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A VisualBasic subroutine which calculates a fast Fourier Transform 

 
The subroutine described here is an implementation of the Danielson-Lanczos Lemma coded in 

VisualBasic Express 2010. 

 

Statement of the problem 

 

We have a set of  numbers.  These happen to be voltages, expressed in Volts, measured 

over the terminals of a microphone.  The measurements were made over a one-second period by a device 

which recorded the voltage once every 61.035 microseconds.  We want to extract from this set of 

numbers the relative significance of the frequencies of the various sinusoidal waveforms whose sum best 

represents the data.  "Significance" could be stated as the relative power, or perhaps relative magnitude, 

of each particular frequency compared with the others which are present. 

 

 

 

 

 

 

 

 

 

 

Some preliminary observations 

 

It may well be that the microphone is an analogue device and generates a voltage which is mathematically 

continuous in time.  If we made some assumption about how the continuous waveform extended out to 

positive and infinite time (perhaps by some repetition), we could expand the waveform into an infinite 

series of cosine and sine functions in the manner of a Fourier series. 

 

But, our data is not continuous.  Nor does it extend out indefinitely in time.  These are separate issues. 

 

We are going to deal with the latter shortcoming by assuming the entire set of data is repeated outwards in 

time (in both directions).  By forcing the data to become periodic we place an upper limit on how long the 

period of the constituent cosine and sine components needs to be.  When we repeat the data set to the 

right, referring to the figure above, the first recurrence of data point #1 is not synchronous with data point 

#16,383, but rather one sample increment  later.  This means the fundamental period has duration 

.  

 

It is an important assumption that the sampling interval  be uniform.  When that is the case, the fact 

that the data is discrete automatically solves the first issue.  It places a lower bound on how short the 

period of the constituent cosine and sine components need to be.  There is no point including in the 

Fourier series any trigonometric components whose period is shorter than .  Our set of data has nothing 

meaningful to say about things that happen more quickly than .   

 

Taken together, these two issues restrict the range of periods for the constituent cosine and sine terms.  

The periods have to lie within the range from  to .  Furthermore, since the periods of the 

constituent cosine and sine components must be an integral multiple of the shortest period , there are in 

total only  frequency components. 

 

  
time 

is sampled 

 

 

 

 is continuous in time 
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That can be stated a little differently.  The spectrum of frequencies which represents our sample of  data 

points consists of exactly  non-zero frequencies. 

 

A word about notation.  We could identify the constituent frequencies as 

 or as .  These frequencies are in Hertz.  While 

that's true, the different frequencies are not normally referred to in Hertz, but instead simply by their 

index number .  And, it is usual to use the  numbering schedule, which then mirrors 

the numbering of the data points. 

 

The discrete-time Fourier Transform 

 

Messr. Fourier developed a "transform" for his eponymous series.  His transform is an integral which 

maps a continuous periodic waveform (function) into its discrete frequency components.  Later, the 

transform was extended so that a continuous non-periodic waveform is mapped into a continuous function 

of frequencies, called the spectrum.  Even later, the transform was extended to apply to regularly sampled 

data, which is what we have here.  The transform used for this purpose is called the discrete-time Fourier 

Transform.  It can be written as follows. 

 

 

 

A few notes: 

1.  is the strength of the 
th
 frequency component, where  in Hertz. 

2.  is a complex number.  Its Real part corresponds to the magnitude of the cosine component 

at frequency number .  Its Imaginary part corresponds to the magnitude of the sine component. 

3. It is because  is complex that I described it as the "strength" of frequency , rather than the 

magnitude.  Magnitude has a special meaning when applied to complex numbers. 

4.  are the  data points.  In our case, the voltage measurements are real numbers.  They don't 

have to be.  The transform in Equation  applies equally well when the  are complex 

numbers. 

5. Equation  is a summation over all  data points.  It yields one frequency component.  To 

calculate the full spectrum, a separate summation must be done for each of the  frequency 

components.  Each term in each summation requires a multiplication, so the complete analysis is 

going to require  multiplications.  In our case, analyzing one second's worth of data 

is going to require  multiplications.  That is a huge, and slow, number. 

 

The inverse discrete-time Fourier Transform 

 

Equation  takes data from the time-domain and generates a corresponding representation in the 

frequency-domain.  Sometimes, it is necessary to take the frequency-domain representation and "back 

out" the time-domain waveform that corresponds to it.  The former process is called analysis; the latter 

process is called synthesis.  The transform which does the work in reverse is called the inverse discrete-

time Fourier Transform.  It is: 
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The fast Fourier Transform 

 

The computational difficulty I mentioned in Note 5 above can be greatly reduced if the number of data 

points  is a power of two.  Our sample size  is such a power of two.  It is the 14
th
 power of 

two. 

 

The basis for all fast Fourier algorithms is the regularity in the exponential term with the imaginary 

coefficient.  That in turn rests on the periodicity of the cosine and sine functions which the exponential 

term embodies. 

 

Let's look at the summation in Equation  for some arbitrary value of .  Since  is even (as a power of 

two, by assumption,  must be even), there are an even number of terms in the summation.  We will 

divide them into two groups.  Not the top half and the bottom half.  Instead, we will group the terms for 

which index  is even and, separately, the terms for which index  is odd. 

 

 

 

An even number  can always be expressed as .  

Similarly, an odd number  can always be expessed as 

.  Re-indexing in this manner changes Equation  to: 

 

 

 

Note that the second exponential factor in the second summation does not depend on index .  It is the 

same for all terms in that summation and can be brought out of the summation as a constant coefficient. 

 

 

 

Now, look at where  appears in the two summations.  The upper index depends on .  The 

denominator of the exponential terms is .  Other than in the constant coefficient of the second 

summation,  never appears by itself, only .  Each summarion by itself looks like a miniature version 

of the original summarion in Equation .  The only differences are: (i) that each has only half as many 

terms as the original summation, and (ii) that only half of the original  data points are used in each 

summation (points picked on an alternating even-odd basis from the original data set). 

 

But, we have not yet reduced the amount of work involved.  Although each summation has only half as 

many multiplications as before, there are still two summations, and still  multiplications in all.  But, 

there's some good stuff coming. 

 

Equation  is an expansion that applies for each of the  frequencies.  What we are now going to do is 

to compare what this expression looks like for the bottom half of the 's ( ) with what it 
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looks like for the top half of the 's ( ).  Since  is even (by 

assumption), there will always be two equal halves for this purpose.  Here's the comparison: 

 

 

 

Taking the step from the second-to-last line to the last line is very important.  Each term in each of the 

summations has a factor .  For all of the indices , the exponent is an integral 

multiple of , and therefore  for all values of .  This is periodicity at play. 

 

Now, observe that the summations in Equation  and  are identical.  If we let  and  be 

the two summations for 's in the bottom half, then we arrive at: 

 

 

 

Now, we have achieved a real savings.  We only need to calculate the summations for one half of the 's.  

If we do the summations for , and calculate their 's, then the values of  

for the high-order half of the 's can be calculated with very little work.  The ability to do this reduces the 

overall work required by almost a factor of two. 

 

We can repeat this trick.  I mentioned above that the  and  summations look like half-size 

versions of the original transform.  If  is a power of two, then  will also be a power of two.  These 

half-size summations can be tackled anew, as if they were two separate discrete time Fourier Transforms 

with  data points apiece.  If we can do that, then we will have reduced the scope of the arithmetic by 

nearly a factor of four. 

 

Indeed, if  is a power of  two, then , , and all the successive divisions of  by two will be even.  

In principle, we can continue to repeat the trick all the way down until we reach rock bottom, with a 

discrete-time Fourier Transform containing only two data points. 

 

That's what we are going to do.  The objective now is to find a way to repeat the trick efficiently. 
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The  root case 

 

Let's take a step back and look at the "rock bottom" case with only two data points.  The complete 

discrete-time Fourier Transform for the two data points  and  is: 

 

 

 

The  case - Brute force expansion 

 

I am simply going to use brute force to expand all four frequencies. 

 

 

 

The  case - Method #2 

 

There is another way we could have handled the case with four data points.  We could have done an 

 root case using the two data points  and  and, completely separately, done an  root case 

on the "odd" points  and .  Let's do it that way now.  To keep all the cases separate, I will use a 

superscript on the 's listing the specific data points included.  For the first pair of points: 

 

 

 

and for the second pair of points: 

 

 

 

Observe that the right-hand sides for these two subcases include all four variants which appear in the 

brute force expansion, which can therefore be written as: 

 

 

 

The notation is becoming unwieldy, even here in the  case.  We could surely use something better.  

It turns out that a very good way is to show the additions and multiplications graphically.  The procedure 

by which the calculations in Equation  is carried out is shown below. 
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The data points listed on the left "travel" towards the right.  Along the way, they get multiplied by any 

coefficient which lies next to their path.  Where two arrows join up, the incoming values are added at that 

spot. 

 

An  analysis brings together two such simpler ones.  The diagram illustrating Equation  is: 

It is not for nothing that diagrams like this are called butterfly diagrams.  And, although this particular one 

is satisfactory for the  case, the notation is still not quite general enough to be expanded easily to 

higher orders.   

 

The twiddle factors 

 

In the  transform, the values of the two data points are multiplied by only two different coefficients, 

 and .  In the  transform, the values of the four underlying data points are multiplied by four 

different coefficients, , ,  and .  These four coefficients happen to be the values of a unit 

vector which starts at  in the complex plane and is rotated by 90° successively through 90°, 180° and 

270°.  When we scale up to , the eight coefficients are going to be separated by 45° around the 

complex plane.  More generally, for any , there are going to be  coefficients which arise from a 

circumnavigation around the unit circle in increments of .  These coefficients have been given a 

name, "twiddle factors".  The twiddle factors for  are illustrated in the following figure.  The 

angular spacing is .   

 

I am going to use the following symbol for the twiddle 

factors: 

 

 

 

Since the exponent is algebraically negative, the 

"direction" of the enumeration as  increases is in the 

clockwise direction, as shown by the red arrow. 

 

Note the placement of the superscript and subscript in the 

twiddle factor.  lies a fraction  of the way around 

the circle. 

 

  

 
 

 

  

 
 

 

  

 
 

 

 

 

 
  

 

Note the order 

Re 

Im 
 

circle with 

radius  
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Successive applications of the Danielson-Lanczos Lemma 

 

Their Lemma is Equation , which we've already looked at. 

 

 

 

I will use notation such that: 

 

 
 

where  is the sum of a series of  individual terms which are the evenly numbered terms in a 

series twice as long, where the summing begins with term  in the original data.   is the sum 

of a series of  individual terms which are the odd numbered terms in a series twice as long, where the 

summation begins with term  in the original data.  And, of course,  is the twiddle factor. 

 

Suppose we separate each summation in Equation (5) into two summations.  The sub-summations will 

start at the first and second index, respectively, and will include alternating terms in the series.  We can 

write  as: 

 

 

 

 

 

 

 

 

 

These summations do not have exactly the same form as the template  and  summations defined by 

Equation .  They are close, but not exactly the same.  Consider the last summation for example.  The 

data point subscript is , which starts at  when index  is zero.  The exponent is , 

which is  when index  is zero.  To be equivalent to the defined summation , the exponent of the first 

term in the series needs to be , not .  We can reorganize the exponent to make the comparison exact.  

Any typical term in the last summation can be rearranged as follows. 

 

 

 

The  factor does not depend on the summation index , so it can be taken outside the summation.  

The series being summed now appears in exactly the same form as summation , and we can write: 

 

 

includes data points , ,  includes data points , ,  

includes data points , ,  includes data points , ,  



~ 8 ~ 

 

 

 

The other three summations can be rearranged in the same way.  The principal step is to convert the 

denominator in the exponent from  to . 

 

 

 

We can substitute these expressions back into Equation  to get: 

 

 

 

Note that the exponential coefficient which remains is itself a twiddle factor, so this can be reduced to: 

 

 

   

If our set of data consisted of only four points, so , then the summations would each consist of one 

term.  We would find that: 

 

 

 

and that Equation  reduces to: 

 

 
 

When we try to construct a butterfly diagram for the four frequency components, we immediately run into 

problems.  The following partial diagram shows the problem just moving the second data point  from 

the left side to the right side.  To meet the needs of  and , we need to use twiddle factors  

and .  But to meet the needs of  and , we need to use twiddle factors  and . 
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Because of the nature of the twiddle factors – being unit vectors with regularly spaced polar angles in the 

complex plane – it turns out that  (and both equal  to boot).  Similarly,  (and both 

are equal to ).  It both cases, the second twiddle factor is rotated by an angle  from the first one, and 

represents exactly the same spot in the complex plane.   

 

Now let's see what is required to move the data point  from left to right. 

 

 

 

 

 

 

 

 

 

 

 

 

The choice of coefficients "  or " and "  or " are more occurrences of the twiddle relationship 

we just encountered.  They are easily dealt with.  What we need to do is simply the group of coefficients 

, ,  and .  They have a similar relationship, but in the odd variant.  Here,  and 

.  The difference between superscripts in this group corresponds to a half-rotation in the 

complex plane, which is to say, a reversal of sign.  These relationships allow us to simplify the diagram 

for  to: 

 

 

 

 

. 

 

 

 

 

 

 

 

I should have observed that we could handle the pair of coefficients  and  in the same way.  

Without getting specific about their particular values, it is the case that .  We can move the 

location of the coefficient so it appears before the fork in 's path.  Then we have: 

 

 

 

 

 or   or  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 or  

 or  
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I am not going to examine the trajectory of  on a stand-alone basis.  Instead, I will combine the network 

we have developed for ,  and  and see what changes need to be made to accomodate .  Here is 

what we have so far. 

 

 

 

 

 

 

 

 

 

 

 

 

I have not made the obvious substitution (yet) that .  I have not done so because it would 

hide some of the regularity which is otherwise apparent when the procedure is extended to . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

  

  

 

 

   

  

 

 

 

 

 

  
 

 

 

 

 
   

 

  

    
 

 

 
   

 
 

 

   
 

 

 

    
 

 

 

 
   

 

  
 

 

 

 

 

 

 

 

jumbled order 
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The so-called "bit reversal" scheme 

 

As the number of data points increases, the ordering of the points as they enter the Transform becomes 

more and more jumbled up.  Fortunately, a regularity has been observed which makes keeping track of 

the points quite simple.  Since everything in this procedure depends on powers of two and factors of two, 

it will not be a surprise to learn that this phenomenon is also a binary one. The order in which the data 

points are accessed in the  case is as follows: 

 

 

 

Let's write down the integers  in binary format.  We get: 

 

 

 

Now, let us reverse the ordering of the bits in each number.  Note that reversing the order is not the same 

as complementing the bits, which is a quite different binary operation.  We get: 

 

 

 

Now, let's convert this sequence back into normal integers.  They are: 

 

 
 

which happens to be exactly the indices of the data points in the order which they appear on the left-hand 

side.  This is all there is to "bit reversal".  It is a very convenient way to be able to select the data points in 

the order we are going to want to process them. 

 

An overview of the subroutine 

 

I am going to change tack here, and talk about some of the details of how the VisualBasic subroutine 

implements the procedure.  For this description, I am going to use  as the number of data points in the 

sample.  That's how we have been using  above.  What I really mean is that I will not fix , 

so tht ny power of two can be used (up to the limit of the computer's ability to store integers). 

 

The input data values are going to be stored in two -length vectors.  These will be the Real and 

Imaginary parts of the data points.  Even though I expect to process real values only, I am going to set up 

the subroutine to handle complex data sets as well.  The vector names will be DataRe() and DataIm() 

and the indexing in each vector will run from  to .  VisualBasic allows for zero-based indexing 

and I will use it. 

 

After the subroutine has done all of its work, the discrete-time Fourier Transform will be returned in 

another pair of -length vectors.  These will be the Real and Imaginary parts of the frequency 

components.  The vector names will be DTFTRe() and DTFTIm() and the indexing in each vector will 

also run from  to .   

 

The main subroutine is called DTDT_Forward().  Since passing arguments to and from subroutines is not 

a particularly fast operation, I will not do it.  Instead, both the input data vectors and the DTFT output 

vectors will be declared as Public variables.  The calling routine can therefore load the data directly into 

the input data vectors and read the results directly from the DTFT result vectors.  One of the objectives I 

set for the subroutine is that it not change the values in the input data vectors DataRe() and DataIm(). 
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I will pre-compute the bit-reversal integers and store them in such a way that they do not need to be re-

computed to process a second set of data points.  In fact, what I will do is use a special purpose subroutine 

to initialize all the things needed to process samples of size , including the bit-reversal indices and the 

twiddle factors.  This subroutine will be called DTFT_Initialization().  It must be called by the calling 

routine before any real processing gets under way.  The pre-computed bit-reversed indices will be stored 

in another Public variable, called ReverseBits(). 
 

I want to say a word about how the bit reversal is carried out.  In VisualBasic, there are several types of 

integer data types.  For example, there are Int32 and UInt32 data types (and others as well).  These are 

both integers, and both are stored in 32 bits, or four bytes.  But the former are signed integers and the 

latter are unsigned integers.  In the former, negative integers are stored in two's-complement notation, so 

the most significant bit of the four bytes indicates the algebraic sign of the integer, with a negative bit 

there for algebraically negative numbers.  The low-order 31 bits are the same for both data types.  Now, 

the low order 31 bits can accommodate positive integers in the range from zero to b'111...1', where there 

are 31 ones in the binary representation.  This corresponds to our base-10 number , or about 4.3 

billion.  There is no way (on my ThinkPad) that we are going to have that many data points in every 

sample.  From a practical point-of-view, it does not matter whether we carry out the binary arithmetic for 

bit reversal using Int32 data types or UInt32 data types. 

 

Aside: A reader might ask why I even raised the point, then?  Here's why.  In VisualBasic, addressing a 

specific item in a vector or array requires that the index be a signed integer.  Addressing using an 

unsigned integer is not permitted.  There are ways to convert from one data type to the other using the 

CInt() and CUInt() functions, but these conversions make the code very dense.  All of these conversions 

can be avoided if the Int32 data type suffices, as it does. 

 

Binary arithmetic is carried out in VisualBasic using the same And, Or and Not logical operators that are 

more commonly applied to Boolean variables.  Some interesting things follow.  For example, the 

expression (Integer And 1) selects the least significant bit of variable Integer.  Another example: the 

expression (Integer * 2) has the effect of shifting the binary contents of Integer to the left by one space.  

Similarly, the expression (Integer / 2) has the effect of shifting the binary contents to the right by one. 

A review of subroutine PopulateReverseBitVector() will show how expressions like these are used to 

produce a -length vector whose elements are the reversed-bit integers. 

 

The twiddle factors will also be pre-computed by subroutine DTFT_Initialization() before the real data 

processing gets under way.  The twiddle factors themselves will be stored as Public variables.  Since the 

twiddle factors are complex numbers, I will store them in vectors named TwiddleRe() and TwiddleIm().  

Note that the twiddle vectors only need to be declared with length , not length .  We only need the 

twiddle factors for half the unit circle in the complex plane, since the other half can be dealt with (and 

was dealt in the butterfly diagrams) using sign reversals. 

 

Because the twiddle factors are only calculated once, the routine which does the calculations does not 

have to be particularly efficient.  The code does not take advantage of the many cosine and sine 

regularities which could make their computation faster.   

 

As we work through the stages from the left side of the butterfly diagram to the right side, we are going to 

need a bit of temporary storage.  One could declare two -length vectors to hold the interim results, one 

for the Real parts and the other for the Imaginary parts.  However, the two output vectors DTFTRe() and 

DTFTIm() are not relevant until all the calculations have been completed.  I have therefore used them as 

the main temporary storage for interim results.  Indeed, if we use them for temporary storage, then we can 

even skip the final step at the end of the calculations which would otherwise be needed to move the 

results into these vectors.  Despite the use of vectors DTFTRe() and DTFTIm() as temporary storage, I 
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have written the code in such a way that it uses two additional pairs of temporary storage vectors.  Let me 

describe these other vectors. 

 

The complete vector of twiddle factors has length .  When we are processing the interim stages, 

however, only some of the twiddle factors are needed for each stage.  For example, when processing stage 

#4, the relevant twiddle factors are the following: 

 

 

 

But the complete vectors of twiddle factors TwiddleRe() and TwiddleIm() are not based on denominator 

 (splitting the unit circle into 16 equal angles), they are based, say, on denominator  (splitting 

the unit circle into  equal angles).  While it is true that the needed 
th
 values are included in 

TwiddleRe() and TwiddleIm(), because  and  for example, some playing 

around with indices is required to select the right numbers.  It would speed things up if a separate pair of 

twiddle vectors was pre-computed for each stage of processing.  But, I have not taken this route.  It takes 

too much storge space.  For , an  array of twiddle factors would be needed.  

What I have done instead is this.  At the beginning of each stage, I have extracted from TwiddleRe() and 

TwiddleIm() only those factors needed for this stage, and saved them in temporary storage vectors 

TempTwiddleRe() and TempTwiddleIm() where they can be indexed directly by the loop index for that 

stage. 

 

The second pair of additional storage vectors holds the products of multiplying the top-half inputs for 

each stage by the twiddle factors for that stage.  These two vectors are called TempProductRe() and 

TempProductIm().  There use is not essential, of course, as more complicated formulae could be used to 

carry these products right through to the end of the stage.  However, as is always the case, more 

complicated formulae take more time to execute, particularly if they involve repeated references to vector 

or array elements. 

 

The VisualBasic module includes a special purpose subroutine ComplexMult() which multiplies two 

complex numbers.  The first four arguments are the real and imaginary parts of the multiplicand and the 

multiplier, respectively.  The last two arguments are the real and imaginary parts of the product.  They are 

declared as ByRef arguments, and are passed back to the calling routine by position in the list of 

arguments.  Using a subroutine for multiplication is not as fast as would be coding of the steps at each 

required point in the procedure.  In my case, execution speed was good enough without having to do so. 

 

In the attached code, I have not condensed all stages into one single loop.  I have coded the first three 

stages (up to stride length ) separately and explicitly.  It's not so elegant, but it certainly makes it much 

easier to see how the generalized loop for stages  and up works.  And, it is likely faster since less 

indexing is required for each stage which is coded explicitly. 
 

First numerical example 

 

The module DTDTmodule.vb is listed in Appendix "A" attached.  The listing also includes a small 

Windows Form called Form1.vb which I used to test the results.  The form has a couple of buttons and a 

label area in which results can be displayed.  As a first numerical example, I used the following test 

waveform: 
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I digitized this assuming , which is equivalent to .  The following is the loop used to 

sample the data and then to initialize and execute the forward transform. 

 
 ' Generate some test data for a dual-tone waveform in the time domain 
 NF = CInt(2 ^ 14) 
 For I As Int32 = 0 To (NF - 1) Step 1 
     DataRe(I) = _ 
         (5 * Math.Cos(TwoPi * 1024 * I / NF)) + _ 
         (2 * Math.Sin(TwoPi * 128 * I / NF)) 
     DataIm(I) = 0 
 Next I 
 ' Initialize and then execute the forward transform 
 DTFT_Init_Forward() 
 DTFT_Forward() 

 

After a bit of post-processing, the display on the screen was this: 

 
 K=128:  DTFTRe = 0  DTFTIm = -1 
 K=1024:  DTFTRe = 2.5  DTFTIm = 0 
 K=15360: DTFTRe = 2.5   DTFTIm = 0 
 K=16256: DTFTRe = 0  DTFTIm = 1 

 

Before I explain why this is (or is not) what one expects, I will describe the post-processing.  The default 

arithmetic in VisualBasic is double precision, using floating point (scientific notation) numbers stored in 

eight bytes.  This allows for 15 digits of precision in representing base-10 numbers.  After tens of 

thousands of multiplications and additions, and subtractions of numbers which are theoretically equal, a 

certain degree of imprecision creeps into the numbers.  Numbers which ought to be zero are not exactly 

equal to zero.  In this numerical example, the residuals for values which ought to be zero was in the order 

of .  To avoid being distracted by these negligible bits of noise, I zeroed-out all frequency 

components whose magnitude was  or less.  I used the following loop for this purpose. 

 
 ' Set exactly to zero the near-zero results of machine imprecision 
 For K As Int32 = 0 To (NF - 1) Step 1 
     If (Math.Abs(DTFTRe(K)) < Val("1E-8")) Then 
         DTFTRe(K) = 0 
     End If 
     If (Math.Abs(DTFTIm(K)) < Val("1E-8")) Then 
         DTFTIm(K) = 0 
     End If 
 Next K 

 

As the next step in the post-processing, I divided all frequency components by .  Why?  The 

DTFT forward transform is a summation.  If a particular cosine term in the time domain function  has 

a magnitude of one every time it is sampled, it will appear in all  data points, and its amplitude (one) 

will be added into the summation  times.  Its amplitude is over-counted by a factor of .  We can undo 

this over-counting by dividing the summation for each frequency component by .  In fact, many authors 

actually include a leading factor  in their definitions of the forward transform in Equation .  I 

chose not to do so simply to avoid including in the code a division which does not actually have to be 

carried out during the transform process itself.  The division can be done in post-processing, as I have 

done here, where it can be included along with other operations which are essential to one's application.  

This saves execution time.  My division by , often called a normalization, was carried out by the 

following loop. 
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 ' Divide all DTFTRe() and DTFTIm() by NF 
       For I As Int32 = 0 To (NF - 1) Step 1 
           DTFTRe(I) = DTFTRe(I) / NF 
           DTFTIm(I) = DTFTIm(I) / NF 
       Next I 

 

For the sake of completeness, the loop which prepared the output string was the following. 

 
 ' Prepare for display a string with any non-zero frequencies 
       Dim DisplayString As String = "" 
       For K As Int32 = 0 To (NF - 1) Step 1 
           If ((DTFTRe(K) <> 0) Or (DTFTIm(K) <> 0)) Then 
               DisplayString = DisplayString & _ 
                   "K=" & Str(K) & ":" & _ 
                   "  DTFTRe(K)=" & Str(DTFTRe(K)) & _ 
                   "  DTFTIm(K)=" & Str(DTFTIm(K)) & vbCrLf 
           End If 
       Next K 
       labelResults.Text = DisplayString 
 

All right, having described how the results of the forward transform were processed before displaying 

them, let's turn to the results themselves.  The time-domain waveform consisted of one cosine term and 

one sine term, yet four different frequencies appeared in the spectrum.  This is not a mistake.  I am going 

to take the liberty of plotting both the Real components (in black) and the Imaginary components (in red) 

on the same vertical axis.  Here is the frequency spectrum as reported by subroutine DTFT_Forward(). 
 

 

 

 

 

 

 

 

 

 

The black arrows happen to represent the cosine term in the original waveform.  The sum of the 

magnitudes of the two black arrows  is equal to the magnitude (in Volts, say) of this 

component in the original waveform.  The red arrows correspond to the sine term.  The magnitudes (in the 

sense of length) of these two arrows is , the magnitude of the sine term in the original waveform. 

 

The lower two frequencies shown in the plot correspond to their time-domain source waveforms.  It is the 

upper two frequencies which seem to be out-of-place.  These two frequencies are not random, though.  

Notice that they are  less the two fundamental frequencies.  In particular, 

 

 

 

The conundrum is resolved if we recall an important assumption we made at the outset.  We assumed that 

the  discrete data points constituted one "period" and that the sequence was repeated over and over into 

both positive and negative times.  In other words, the sample of data was assumed to be periodic in time 

with a period equal to , where  is the time step between data points. 

 

  

 

 

frequency 

 

Re and Im 
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Since the data stream was assumed to be periodic, the frequency spectrum of its components will also be 

periodic.  This is shown in the following graph.  The results of the forward transform only represent one 

period of the spectrum, being the period whose extent I have labeled as DTFT in the graph.  The 

components in this base period are repeated every  in both frequency directions. 

 

 

: 

 

 

 

 

 

 

 

 

 

Second numerical example 

 

The frequencies of the two waveforms in the time-domain data in the first example were integral fractions 

of .  The periodic extensions of the data did not involve any discontinuities.  Let's contrive an 

example where the periodic extension is discontinuous.  An example is the following cosine waveform, 

whose period is such that its value at the end of the sample period is not the same as its value at the start 

of the sample period. 

 

I have used the following waveform in this second numerical example: 

 

 

 

In discretized form, it is: 

 

 

 

Check that, at  when the sample period begins, .  At , which is the time of the 

first data point in the first periodic repetition to the right, .  Physically, the 

waveform in Equation  has a frequency of . 

 

After running the forward transform, reducing to zero the artifacts of machine arithmetic, and normalizing 

by dividing all frequency components by , the first few frequency components are: 

 

 

frequency 

 

Re and Im 

    

DTFT 
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voltage, say 
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 K=0:  DTFTRe = 0.000305175781249763  DTFTIm = 0 
 K=1:  DTFTRe = 0.000305175781249759  DTFTIm = 0.0385830360127066 
 K=2:  DTFTRe = 0.000305175781249733  DTFTIm = 0.0832183099088844 
 K=3:  DTFTRe = 0.000305175781249682  DTFTIm = 0.1435985034116860 
 K=4:  DTFTRe = 0.000305175781249600  DTFTIm = 0.2425218960671190 
 K=5:  DTFTRe = 0.000305175781249370  DTFTIm = 0.4613187731565900 
 K=6:  DTFTRe = 0.000305175781248174  DTFTIm = 1.5278875707156900 
 K=7:  DTFTRe = 0.000305175781251779  DTFTIm = -1.650495569599100 
 K=8:  DTFTRe = 0.000305175781250512  DTFTIm = -0.585397335787591 
 K=9:  DTFTRe = 0.000305175781250309  DTFTIm = -0.369650014856724 
 K=10:  DTFTRe = 0.000305175781250189  DTFTIm = -0.275592779995049 
 K=11:  DTFTRe = 0.000305175781250216  DTFTIm = -0.222311451979611 
 K=12:  DTFTRe = 0.000305175781250123  DTFTIm = -0.187700927318971 
 K=13:  DTFTRe = 0.000305175781250086  DTFTIm = -0.163235585495960 
 K=14:  DTFTRe = 0.000305175781250095  DTFTIm = -0.144921301119241 
 K=15:  DTFTRe = 0.000305175781250129  DTFTIm = -0.130633039639302 
 K=16:  DTFTRe = 0.000305175781250050  DTFTIm = -0.119133212564099 
 K=17:  DTFTRe = 0.000305175781250049  DTFTIm = -0.109650490383235 
 K=18:  DTFTRe = 0.000305175781250059  DTFTIm = -0.101678050874574 
 K=19:  DTFTRe = 0.000305175781250057  DTFTIm = -0.0948684582170478 
 K=20:  DTFTRe = 0.000305175781250039  DTFTIm = -0.0889751196528697 

Whatever is going on here is not obvious from the table.  A more informative way to present the data is to 

plot it.  The following graph shows the Real and Imaginary frequency components up to .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Although the time-domain waveform is a cosine, there aren't any cosine-type frequency components, 

which are represented by the Real part of the spectrum.  The reason is that the time-domain waveform is 

not symmetric around the time .  The only way the Transform can handle asymmetric waveforms is 

to use sine components, which show up as the Imaginary components in the spectrum. 

 

The example I have used here is pretty extreme.  Even so, this phenomenon is a definite problem when 

real-time data is being sampled and transformed on an ongoing basis.  Taking slices, or windows, of the 

data stream as it passes by compromises those waveform components which do not fit nicely into the 

duration of the window.   
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I am going to try a few more examples but, before I do, I want to describe the inverse transform.  Alert 

readers may have seen that I referred to the DTFT transform we looked at above as the "forward" 

transform.  That is to distinguish it from the inverse, or reverse, transform which does the work in the 

opposite direction, taking frequency components and transforming them back into the time domain.   

 

The inverse discrete-time Fourier Transform 

 

The inverse transform, set out in Equation  above, is almost identical to the normal, or "forward", 

transform in Equation .  The sole difference is the algebraic sign of the exponent of the exponential 

term. 

 

Given all I have said about the regularities and symmetries inherent in the twiddle factors, it will come as 

no surprise that the procedures to solve the two transforms are almost identical.  The sole difference is the 

algebraic sign of the imaginary part of the twiddle factors.   Instead of proceeding clockwise around the 

unit circle in the complex plane as we did above, the twiddle factors for the inverse transform arise from a 

counter-clockwise traverse around the unit circle. 

 

Indeed, many implementations of fast Fourier Transforms use exactly the same code for both 

transformations.  If the twiddle factors are computed on-the-fly as they are needed, a Boolean flag can be 

used to tell the procedure whether a positive or negative sign should be used. 

 

I have chosen to include a separate and distinct subroutine in DTFTmodule.vb to handle the inverse 

transform.  It is called DTFT_Inverse().  I have a reason for doing this.  The application I have in mind 

for this module is going to require real-time inversion at the same time as real-time transformation of the 

raw data.  I do not want to use the same buffers for the input and output data.  The way it works is this. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To use the forward transform, time-domain data is loaded into vectors DataRe() and DataIm().  After the 

forward transform DTFT_Forward() has been executed, the frequency components can be read from the 

Time domain data 

DataRe() 

DataIm() 

Forward transform using DTFT_Forward() 

 

Forward transform 

DTFTRe() 

DTFTIm() 

Frequency domain data 

FreqRe() 
 
FreqIm() 
 

Inverse transform using DTFT_Inverse() 

 

Time domain result 

InvDTFTRe() 
 
InvDTFTIm() 
 

Other 

processing 
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vectors DTFTRe() and DTFTIm().  To use the inverse transform, the frequency components are loaded 

into input vectors FreqRe() and FreqIn().  After the inverse transform DTFT_Inverse() has been run, 

the sequence of time-domain samples can be read from output vectors InvDTFTRe() and InvDTFTIm().  
 

It will almost certainly be the case that one will want to carry out some processing on the results of a 

forward transform before synthesizing a new time-domain waveform using the inverse transform.  This 

processing is illustrated by the red arrow in the flowchart above. 

 

It is not necessary that the forward and inverse transforms use the same sample size .  The subroutines 

have been written so that separate sample sizes can be used for the two directions: NF for the forward 

transform and NI for the inverse transform.  The code for the two subroutines is virtually the same, but to 

avoid any confusion I have included a suffix "F" to the variables names used in the forward transform and  

suffix "I" to the variable names used in the inverse transform. 

 

Third numerical example 

 

Let's run a simple cosine waveform through the forward transform, and then try to reconstruct it using the 

inverse transform.  For convenience, I am going to use the same sample size (NF = NI = ) going 

both directions.  As the original data, I used the following  cosine waveform. 

 

 

 

whose sampled values are: 

 

 

 

The forward transform (after the same kind of post-processing as above) gives two frequency 

components, one at  and the second at : 
 
 K=512:  DTFTRe = 1.5  DTFTIm = 0 
 K=15872: DTFTRe = 1.5   DTFTIm = 0 

 

I will take these two components, exactly as they are, transfer their values to the input vectors FreqRe() 
and FreqIm() used by the inverse transform, and then run the inverse transform.  This is the code that 

carries out these steps. 

 
        NI = 16384 
        ' Third numerical example 
        ' Generate some test data in the frequency domain 
        For I As Int32 = 0 To (NF - 1) Step 1 
            FreqRe(I) = 0 
            FreqIm(I) = 0 
        Next I 
        FreqRe(512) = 1.5 
        FreqRe(16384 - 512) = 1.5 
        ' Initialize and then execute the inverse transform 
        DTFT_Init_Inverse() 
        DTFT_Inverse() 

 

The results of the inverse transform are located in the output vectors InvDTFTRe() and InvDTFTIm().  I 
exported these values into Excel and plotted the Real component (the red trace in the following graph).  

For the sake of comparison, I also plotted the original cosine function on the same graph (the black trace). 
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The inverse transform re-creates the original waveform exactly.  The Imaginary component generated by 

the inverse transform is zero for all times, just like the original time-domain waveform. 

 

Fourth numerical example 

 

I am going to repeat Example #3, but with a small difference.  The frequency spectrum of the cosine 

waveform has two components, one at  and the other at .  In Example #3, both of these 

frequency componnts were input into the inverse transform, which then synthesized the original 

waveform. 

 

In this example, I want to find out what happens if only one of the frequency components, the one at 

, is sent to the inverse transform.  Here's the control program I used. 

 
        NI = 16384 
        ' Fourth numerical example 
        ' Generate some test data in the frequency domain 
        For I As Int32 = 0 To (NF - 1) Step 1 
            FreqRe(I) = 0 
            FreqIm(I) = 0 
        Next I 
        FreqRe(512) = 1.5 
        ' Initialize and then execute the inverse transform 
        DTFT_Init_Inverse() 
        DTFT_Inverse() 

 

The following two graphs show the Real and Imaginary parts, respectively, of the original data (the black 

curve) and of the time sequence generated by the inverse transform acting on only the one frequency 

component (the red curve). 

 

The synthesis is not perfect. 
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The Real part of the inverse transform has the same shape as the original cosine, but only one-half the 

amplitude.  The inverse transform also generates an Imaginary waveform which has no counterpart in the 

original signal.   

 

The original cosine function is not recovered, at least not in the perfect shape one would like.  It looks as 

if both frequency components are required for the inverse transform to do a proper job.  

 

______________________ 

 

 



~ 22 ~ 

 

Appendix "A" is a listing of the DTFT module and the Windows Form application which carried out the 

numerical examples.  The code was developed in Visual Basic 2010 Express. 

 

 

 

 

Jim Hawley 

© June 2015 

 

If you found this description helpful, please let me know.  If you spot any errors or omissions, please send 

an e-mail.  Thank you. 
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Appendix "A" 

 

Listing of the VB2010 code  

 

The program consists of a Windows Forms application (Form1) and the module DTFT_Module.vb. 

 

Windows Form application Form1 
 
Option Strict On 
Option Explicit On 
 
Public Class Form1 
    Inherits System.Windows.Forms.Form 
 
    Public Sub New() 
        InitializeComponent() 
        With Me 
            Text = "Fast Fourier transform" 
            FormBorderStyle = Windows.Forms.FormBorderStyle.None 
            Size = New Drawing.Size(1000, 700) 
            MinimizeBox = True 
            MaximizeBox = True 
            FormBorderStyle = Windows.Forms.FormBorderStyle.Fixed3D 
            With Me 
                Controls.Add(buttonGo) 
                Controls.Add(buttonExit) 
                Controls.Add(labelResults) 
            End With 
            Visible = True 
            PerformLayout() 
            BringToFront() 
        End With 
    End Sub 
    
    '//////////////////////////////////////////////////////////////////////////////////// 
    '// Controls for MainForm. 
 
    Private WithEvents buttonGo As New Windows.Forms.Button With _ 
        {.Size = New Drawing.Size(100, 30), _ 
         .Location = New Drawing.Point(5, 5), _ 
         .Text = "Execute", .TextAlign = ContentAlignment.MiddleCenter} 
 
    Private WithEvents buttonExit As New Windows.Forms.Button With _ 
        {.Size = New Drawing.Size(100, 30), _ 
         .Location = New Drawing.Point(5, 40), _ 
         .Text = "Exit", .TextAlign = ContentAlignment.MiddleCenter} 
 
    Private labelResults As New Windows.Forms.Label With _ 
        {.Size = New Drawing.Size(800, 700), _ 
         .Location = New Drawing.Point(110, 5), _ 
         .Text = "", .TextAlign = ContentAlignment.TopLeft} 
 
    '/////////////////////////////////////////////e////////////////////////////////////// 
    '// Handlers for controls for MainForm. 
 
    ' File names 
    Private ThisDirectory As String = FileSystem.CurDir.ToString & "\" 
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    Private FileReader As IO.StreamReader 
    Private FileWriter As IO.StreamWriter 
 
    Private Sub buttonGo_Click() Handles buttonGo.MouseClick 
 
        NF = 16384 
 
        ' First numerical example 
        ' Generate some test data for a dual-tone waveform in the time domain 
        For I As Int32 = 0 To (NF - 1) Step 1 
            DataRe(I) = _ 
                (5 * Math.Cos(TwoPi * 1024 * I / NF)) + _ 
                (2 * Math.Sin(TwoPi * 128 * I / NF)) 
            DataIm(I) = 0 
        Next I 
 
        '' Second numerical example 
        '' Waveform with non-integral frequency 
        'For I As Int32 = 0 To (NF - 1) Step 1 
        '    DataRe(I) = 5 * Math.Cos(TwoPi * 6.5 * I / NF) 
        '    DataIm(I) = 0 
        'Next I 
 
        ' Initialize and then execute the forward transform 
        DTFT_Init_Forward() 
        DTFT_Forward() 
 
        ' Set exactly to zero the near-zero results of machine imprecision 
        For K As Int32 = 0 To (NF - 1) Step 1 
            If (Math.Abs(DTFTRe(K)) < Val("1E-8")) Then 
                DTFTRe(K) = 0 
            End If 
            If (Math.Abs(DTFTIm(K)) < Val("1E-8")) Then 
                DTFTIm(K) = 0 
            End If 
        Next K 
 
        ' Divide all DTFTRe() and DTFTIm() by NF 
        For I As Int32 = 0 To (NF - 1) Step 1 
            DTFTRe(I) = DTFTRe(I) / NF 
            DTFTIm(I) = DTFTIm(I) / NF 
        Next I 
 
        ' Prepare for display a string with any non-zero frequencies 
        Dim DisplayString As String = "" 
        For K As Int32 = 0 To (NF - 1) Step 1 
            If ((DTFTRe(K) <> 0) Or (DTFTIm(K) <> 0)) Then 
                DisplayString = DisplayString & _ 
                    "K=" & Str(K) & ":" & _ 
                    "  DTFTRe(K)=" & Str(DTFTRe(K)) & _ 
                    "  DTFTIm(K)=" & Str(DTFTIm(K)) & vbCrLf 
            End If 
        Next K 
        labelResults.Text = DisplayString 
 
        '' Write spectrum to a text output file in csv format 
        'FileWriter = New IO.StreamWriter(ThisDirectory & "DTFT_results.txt") 
        'For K As Int32 = 0 To (NF - 1) Step 1 
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        '    FileWriter.WriteLine( _ 
        '        "K=," & Str(K) & "," & _ 
        '        "DTFTRe(K)=," & Str(DTFTRe(K)) & "," & _ 
        '        "DTFTIm(K)=," & Str(DTFTIm(K)) & ",") 
        'Next K 
        'FileWriter.Close() 
 
        'NI = 16384 
 
        '' Third numerical example 
        '' Set the frequency domain data directly 
        'For I As Int32 = 0 To (NI - 1) Step 1 
        '    FreqRe(I) = 0 
        '    FreqIm(I) = 0 
        'Next I 
        'FreqRe(512) = 1.5 
        'FreqRe(16384 - 512) = 1.5 
 
        '' Fourth numerical example 
        '' Set the frequency domain data directly 
        'For I As Int32 = 0 To (NF - 1) Step 1 
        '    FreqRe(I) = 0 
        '    FreqIm(I) = 0 
        'Next I 
        'FreqRe(512) = 1.5 
 
        '' Initialize and then execute the inverse transform 
        'DTFT_Init_Inverse() 
        'DTFT_Inverse() 
 
        '' Write synthesized waveform to a text output file in csv format 
        '' Also write the expected time-domain signal 
        'FileWriter = New IO.StreamWriter(ThisDirectory & "DTFT_results.txt") 
        'For T As Int32 = 0 To (NI - 1) Step 1 
        '    DataRe(T) = 3 * Math.Cos(TwoPi * 512 * T / NF)) 
        '    DataIm(T) = 0 
        '    FileWriter.WriteLine( _ 
        '        "T=," & Str(T) & "," & _ 
        '        "DataRe(T)=," & Str(DataRe(T)) & "," & _ 
        '        "DataIm(T)=," & Str(DataIm(T)) & "," & _ 
        '        "InvDTFTRe(T)=," & Str(InvDTFTRe(T)) & "," & _ 
        '        "InvDTFTIm(T)=," & Str(InvDTFTIm(T)) & ",") 
        'Next T 
        'FileWriter.Close() 
 
        MsgBox("All done") 
    End Sub 
 
    Private Sub buttonExit_Click() Handles buttonExit.MouseClick 
        Application.Exit() 
    End Sub 
 
End Class 
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Module FFT_module.vb 
 
Option Strict On 
Option Explicit On 
 
' Subroutines in this module 
'    DTFT_Init_Forward() 
'    DTFT_Forward() 
'    DTFT_Init_Inverse() 
'    DTFT_Inverse() 
'    ComplexMult() 
 
Public Module FFT_module 
 
    '//////////////////////////////////////////////////////////////////////////////////// 
    ' Variables for forward transform 
    Public NF As Int32 = CInt(2 ^ 14) 
    Public NFminus1 As Int32 = NF - 1 
    ' Time-domain data points 
    Public DataRe(NFminus1) As Double 
    Public DataIm(NFminus1) As Double 
    ' DTFT transform result 
    Public DTFTRe(NFminus1) As Double 
    Public DTFTIm(NFminus1) As Double 
    ' Constants 
    Public HalfNF As Int32 = CInt(NF / 2) 
    Public HalfNFminus1 As Int32 = HalfNF - 1 
    Public NumBitsF As Int32 
    Public TwoPi As Double = 2 * Math.PI 
    Public TwoPiOverNF As Double = TwoPi / NF 
    ' Supporting vectors 
    Public ReverseBitsF(NFminus1) As Int32 
    Public TwiddleReF(HalfNFminus1) As Double 
    Public TwiddleImF(HalfNFminus1) As Double 
    ' Temporary storage vectors 
    Private TempTwiddleReF(HalfNFminus1) As Double 
    Private TempTwiddleImF(HalfNFminus1) As Double 
    Private TempProductReF(HalfNFminus1) As Double 
    Private TempProductImF(HalfNFminus1) As Double 
    Private TempRe, TempIm As Double 
 
    '//////////////////////////////////////////////////////////////////////////////////// 
    ' Variables for inverse transform 
    Public NI As Int32 = CInt(2 ^ 14) 
    Public NIminus1 As Int32 = NF - 1 
    ' Frequency data points 
    Public FreqRe(NIminus1) As Double 
    Public FreqIm(NIminus1) As Double 
    ' Inverse DTFT transform result 
    Public InvDTFTRe(NIminus1) As Double 
    Public InvDTFTIm(NIminus1) As Double 
    ' Constants 
    Public HalfNI As Int32 = CInt(NI / 2) 
    Public HalfNIminus1 As Int32 = HalfNI - 1 
    Public NumBitsI As Int32 
    Public TwoPiOverNI As Double = TwoPi / NI 
    ' Supporting vectors 
    Public ReverseBitsI(NIminus1) As Int32 
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    Public TwiddleReI(HalfNIminus1) As Double 
    Public TwiddleImI(HalfNIminus1) As Double 
    ' Temporary storage vectors 
    Private TempTwiddleReI(HalfNIminus1) As Double 
    Private TempTwiddleImI(HalfNIminus1) As Double 
    Private TempProductReI(HalfNIminus1) As Double 
    Private TempProductImI(HalfNIminus1) As Double 
 
    '//////////////////////////////////////////////////////////////////////////////////// 
    ' Subroutine DTFT_Init_Forward must be called once before any forward transform 
    ' processing is done using DTFT_Forward(). 
    Public Sub DTFT_Init_Forward() 
        ' Step #1: Ensure that NF is a power of two, and calculate NumBitsF 
        Dim TempInt As Int32 = 1 
        NumBitsF = -1 
        For I As Int32 = 1 To 31 Step 1 
            TempInt = 2 * TempInt 
            If (TempInt = NF) Then 
                NumBitsF = I 
                Exit For 
            End If 
        Next I 
        If (NumBitsF < 0) Then 
            MsgBox("Error: NF is not a power of two.") 
            Application.Exit() 
        End If 
        ' Step #2: Populate the ReverseBitsF() vector 
        Dim IndexBitRegister As Int32 
        Dim ReverseBitRegister As Int32 
        For I As Int32 = 0 To NFminus1 Step 1 
            IndexBitRegister = I 
            ReverseBitRegister = 0 
            For J As Int32 = 0 To (NumBitsF - 1) Step 1 
                ' Shift the ReverseBitRegister one space to the left 
                ReverseBitRegister = 2 * ReverseBitRegister 
                ' Inspect the least significant bit of IndexBitRegister 
                If ((IndexBitRegister And 1) <> 0) Then 
                    ' The LSB of IndexBitRegister is one, so set the  
                    ' LSB of ReverseBitRegister 
                    ReverseBitRegister = ReverseBitRegister Or 1 
                    ' There is no Else.  If the LSB of IndexBitRegister is zero, 
                    ' then the LSB of ReverseBitRegister should be cleared.  But 
                    ' nothing needs to be done since ReverseBitRegister was 
                    ' initialized with all of its bit cleared to zero. 
                End If 
                ' Shift the IndexBitRegister one space to the right so the new LSB 
                ' can be examined during the next iteration.  The backslash is  
                ' used for integer division. 
                IndexBitRegister = IndexBitRegister \ 2 
            Next J 
            ReverseBitsF(I) = ReverseBitRegister 
        Next I 
        ' Step #3: Populate the twiddle factors 
        Dim TempArgument As Double 
        For I As Int32 = 0 To HalfNFminus1 Step 1 
            TempArgument = I * TwoPiOverNF 
            TwiddleReF(I) = Math.Cos(TempArgument) 
            TwiddleImF(I) = -Math.Sin(TempArgument) 
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        Next I 
    End Sub 
 
    '//////////////////////////////////////////////////////////////////////////////////// 
    Public Sub DTFT_Forward() 
        ' Stage #1: Move the input data DataRe() and DataIm() into the working vectors 
        ' in bit-reversed order.  While doing this, implement the stage #1 changes of 
        ' sign.  It is easiest to do this in groups, or strides, of 2.  After having 
        ' re-ordered the data points in this stage using the bit-reversal selection 
        ' technique, there will be no further re-ordering in any of the following stages. 
        For I As Int32 = 0 To (NFminus1 - 1) Step 2 
            DTFTRe(I) = DataRe(ReverseBitsF(I)) + DataRe(ReverseBitsF(I + 1)) 
            DTFTIm(I) = DataIm(ReverseBitsF(I)) + DataIm(ReverseBitsF(I + 1)) 
            DTFTRe(I + 1) = DataRe(ReverseBitsF(I)) - DataRe(ReverseBitsF(I + 1)) 
            DTFTIm(I + 1) = DataIm(ReverseBitsF(I)) - DataIm(ReverseBitsF(I + 1)) 
        Next I 
        ' Stage #2: Let's do the Stage #2 processing explicitly.  It is easiest to do 
        ' this in groups, or strides, of 4. 
        ' Step #1: Figure out exactly which twiddle factors are needed.  Two factors are 
        ' needed and they are stored in TempTwiddleReF(1) and TempTwiddleImF(1),  
        ' zero-based.  Since the same twiddle factors are used for all of these blocks 
        ' of four, we can figure them out before starting to process the blocks. 
        TempTwiddleReF(0) = 1 
        TempTwiddleImF(0) = 0 
        TempTwiddleReF(1) = TwiddleReF(NF \ 4) 
        TempTwiddleImF(1) = TwiddleImF(NF \ 4) 
        For I As Int32 = 0 To (NFminus1 - 3) Step 4 
            ' Step #2: Multiply the upper half of the points by their twiddle factors. 
            ' The results could be stored in their corresponding DTFTRe() and DTFTIm() 
            ' locations.  However, to avoid overwriting DTFTRe(2) and DTFTIm(2) as the 
            ' multiplications are being carried out, I will store the products in 
            ' temporary vectors TempProductReF(1) and TempProductImF(1), zero-based. 
            ComplexMult( _ 
                DTFTRe(I + 2), DTFTIm(I + 2), _ 
                TempTwiddleReF(0), TempTwiddleImF(0), _ 
                TempProductReF(0), TempProductImF(0)) 
            ComplexMult( _ 
                DTFTRe(I + 3), DTFTIm(I + 3), _ 
                TempTwiddleReF(1), TempTwiddleImF(1), _ 
                TempProductReF(1), TempProductImF(1)) 
            ' Step #3: Add and subtract as necessary to calculate the four results. 
            ' Since the results overwrite terms in the DTFT() vectors, we need a 
            ' temporary complex variable to hold interim results before they are 
            ' overwritten. 
            TempRe = DTFTRe(I) + TempProductReF(0) 
            TempIm = DTFTIm(I) + TempProductImF(0) 
            DTFTRe(I + 2) = DTFTRe(I) - TempProductReF(0) 
            DTFTIm(I + 2) = DTFTIm(I) - TempProductImF(0) 
            DTFTRe(I) = TempRe 
            DTFTIm(I) = TempIm 
            TempRe = DTFTRe(I + 1) + TempProductReF(1) 
            TempIm = DTFTIm(I + 1) + TempProductImF(1) 
            DTFTRe(I + 3) = DTFTRe(I + 1) - TempProductReF(1) 
            DTFTIm(I + 3) = DTFTIm(I + 1) - TempProductImF(1) 
            DTFTRe(I + 1) = TempRe 
            DTFTIm(I + 1) = TempIm 
        Next I 
        ' Stage #3: Let's also do the Stage #3 processing explicitly.  This is done 
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        ' in groups, or strides, of 8. 
        ' Step #1: Figure out exactly which twiddle factors are needed.  Four factors 
        ' are needed and they are stored in TempTwiddleReF(3) and TempTwiddleImF(3),  
        ' zero-based.  Since the same twiddle factors are used for all of these blocks, 
        ' we can figure them out before starting into the stride. 
        TempTwiddleReF(0) = 1 
        TempTwiddleImF(0) = 0 
        TempTwiddleReF(1) = TwiddleReF(NF \ 8) 
        TempTwiddleImF(1) = TwiddleImF(NF \ 8) 
        TempTwiddleReF(2) = TwiddleReF(2 * NF \ 8) 
        TempTwiddleImF(2) = TwiddleImF(2 * NF \ 8) 
        TempTwiddleReF(3) = TwiddleReF(3 * NF \ 8) 
        TempTwiddleImF(3) = TwiddleImF(3 * NF \ 8) 
        For I As Int32 = 0 To (NFminus1 - 7) Step 8 
            ' Step #2: Multiply the upper half of the points by their twiddle factors. 
            ' The results could be stored in their corresponding DTFTRe() and DTFTIm() 
            ' locations.  However, to avoid overwriting DTFTRe(4), DTFTIm(4), DTFTRe(6) 
            ' and DTFTIm(6) as the multiplications are being carried out, I will store 
            ' the products in temporary vectors TempProductReF(3) and TempProductImF(3), 
            ' zero-based. 
            ComplexMult( _ 
                DTFTRe(I + 4), DTFTIm(I + 4), _ 
                TempTwiddleReF(0), TempTwiddleImF(0), _ 
                TempProductReF(0), TempProductImF(0)) 
            ComplexMult( _ 
                DTFTRe(I + 5), DTFTIm(I + 5), _ 
                TempTwiddleReF(1), TempTwiddleImF(1), _ 
                TempProductReF(1), TempProductImF(1)) 
            ComplexMult( _ 
                DTFTRe(I + 6), DTFTIm(I + 6), _ 
                TempTwiddleReF(2), TempTwiddleImF(2), _ 
                TempProductReF(2), TempProductImF(2)) 
            ComplexMult( _ 
                DTFTRe(I + 7), DTFTIm(I + 7), _ 
                TempTwiddleReF(3), TempTwiddleImF(3), _ 
                TempProductReF(3), TempProductImF(3)) 
            ' Step #3: Add and subtract as necessary to calculate the eight results. 
            ' Since the results overwrite terms in the DTFT() vectors, we need a 
            ' temporary complex variable to hold interim results before they are 
            ' overwritten. 
            TempRe = DTFTRe(I) + TempProductReF(0) 
            TempIm = DTFTIm(I) + TempProductImF(0) 
            DTFTRe(I + 4) = DTFTRe(I) - TempProductReF(0) 
            DTFTIm(I + 4) = DTFTIm(I) - TempProductImF(0) 
            DTFTRe(I) = TempRe 
            DTFTIm(I) = TempIm 
            TempRe = DTFTRe(I + 1) + TempProductReF(1) 
            TempIm = DTFTIm(I + 1) + TempProductImF(1) 
            DTFTRe(I + 5) = DTFTRe(I + 1) - TempProductReF(1) 
            DTFTIm(I + 5) = DTFTIm(I + 1) - TempProductImF(1) 
            DTFTRe(I + 1) = TempRe 
            DTFTIm(I + 1) = TempIm 
            TempRe = DTFTRe(I + 2) + TempProductReF(2) 
            TempIm = DTFTIm(I + 2) + TempProductImF(2) 
            DTFTRe(I + 6) = DTFTRe(I + 2) - TempProductReF(2) 
            DTFTIm(I + 6) = DTFTIm(I + 2) - TempProductImF(2) 
            DTFTRe(I + 2) = TempRe 
            DTFTIm(I + 2) = TempIm 
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            TempRe = DTFTRe(I + 3) + TempProductReF(3) 
            TempIm = DTFTIm(I + 3) + TempProductImF(3) 
            DTFTRe(I + 7) = DTFTRe(I + 3) - TempProductReF(3) 
            DTFTIm(I + 7) = DTFTIm(I + 3) - TempProductImF(3) 
            DTFTRe(I + 3) = TempRe 
            DTFTIm(I + 3) = TempIm 
        Next I 
        ' Stages #4+: Now that the pattern for processing has been pretty well 
        ' established, I will use a loop to run through all the remaining stages. 
        For Istage As Int32 = 4 To NumBitsF Step 1 
            Dim Stride As Int32 = CInt(2 ^ Istage) 
            Dim HalfStride As Int32 = Stride \ 2 
            Dim HalfStrideMinus1 As Int32 = HalfStride - 1 
            ' Step #1: Figure out exactly which twiddle factors are needed.  The  
            ' number of factors needed is Stride/2 and the factors are stored in 
            ' TempTwiddleReF(Stride/2 - 1) and TempTwiddleImF(Stride/2 - 1), zero-based. 
            For J As Int32 = 0 To HalfStrideMinus1 Step 1 
                ' Carry out the division before the multipliction to ensure there 
                ' is not an arithmetic overlow. 
                TempTwiddleReF(J) = TwiddleReF(J * (NF \ Stride)) 
                TempTwiddleImF(J) = TwiddleImF(J * (NF \ Stride)) 
            Next J 
            For I As Int32 = 0 To (NFminus1 + 1 - Stride) Step Stride 
                ' Step #2: Multiply the upper half of the points by their twiddle 
                ' factors.  The results could be stored in their corresponding DTFTRe() 
                ' and DTFTIm() locations.  However, to avoid overwriting some of the 
                ' interim results as the multiplications are being carried out, I will 
                ' store the products in temporary vectors TempProductReF(Stride/2 - 1) 
                ' and TempProductImF(Stride/2 - 1), zero-based. 
                For J As Int32 = 0 To HalfStrideMinus1 Step 1 
                    ComplexMult( _ 
                        DTFTRe(I + J + HalfStride), DTFTIm(I + J + HalfStride), _ 
                        TempTwiddleReF(J), TempTwiddleImF(J), _ 
                        TempProductReF(J), TempProductImF(J)) 
                Next J 
                ' Step #3: Add and subtract as necessary to calculate the results. 
                ' Since the results overwrite terms in the DTFT() vectors, we need a 
                ' temporary complex variable to hold interim results before they are 
                ' overwritten.  These will be processed in groups of two. 
                For J As Int32 = 0 To HalfStrideMinus1 Step 1 
                    TempRe = DTFTRe(I + J) + TempProductReF(J) 
                    TempIm = DTFTIm(I + J) + TempProductImF(J) 
                    DTFTRe(I + J + HalfStride) = DTFTRe(I + J) - TempProductReF(J) 
                    DTFTIm(I + J + HalfStride) = DTFTIm(I + J) - TempProductImF(J) 
                    DTFTRe(I + J) = TempRe 
                    DTFTIm(I + J) = TempIm 
                Next J 
            Next I 
        Next Istage 
    End Sub 
 
    '//////////////////////////////////////////////////////////////////////////////////// 
    ' Subroutine DTFT_Init_Inverse must be called once before any inverse transform 
    ' processing is done using DTFT_Inverse(). 
    Public Sub DTFT_Init_Inverse() 
        ' Step #1: Ensure that NI is a power of two, and calculate NumBitsI 
        Dim TempInt As Int32 = 1 
        NumBitsI = -1 
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        For I As Int32 = 1 To 31 Step 1 
            TempInt = 2 * TempInt 
            If (TempInt = NI) Then 
                NumBitsI = I 
                Exit For 
            End If 
        Next I 
        If (NumBitsI < 0) Then 
            MsgBox("Error: NI is not a power of two.") 
            Application.Exit() 
        End If 
        ' Step #2: Populate the ReverseBitsI() vector 
        Dim IndexBitRegister As Int32 
        Dim ReverseBitRegister As Int32 
        For I As Int32 = 0 To NIminus1 Step 1 
            IndexBitRegister = I 
            ReverseBitRegister = 0 
            For J As Int32 = 0 To (NumBitsI - 1) Step 1 
                ' Shift the ReverseBitRegister one space to the left 
                ReverseBitRegister = 2 * ReverseBitRegister 
                ' Inspect the least significant bit of IndexBitRegister 
                If ((IndexBitRegister And 1) <> 0) Then 
                    ' The LSB of IndexBitRegister is one, so set the  
                    ' LSB of ReverseBitRegister 
                    ReverseBitRegister = ReverseBitRegister Or 1 
                    ' There is no Else.  If the LSB of IndexBitRegister is zero, 
                    ' then the LSB of ReverseBitRegister should be cleared.  But 
                    ' nothing needs to be done since ReverseBitRegister was 
                    ' initialized with all of its bit cleared to zero. 
                End If 
                ' Shift the IndexBitRegister one space to the right so the new LSB 
                ' can be examined during the next iteration.  The backslash is  
                ' used for integer division. 
                IndexBitRegister = IndexBitRegister \ 2 
            Next J 
            ReverseBitsI(I) = ReverseBitRegister 
        Next I 
        ' Step #3: Populate the twiddle factors 
        Dim TempArgument As Double 
        For I As Int32 = 0 To HalfNIminus1 Step 1 
            TempArgument = I * TwoPiOverNI 
            TwiddleReI(I) = Math.Cos(TempArgument) 
            TwiddleImI(I) = Math.Sin(TempArgument) 
        Next I 
    End Sub 
 
    '//////////////////////////////////////////////////////////////////////////////////// 
    Public Sub DTFT_Inverse() 
        ' Stage #1: Move the input data FreqRe() and FreqIm() into the working vectors 
        ' in bit-reversed order.  While doing this, implement the stage #1 changes of 
        ' sign.  It is easiest to do this in groups, or strides, of 2.  After having 
        ' re-ordered the data points in this stage using the bit-reversal selection 
        ' technique, there will be no further re-ordering in any of the following stages. 
        For I As Int32 = 0 To (NIminus1 - 1) Step 2 
            InvDTFTRe(I) = FreqRe(ReverseBitsI(I)) + FreqRe(ReverseBitsI(I + 1)) 
            InvDTFTIm(I) = FreqIm(ReverseBitsI(I)) + FreqIm(ReverseBitsI(I + 1)) 
            InvDTFTRe(I + 1) = FreqRe(ReverseBitsI(I)) - FreqRe(ReverseBitsI(I + 1)) 
            InvDTFTIm(I + 1) = FreqIm(ReverseBitsI(I)) - FreqIm(ReverseBitsI(I + 1)) 
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        Next I 
        ' Stage #2: Let's do the Stage #2 processing explicitly.  It is easiest to do 
        ' this in groups, or strides, of 4. 
        ' Step #1: Figure out exactly which twiddle factors are needed.  Two factors are 
        ' needed and they are stored in TempTwiddleReI(1) and TempTwiddleImI(1),  
        ' zero-based.  Since the same twiddle factors are used for all of these blocks 
        ' of four, we can figure them out before starting to process the blocks. 
        TempTwiddleReI(0) = 1 
        TempTwiddleImI(0) = 0 
        TempTwiddleReI(1) = TwiddleReI(NI \ 4) 
        TempTwiddleImI(1) = TwiddleImI(NI \ 4) 
        For I As Int32 = 0 To (NIminus1 - 3) Step 4 
            ' Step #2: Multiply the upper half of the points by their twiddle factors. 
            ' The results could be stored in their corresponding InvDTFTRe() and  
            ' InvDTFTIm() locations.  However, to avoid overwriting InvDTFTRe(2) and  
            ' InvDTFTIm(2) as the multiplications are being carried out, I will store 
            ' the products in temporary vectors TempProductReI(1) and TempProductImI(1), 
            ' zero-based. 
            ComplexMult( _ 
                InvDTFTRe(I + 2), InvDTFTIm(I + 2), _ 
                TempTwiddleReI(0), TempTwiddleImI(0), _ 
                TempProductReI(0), TempProductImI(0)) 
            ComplexMult( _ 
                InvDTFTRe(I + 3), InvDTFTIm(I + 3), _ 
                TempTwiddleReI(1), TempTwiddleImI(1), _ 
                TempProductReI(1), TempProductImI(1)) 
            ' Step #3: Add and subtract as necessary to calculate the four results. 
            ' Since the results overwrite terms in the InvDTFT() vectors, we need a 
            ' temporary complex variable to hold interim results before they are 
            ' overwritten. 
            TempRe = InvDTFTRe(I) + TempProductReI(0) 
            TempIm = InvDTFTIm(I) + TempProductImI(0) 
            InvDTFTRe(I + 2) = InvDTFTRe(I) - TempProductReI(0) 
            InvDTFTIm(I + 2) = InvDTFTIm(I) - TempProductImI(0) 
            InvDTFTRe(I) = TempRe 
            InvDTFTIm(I) = TempIm 
            TempRe = InvDTFTRe(I + 1) + TempProductReI(1) 
            TempIm = InvDTFTIm(I + 1) + TempProductImI(1) 
            InvDTFTRe(I + 3) = InvDTFTRe(I + 1) - TempProductReI(1) 
            InvDTFTIm(I + 3) = InvDTFTIm(I + 1) - TempProductImI(1) 
            InvDTFTRe(I + 1) = TempRe 
            InvDTFTIm(I + 1) = TempIm 
        Next I 
        ' Stage #3: Let's also do the Stage #3 processing explicitly.  This is done 
        ' in groups, or strides, of 8. 
        ' Step #1: Figure out exactly which twiddle factors are needed.  Four factors 
        ' are needed and they are stored in TempTwiddleReI(3) and TempTwiddleImI(3),  
        ' zero-based.  Since the same twiddle factors are used for all of these blocks, 
        ' we can figure them out before starting into the stride. 
        TempTwiddleReI(0) = 1 
        TempTwiddleImI(0) = 0 
        TempTwiddleReI(1) = TwiddleReI(NI \ 8) 
        TempTwiddleImI(1) = TwiddleImI(NI \ 8) 
        TempTwiddleReI(2) = TwiddleReI(2 * NI \ 8) 
        TempTwiddleImI(2) = TwiddleImI(2 * NI \ 8) 
        TempTwiddleReI(3) = TwiddleReI(3 * NI \ 8) 
        TempTwiddleImI(3) = TwiddleImI(3 * NI \ 8) 
        For I As Int32 = 0 To (NIminus1 - 7) Step 8 
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            ' Step #2: Multiply the upper half of the points by their twiddle factors. 
            ' The results could be stored in their corresponding InvDTFTRe() and  
            ' InvDTFTIm() locations.  However, to avoid overwriting InvDTFTRe(4),  
            ' InvDTFTIm(4), InvDTFTRe(6) and InvDTFTIm(6) as the multiplications are 
            ' being carried out, I will store the products in temporary vectors 
            ' TempProductReI(3) and TempProductImI(3), zero-based. 
            ComplexMult( _ 
                InvDTFTRe(I + 4), InvDTFTIm(I + 4), _ 
                TempTwiddleReI(0), TempTwiddleImI(0), _ 
                TempProductReI(0), TempProductImI(0)) 
            ComplexMult( _ 
                InvDTFTRe(I + 5), InvDTFTIm(I + 5), _ 
                TempTwiddleReI(1), TempTwiddleImI(1), _ 
                TempProductReI(1), TempProductImI(1)) 
            ComplexMult( _ 
                InvDTFTRe(I + 6), InvDTFTIm(I + 6), _ 
                TempTwiddleReI(2), TempTwiddleImI(2), _ 
                TempProductReI(2), TempProductImI(2)) 
            ComplexMult( _ 
                InvDTFTRe(I + 7), InvDTFTIm(I + 7), _ 
                TempTwiddleReI(3), TempTwiddleImI(3), _ 
                TempProductReI(3), TempProductImI(3)) 
            ' Step #3: Add and subtract as necessary to calculate the eight results. 
            ' Since the results overwrite terms in the InvDTFT() vectors, we need a 
            ' temporary complex variable to hold interim results before they are 
            ' overwritten. 
            TempRe = InvDTFTRe(I) + TempProductReI(0) 
            TempIm = InvDTFTIm(I) + TempProductImI(0) 
            InvDTFTRe(I + 4) = InvDTFTRe(I) - TempProductReI(0) 
            InvDTFTIm(I + 4) = InvDTFTIm(I) - TempProductImI(0) 
            InvDTFTRe(I) = TempRe 
            InvDTFTIm(I) = TempIm 
            TempRe = InvDTFTRe(I + 1) + TempProductReI(1) 
            TempIm = InvDTFTIm(I + 1) + TempProductImI(1) 
            InvDTFTRe(I + 5) = InvDTFTRe(I + 1) - TempProductReI(1) 
            InvDTFTIm(I + 5) = InvDTFTIm(I + 1) - TempProductImI(1) 
            InvDTFTRe(I + 1) = TempRe 
            InvDTFTIm(I + 1) = TempIm 
            TempRe = InvDTFTRe(I + 2) + TempProductReI(2) 
            TempIm = InvDTFTIm(I + 2) + TempProductImI(2) 
            InvDTFTRe(I + 6) = InvDTFTRe(I + 2) - TempProductReI(2) 
            InvDTFTIm(I + 6) = InvDTFTIm(I + 2) - TempProductImI(2) 
            InvDTFTRe(I + 2) = TempRe 
            InvDTFTIm(I + 2) = TempIm 
            TempRe = InvDTFTRe(I + 3) + TempProductReI(3) 
            TempIm = InvDTFTIm(I + 3) + TempProductImI(3) 
            InvDTFTRe(I + 7) = InvDTFTRe(I + 3) - TempProductReI(3) 
            InvDTFTIm(I + 7) = InvDTFTIm(I + 3) - TempProductImI(3) 
            InvDTFTRe(I + 3) = TempRe 
            InvDTFTIm(I + 3) = TempIm 
        Next I 
        ' Stages #4+: Now that the pattern for processing has been pretty well 
        ' established, I will use a loop to run through all the remaining stages. 
        For Istage As Int32 = 4 To NumBitsI Step 1 
            Dim Stride As Int32 = CInt(2 ^ Istage) 
            Dim HalfStride As Int32 = Stride \ 2 
            Dim HalfStrideMinus1 As Int32 = HalfStride - 1 
            ' Step #1: Figure out exactly which twiddle factors are needed.  The  
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            ' number of factors needed is Stride/2 and the factors are stored in 
            ' TempTwiddleReI(Stride/2 - 1) and TempTwiddleImI(Stride/2 - 1), zero-based. 
            For J As Int32 = 0 To HalfStrideMinus1 Step 1 
                ' Carry out the division before the multipliction to ensure there 
                ' is not an arithmetic overlow. 
                TempTwiddleReI(J) = TwiddleReI(J * (NI \ Stride)) 
                TempTwiddleImI(J) = TwiddleImI(J * (NI \ Stride)) 
            Next J 
            For I As Int32 = 0 To (NIminus1 + 1 - Stride) Step Stride 
                ' Step #2: Multiply the upper half of the points by their twiddle 
                ' factors.  The results could be stored in their corresponding  
                ' InvDTFTRe() and InvDTFTIm() locations.  However, to avoid overwriting 
                ' some of the interim results as the multiplications are being carried 
                ' out, I will store the products in temporary vectors  
                ' TempProductReI(Stride / 2 - 1) and TempProductImI(Stride/2 - 1), 
                ' zero-based. 
                For J As Int32 = 0 To HalfStrideMinus1 Step 1 
                    ComplexMult( _ 
                        InvDTFTRe(I + J + HalfStride), InvDTFTIm(I + J + HalfStride), _ 
                        TempTwiddleReI(J), TempTwiddleImI(J), _ 
                        TempProductReI(J), TempProductImI(J)) 
                Next J 
                ' Step #3: Add and subtract as necessary to calculate the results. 
                ' Since the results overwrite terms in the InvDTFT() vectors, we need a 
                ' temporary complex variable to hold interim results before they are 
                ' overwritten.  These will be processed in groups of two. 
                For J As Int32 = 0 To HalfStrideMinus1 Step 1 
                    TempRe = InvDTFTRe(I + J) + TempProductReI(J) 
                    TempIm = InvDTFTIm(I + J) + TempProductImI(J) 
                    InvDTFTRe(I + J + HalfStride) = InvDTFTRe(I + J) - TempProductReI(J) 
                    InvDTFTIm(I + J + HalfStride) = InvDTFTIm(I + J) - TempProductImI(J) 
                    InvDTFTRe(I + J) = TempRe 
                    InvDTFTIm(I + J) = TempIm 
                Next J 
            Next I 
        Next Istage 
    End Sub 
 
    '//////////////////////////////////////////////////////////////////////////////////// 
    Public Sub ComplexMult( _ 
        ByVal Re1 As Double, ByVal Im1 As Double, _ 
        ByVal Re2 As Double, ByVal Im2 As Double, _ 
        ByRef ProductRe As Double, ByRef ProductIm As Double) 
        ProductRe = (Re1 * Re2) - (Im1 * Im2) 
        ProductIm = (Re1 * Im2) + (Im1 * Re2) 
    End Sub 
 
End Module 
 


