4 

 

Cosine is an even function, so its algebraic sign does not change with reflections around the carrier 

frequency or translations upwards or downwards by the sample size.  The sine function, on the other 
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hand, is an odd function, and its algebraic sign is changed (with respect to the signs in the USB) for each 

reflection and/or translation. 

 

Note one more thing.  Since each trigonometric term is now represented by four separate frequency 

components, I have divided their original amplitudes by a factor of four. 

 

To determine whether this frequency spectrum represents a modulated signal in the time domain, I 

applied the inverse transform.  The following graph shows (in red) the time sequence generated by the 

inverse transform from the frequency spectrum.  For the sake of comparison, the original waveform is 

also shown (in black). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Only the Real parts of the results of the inverse transform are plotted in this graph.  The Imaginary parts 

are ignored – they are all zero.  The carrier frequency is so high that the waveforms of its individual 

cycles cannot be distinguished in this graph.  They merge together into a red mass.  What is important is 

that the envelope of the modulated carrier follows the original audio signal.  Although this particular type 

of modulation is not exactly what I want, this example does show two things: (i) that it is possible to 

manipulate the Fourier Transform of the audio signal in a way that simulates modulation, and (ii) that it is 

then possible to synthesize from the manipulated spectrum a real output stream that represents the 

modulated carrier.   

 

The graph above shows the first  points in the time sequence.  I chose to display the first  

points for a reason.  Since a full second of real time corresponds to  points, these  points 

represent approximately  seconds.  This length of time is quite close to the 

 of the sample waveform shown in the very first graph in this paper.  I wanted to make it clear that  

the results of the inverse transform can be interpreted in seconds of real time. 

 

The following graph shows a detail of the preceding graph.  It shows the period between the 500
th
 and 

600
th
 time step.  The scale used in this detailed graph is large enough to allow the waveform of the carrier 

(in red) to be inspected.  It is quite a good reproduction of a pure sine wave.   
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As a reality check, observe that there are about six complete cycles of the carrier in this 100-time step 

sample.  The period of the carrier can be estimated from this wavelength as , 

which corresponds to a frequency of .  The difference from the expected carrier 

frequency of  is due to the fact that the span of the graph above is not exactly six complete 

cycles of the carrier, but a little bit less. 

 

Second numerical example 

 

In this numerical example, I am going to repeat the procedure in the first example but using the frequency 

components in only two of the four lobes.  I will start with the USB and shift it upwards by the carrier 

frequency.  To obtain the other lobe, I will reflect the shifted USB through the  axis, and then 

translate it upwards by precisely one cycle (equal to the sample size).  The frequency spectrum for this 

example was coded as follows: 

 
        ' Second numerical example - Use the USB and its reflection only 
        ' Set the frequency domain data directly 
        For I As Int32 = 0 To (NI - 1) Step 1 
            FreqRe(I) = 0 
            FreqIm(I) = 0 
        Next I 
        ' Cosine at 32 Hz, listed from low frequency to high frequency 
        FreqRe(15000 + 32) = 0.1 / 2 
        FreqRe(NI - (15000 + 32)) = 0.1 / 2 
        ' Sine at 128 Hz 
        FreqIm(15000 + 128) = -0.15 / 2 
        FreqIm(NI - (15000 + 128)) = 0.15 / 2 
        ' Cosine at 256 Hz 
        FreqRe(15000 + 256) = -0.2 / 2 
        FreqRe(NI - (15000 + 256)) = -0.2 / 2 
        ' Sine at 1024 Hz 
        FreqIm(15000 + 1024) = -0.075 / 2 
        FreqIm(NI - (15000 + 1024)) = 0.075 / 2 

 

Since each frequency component is mentioned twice in the spectrum, the desired amplitudes for the 

component waveforms in the time domain were divided by two. 
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The following graph shows the time sequence generated by the inverse transform.  As before, only the 

Real parts are shown.  The Imaginary parts are all zero.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The carrier is modulated, but it is not modulated in the same way as four lobes did it.  The envelope of the 

modulated carrier does not follow the audio signal's waveform.  The "information" has not been lost, 

rather, it cannot be recovered from the modulated carrier as easily as it can be in the first example.  

 

Aside:  In both the examples so far, the Imaginary parts produced by the inverse transform were 

identically equal to zero.  That is not happenstance.  If a frequency spectrum is constructed with 

symmetric Real components and asymmetric Imaginary components, then the time sequence generated by 

the inverse transform will be entirely Real.  Symmetric Real components in the frequency domain 

correspond to pure cosine waveforms in the time domain.  Asymmetric Imaginary components in the 

frequency domain correspond to pure sine waveforms in the time domain.  This equivalence, or duality, 

exists whenever one transforms from one domain to the other, in either direction. 

 

Double Sideband Modulation 

 

So far, the "modulation" technique I have described is simply the use of a Product Modulator, which is 

not much more than a mathematical multiplication sign.  One can modulate more effectively than that.  

One of the simplest enhancements is to add the carrier signal to the result of the Product Modulator, a 

technique which is called Double Sideband Modulation.  I will use the same symbols and waveforms as 

above.  If  is the result of the Product Modulator, and if  is the result of the Double Sideband 

Modulator, then the relationships between them are as follows: 
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Adding the carrier signal does not look like too big a change, but it does have important consequences.  

Let's first collect the terms as follows: 

 

 

 

I have not said anything about the amplitudes  and  of the carrier and audio waveforms, respectively, 

other than to suggest in some of the graphs that they could be measured in Volts.  But their relative values 

are important.  To give us some control over the relative amplitudes, I am going to define a number called 

the modulation index  and to introduce it into the equation as follows
1
: 

 

 

 

A big value of  emphasizes the audio signal's relative importance; a small value reduces it.  An optimal 

value is one that prevents the value in square brackets from ever being algebraically negative.  I say "an" 

optimal value rather than "the" optimal value because a real-world signal will contain many components 

 at many frequencies , and we want the index  to prevent a negative value at all 

frequencies, not just individually but for the aggregate signal as well. 

 

What does adding the carrier signal do to the frequency spectrum?  The Fourier Transforms, including the 

DTFT variant, are all "linear".  If the input consists of two things added together, the output will consist 

of their individual transforms, simply added together.  Adding a pure sine or cosine carrier waveform to 

the output of the Product Modulator will result in the transform of the carrier being added to the transform 

of the Product Modulator.  The transform of the carrier is easy – it will be a single frequency component 

(and its reflections and translations).  I can show the revised frequency spectrum using one of the figures 

from above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The lobes labeled 1 through 4 are the transform of the modulating signal.  The carrier signal is 

represented by single-frequency spikes labeled 5 and 6.  That the two spikes are symmetrically-located 

means they correspond to a cosine-based carrier.  A sine-based carrier would have asymmetric spikes.   

 

What is not shown to scale on the graph are the relative sizes of the lobes and the two carrier spikes.  We 

can control the relative sizes through our choice of the modulation index .     

                                                           
1
   The modulation index is usually represented by the symbol , but using that symbol in the midst of so many 

references to the frequency index would lead to nothing but trouble.   
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Third numerical example 

 

In this example, I am going to do another direct synthesis, not unlike those in the first two examples.  I 

will use the Double Sideband Modulation technique, and apply it to the sample audio waveform we used 

before.  I am setting out as a goal that the synthesized time sequence have its "information content" at the 

same magnitude as before.  The question is: what magnitude should be used for the carrier? 

 

In the sample audio waveform, the cosine term at  has an amplitude of .  If the frequency 

spectrum which is sent to the inverse DTFT transform uses four lobes, it which this component is 

represented four times, then its magnitude in the spectrum should be .  The time sequence which the 

inverse transform produces will then have this cosine component with an amplitude of , as 

desired. 

 

The amplitudes of the four trigonometric terms in the sample audio waveform are , ,  and 

, respectively.  They are going to be synthesized with those magnitudes.  We can calculate the 

very highest and very lowest voltage that are possible when they are added together.  It does not matter 

which are cosine terms and which are sine terms, or what their phases are, the "worst case" occurs when 

all four add constructively.  The maximum voltage the sample audio signal can attain is 

.  The maximum negative voltage it can reach is . 

 

We want to set the amplitude of the carrier (in the time domain) to be this magnitude, or greater.  Suppose 

we decide to set it to .  In the frequency spectrum, the carrier will be represented twice, so its 

amplitude in the frequency spectrum needs to be set to .  These are the two specific components 

we need to add to the frequency spectrum of the first numerical example above to implement the Double 

Sideband Modulation.  Here is the code that sets the spectrum. 

 
        ' Third numerical example 
        For I As Int32 = 0 To (NI - 1) Step 1 
            FreqRe(I) = 0 
            FreqIm(I) = 0 
        Next I 
        ' Cosine at 32 Hz, listed from low frequency to high frequency 
        FreqRe(15000 - 32) = 0.1 / 4 
        FreqRe(15000 + 32) = 0.1 / 4 
        FreqRe(NI - (15000 + 32)) = 0.1 / 4 
        FreqRe(NI - (15000 - 32)) = 0.1 / 4 
        ' Sine at 128 Hz 
        FreqIm(15000 - 128) = 0.15 / 4 
        FreqIm(15000 + 128) = -0.15 / 4 
        FreqIm(NI - (15000 + 128)) = 0.15 / 4 
        FreqIm(NI - (15000 - 128)) = -0.15 / 4 
        ' Cosine at 256 Hz 
        FreqRe(15000 - 256) = -0.2 / 4 
        FreqRe(15000 + 256) = -0.2 / 4 
        FreqRe(NI - (15000 + 256)) = -0.2 / 4 
        FreqRe(NI - (15000 - 256)) = -0.2 / 4 
        ' Sine at 1024 Hz 
        FreqIm(15000 - 1024) = 0.075 / 4 
        FreqIm(15000 + 1024) = -0.075 / 4 
        FreqIm(NI - (15000 + 1024)) = 0.075 / 4 
        FreqIm(NI - (15000 - 1024)) = -0.075 / 4 
        ' Carrier at positive and reflected frequency 
        FreqRe(15000) = 0.525 / 2 
        FreqRe(NI - 15000) = 0.525 / 2 
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And here is the time sequence which the inverse transform generates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This is perfect for my application.  The envelope of the modulated carrier exactly matches the original 

audio waveform.  The envelope "matches" the original, but is displaced upwards by a constant voltage of 

.  At no point does the envelope pass below zero.  (In fact, during the  or so of the time 

sequence shown, the four trigonometric waveforms never add constructively, so the envelope never does 

touch zero.)  If the envelope passes below zero, things get inverted and the envelope stops matching the 

original waveform.  That condition is called "overmodulation".  It is the business of the modulation index 

to be big enough to prevent that from happening.  (In this example, I did not specify the modulation index 

directly, but set things up in such a way that  for the sample audio signal taken as a whole.) 

 

There is a reason why it is so handy to have the modulation envelope match the original signal.  Actually, 

there are two reasons.   

 

The first is that some carrier frequencies travel very well.  A shout does not get very far, but a radio wave 

modulated to the frequency content of the shout can travel around the world. 

 

The second reason relates to what happens at the receiving end.  We create a time sequence with the 

expectation that it is going to be sent somewhere, or to something, and the audio signal extracted from 

what arrives there.  Lots of devices – and not just radios and other electromagnetic equipment – are well-

fitted to extracting information from an envelope.  If a device relies on any phenomenon that responds 

differently "in one direction" than the other, it can can used for this purpose.  Since radio is the most 

common example, I will briefly describe its basic workings. 
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The received signal is shown on the left.  Assume it is a voltage waveform.  It is processed by the circuit 

shown in the center, which produces the voltage waveform rendered in red on the right.  It is diode  that 

responds different to the flow of current in one direction versus the other.  When the incoming voltage 

level is higher than the voltage drop on capacitor , the diode allows current to flow through.  This 

current "flows into" the capacitor, where the stored charge increases.  As the stored charge increases, the 

voltage drop over the capacitor also increases.  If the value of the capacitor is relatively small, its voltage 

drop will respond quickly to the incoming current.  The voltage drop over the capacitor, which is the 

output of this little circuit, will "climb up" the slope of the incoming voltage peak.      

 

Once the voltage of the incoming carrier falls below the voltage drop over the capacitor, the diode will be 

reverse-biased.  In that mode, it will not allow any more current to flow into the capacitor.  Something 

else will happen.  The charge stored in the capacitor will start to leak out, flowing through resistor  into 

the common lead.  This loss of charge will cause the voltage drop over the capacitor to fall.  The 

combination of the values of the capacitor and resistor determines how fast the capacitor's voltage drop 

will decrease.  The values are chosen so that the voltage falls a bit, but not too much, between successive 

peaks in the carrier.  When the values of the capacitor and resistor are chosen properly, the output of this 

little circuit will track the peak values of the envelope of the incoming signal.  In the figure, it appears as 

if the output is jagged, not smooth.  That's true.  But when the carrier frequency is high, these little jig 

jags are small compared to the signal. 

 

In the early days of radio, before transistors and diodes came into use, the role of the diode was filled by 

something else.  A piece of crystalline rock, galena or some other quartz, could be touched by the whisker 

of a cat, and the junction would be unidirectional to electric current.  These were early types of "crystal 

radios". 

 

Transmitting without the carrier 

 

When a waveform is transmitted, a certain amount of power must be expended to transmit each frequency 

component in the spectrum.  In the third numerical example, the transmitted waveform included the upper 

sideband components, the lower sideband components and two instances of the carrier.  The frequency 

composition of the two sidebands is the same – each is simply a reflection of the other.  Why use up 

power transmitting two versions of essentially the same thing?  Why transmit the carrier at all?  It does 

not contain any information at all about the signal.  In a moment, I will tell you one good reason why you 

might chose to send the whole kit-and-caboodle
2
. 

 

The drive to reduce the power required to transmit a certain amount of information led to various 

alternative methods of modulation, or of processing the modulated carrier before transmission.   

 

One of the first was to remove the carrier from the waveform before transmission.  This was called 

Double Sideband Modulation - Suppressed Carrier.  This is exactly the waveform we dealt with in the 

first numerical example above.  The frequency spectrum we used included all four lobes, shifted in 

frequency, but no carrier.  The time sequence which the inverse transform produced had some of the 

features of normal AM modulation, but the envelope of the modulated carrier was not the same as the 

original audio signal.  In any event, removing the need to transmit the carrier wave reduces the power 

required by a factor of two. 

 

The next step, of course, is only to transmit one of the two lobes.  This results in USB or LSB 

transmission, depending on whether the upper or lower sideband, respectively, is the one transmitted.  We 

                                                           
2
   In case you were wondering, a caboodle is a big bag or hamper in which you can lug around all of your 

stuff, which is itself called your kit.  
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have seen this, too, in the second numerical example.  In that example, we used only the upper sideband.  

The envelope of the modulated carrier looked even less like the original signal than the one in the first 

example. 

 

The problem is this.  If the carrier is not transmitted, the receiver has to generate its own version of the 

carrier, which it then uses to reconstruct the original signal.  This means that a simple "envelope 

detecting" circuit like the one I described above cannot deal with suppressed carrier or sideband-only 

transmitters.  In this day and age, the price of the extra hardware (or software) needed in the more 

complex receivers is not that much.  It is so low in fact, that one would be very hard pressed to find a 

manufacturer of radios which only receive the AM band. 

 

Applications which depend on envelope detection are stuck.  The carrier has to be transmitted along with 

both sidebands if that is all the receiver can handle. 

 

The receiver I am interested in is the human ear.  It is no diode and can't detect radio waves at any 

frequency.  Under some circumstances, though, it may (and I hope can) demodulate AM signals.  That 

will be the topic of the next paper. 

 

Jim Hawley 

© June 2015 

 

If you found this description helpful, please let me know.  If you spot any errors or omissions, please send 

an e-mail.  Thank you. 

 

 


