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Generalizing the Lorentz force to a region containing charge 

 

Hendrik Lorentz (Dutch, 1853-1928) was one of the physicists who contributed to the great advance in 

electromagnetics in the late 19
th
 century.  It was Lorentz who first formulated the expression which bears 

his name: 

 

 

 

A point particle with charge  which is located in an electric field  and magnetic field  experiences a 

force which is the sum of: (i) an “electric” component  and (ii) a “magnetic” component , 

where: 

 the electric component of the force acts in the direction of the electric field  at the point’s 

location; 

 the magnetic component of the force is perpendicular to both the magnetic field  at the point’s 

location and to the point’s velocity ; 

  is a vector cross-product, whose magnitude is equal to the product of ,  and the sine of 

the angle between  and  and whose direction is determined by the right-hand rule – thumb 

parallel to , extended fingers parallel to  and palm in the direction of the cross-product and 

 the Lorentz force is valid only if the charged particle is moving at a speed well less than the speed 

of light.  If its speed is an appreciable fraction of the speed of light, then certain delays need to be 

introduced to account for the fact that events at one location are not felt instantaneously 

elsewhere. 

 

Lorentz’s equation is ideal for use in certain circumstances, where the particle is confined to move within 

a wire, for example, or where the motion of only a single particle needs to be determined.  Lorentz’s 

equation is clumsy in other circumstances, where a number of charged particles are free to move within a 

three-dimensional region.  The situation quickly gets out of hand when it is necessary to also account for 

the electric fields and magnetic fields generated by the charged particles themselves. 

 

For a lump of material, in which the charges are free to move about in three dimensions, Lorentz’s force 

is handier if written in the form: 

 

 

 

Here,  is the force acting per unit volume at the point of interest,  is the number of charges per unit 

volume at the point of interest and  is the current density at the point of interest.  The current density  is 

the number of charges moving through a unit area each second.  The direction of the current density is the 

direction normal to the unit area through which the charges are moving.   

 

,  and  are macroscopic quantities.  When we consider these quantities at a particular point, we must 

imagine a small element of volume.  The element of volume needs to be small enough that these 

quantities, as well as the electric field and magnetic field, are essentially constant throughout the volume.  

On the other hand, the element of volume must be large enough to hold enough of the charged particles 

for statistical averaging to take place.  In reality, much jostling will occur in the element of volume.  The 

charged particles will bump into each other, into uncharged particles which might happen to be in the 

way, into ions in the material if it is a metal, or into some boundary.  At any given instant, a particular 
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charged particle might be travelling in response to forces quite different from Equation .  On average, 

though, or for the “average” particle, Equation  explains the force on the collective. 

 

In addition, the force  in Equation  should be considered to be a time-averaged quantity, relevant on a 

time-scale much longer than atomic movements 

 

Equation  is said to be a “differential” form of Lorentz’s equation.  This is because it applies within 

small elements of volume, which need to be added up, or integrated, to find the net average force on a 

macroscopic region. 

 

In order to work with Equation , we need to refer to the four differential equations which are now 

called Maxwell’s Equations: 

 

 

  

(3) is Gauss’s Law, which states that the divergence of an electric field outwards from any small 

volume of space is proportional to the number of charges it contains. 

(4) is Gauss’s Law for magnetism, which states that a magnetic field cannot diverge (because there 

are no magnetic monopoles). 

(5) is Faraday’s Law of induction, which can be used, among other things, to integrate a changing 

magnetic field with respect to time in order to determine the voltage induced in a loop of wire. 

(6) is Ampere’s Circuital Law, which can be used, among other things, to determine the magnetic 

field set up around one or more wires carrying current.  Equation  includes the correction 

added by Maxwell for the effect of an electric field which varies with time. 

 

Units are defined in the SI system so that the permittivity  and permeability  of free space, 

respectively, have a product  equal to the reciprocal of the square of the speed of light.  The 

permeability  of free space is equal to  H/m [Henries per meter].  Since the Henry is a 

derived unit, the unit of permeability can also be expressed as N/  [Newtons per Ampere squared] and in 

other forms as well. 

 

Now, our objective in this paper is to express the Lorentz force in terms of the electric and magnetic fields 

only.  This requires that we use Maxwell’s equations to “solve” Equation  in such a way as to remove 

the explicit dependence on the charged particles’ position (their charge density ) and speed (their current 

density ). 

 

Step 1: Substitute Gauss’s Law and Ampere’s Circuital Law to remove the charge density and the 

current density, respectively: 
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Note that this substitution, which removed all references to the charge density and current 

density, has also removed any reference to the sign of the distributed charges.   

 

Step 2: Apply the product rule to the last term in Equation .  The product rule is: 

 

 

 

so Equation  can be written as: 

 

 

 

Step 3: Substitute Faraday’s Law of induction to get: 

 

 

 

Step 4: Use the identity, that  for any two vectors, to reverse the second term: 

 

 

 

Step 5: Collect like terms to get: 

 

 

 

Step 6: The gap in Equation  highlights a certain absence of symmetry.  The two terms in curly 

brackets would be identical in  and  if there happened to be a term , but there is 

not.  However, Gauss’s Law for magnetism tells us that the missing term is identically zero.  

We can add the term to Equation  to get: 

 

 

 

Step 7: Curls are difficult to deal with.  Fortunately, they can be expressed in alternative form.  In 

Lemma #1 attached, the following identity is proved, for any vector : 
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Step 8: Using this identity in Equation  gives: 

 

 

 

Step 9: Re-arranging terms gives: 

 

 

 

 

 

 

 

This is a very general result.  It accounts for all aspects of sub-warp electromagnetism.  It can handle 

time-varying and non-uniform electric and magnetic fields.  It is independent of co-ordinate system.  It 

does not include any of those nasty curls. 

 

 

 

 

 

 

Jim Hawley 
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An e-mail pointing out errors and omissions would be appreciated.  

 

The force per unit volume on the distributed charges in a region is 
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Lemma #1 – Prove that 

 

 

It is convenient to conduct the proof in a traditional Euclidian - -  co-ordinate frame.  If the expression 

holds true in any inertial co-ordinate frame, then it will hold true in any other inertial co-ordinate frame.  

Let us consider any arbitrary vector , which can be written in terms of its components as: 

 

 

 

The curl of  is defined as the following determinant: 

 

 

 

The cross-product on the right-hand side of the subject expression can be written as the following 

determinant, and Equation  substituted therein, to give: 

 

 

 

Now, the vector dot-product  on the right-hand side of the subject expression can be expanded as: 

 

 

 

Applying this dot-product operator to vector  gives: 
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Equations  and  are the two terms on the right-hand side of the subject expression.  We can add 

them together to get: 

 

 

 

There are a number of terms which cancel each other out.  Cancelling like terms gives: 

 

 

 

Each remaining term is the partial derivative of a square, which enables us to write: 

 

 

 

Collecting terms in ,  and  gives: 

 

 

 

The common operator can be removed from the curly brackets to give: 

 

 

 

The expression in the curly brackets is simply the square of the length of vector , so that: 

 

 

 

and the operator in the square brackets is simply the gradient, so that: 

 

 

 

This is the left-hand side. 

 

Q.E.D. 


