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A High-Voltage “Boost” Capacitor Charger 

 

In this paper, we will look at the design and efficiency of a high-voltage capacitor charger, in which a 

step-up transformer operates in “normal” transformer mode.  That is, currents flow in the primary and 

secondary circuits at the same time.  The principal components of the circuit we will examine are shown 

in the following schematic diagram.  Some readers will recognize this as a schematic produced by SPICE.  

SPICE was used to carry out the simulations which are described below. 

The goal of the circuit is to charge the load capacitor .  A basic assumption is that capacitor  will be 

charged up to some target voltage or energy and then discharged suddenly into some load circuit.  (The 

schematic diagram does not show the load circuit.)   

 

The effective series resistance  of the load capacitor is shown explicitly in the diagram.  Of course, 

the effective series resistance is an integral part of the load capacitor, and is not a separate component, but   

we need to represent it separately in order to develop a mathematically model for the circuit. 

 

Rectification is provided by an ideal diode , whose non-ideal features are represented by a constant 

forward voltage drop of  and a forward series resistance of .  Leakage current under reverse bias will 

be ignored. 

 

The transformer is represented by the inductance  of its primary winding and inductance  of its 

secondary winding.  The transformer is assumed to be ideal in the sense that it enjoys zero leakage, but 

non-ideal in having Ohmic resistances (that is, resistance in the wire) in the primary and secondary 

windings of  and , respectively.  The orientation of the transformer is such that, when the current 

flowing into the dotted end of the primary winding increases, a positive voltage is generated between 

voltage point  and ground.  Since the goal of this circuit is to charge the load capacitor to a high 

voltage, it is understood that the secondary winding will have a great many more turns, and therefore 

much higher inductance, than the primary winding. 



~ 2 ~ 

 

Resistor  is a current-limiting resistor placed in the primary circuit to protect the power supply from 

excessive current flow.  The power supply  is a constant voltage dc source. 

 

The primary circuit is periodically interrupted by switch , an n-channel enhancement mode MOSFET.  

The circuit which drives the gate of switch  is not shown in the schematic. 

 

Once again, I will point out the significance of the way this circuit operates: current will flow in the 

transformer’s primary and secondary circuits at the same time.  This is the traditional mode in which a 

transformer operates and is to be distinguished from a “buck-boost” type of circuit.  (A similar circuit, 

configured as a “buck-boost” charger, is described in another document.) 

 

Before delving into this circuit too far, it is useful to determine realistic values for the components.  

Indeed, it is best to specify the components, or at least how they can be constructed, so that we do not end 

up with a circuit which cannot be built. 

 

Overall design specifications 

 

 The target voltage for the capacitor is . 

 The target energy to be stored in the capacitor is  

 The power supply can deliver  of current at a voltage of . 

 

It immediately follows that: 

 

 The turns ratio of the transformer must be . 

 The energy equation for a charged capacitor, , requires that capacitance . 

 Since the power supply delivers  of power, the theoretical charging time at 100% efficiency 

will be .  At lower efficiencies, charging will take longer. 

 Assuming that the forward resistance of the MOSFET is small and that the Ohmic resistance of 

the primary winding is small, the only meaningful resistance in the primary circuit is resistor .  

If it is to limit the flow of current to , its value must be . 

 

The load capacitor  

 

Because the load capacitor in this circuit is intended for sudden discharge, it should have as low a series 

resistance as practical.  The series resistance does not just sop up power when the capacitor discharges – it 

also limits the speed with which the capacitor can be discharged.  Electrolytic capacitors, despite other 

shortcomings, score well on this characteristic.   

 

A useful starting point is a common  capacitor, such as Digikey part number 

P10052-ND.  It has an equivalent series resistance of  at a frequency of , decreasing to 

 at a frequency of . 

 

Suppose we wire twenty two (22) of these capacitors in series.  This will give: 

 

 . 

 . 

 Voltage rating . 

 

The voltage rating is 37% higher than the target voltage.  Note that these capacitors cost about $14.00 

each, so the lot will cost $308. 
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The transformer 

 

In order to minimize leakage, a toroidal transformer will be used.  Since the switching frequency will be 

relatively high, the toroid should have a ferrite core. 

 

Newark sells a ferrite core, part number 07R5397, which should suit.  The core is made by EPCOS and is 

their part number B64290L40x830.  It has inner and outer diameters of  and , and a 

thickness of .  The following sketch of the core is approximately to scale. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The manufacturer states the customary parameters for a toroidal core, being: 

 

 Effective circumference . 

 Cross-sectional area . 

 (Initial) relative permeability . 

 

The first step is to determine the maximum number of  this core can handle.  The core is 

made from a material identified as “N30”, which has its own data sheet.  The important characteristic of 

N30 is that it saturates at a magnetic field intensity of  at a temperature of 100°C.   

 

We can use the standard formula to calculate the magnetic field intensity at the center of the cross-section 

of a toroidal core (with all variables expressed in SI units).  Letting  be the permeability of free space, 

 be the number of turns and  the current flowing through the turns, the magnetic field intensity is equal 

to: 

 

 

 

inner circumference  

cross-sectional area  
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Since we have specified that the power supply can (or should) operate at , the number of turns in the 

primary winding must be less than 3.4 in order that  be kept less than 6.8.  Let us decide to use 

three turns in the primary winding, rather than reduce the primary current in order to enable more turns. 

 

Then, the secondary winding should have  times as many turns, or  .    

 

Suppose we wind the secondary winding with #30 gauge magnet wire, which Newark also sells, as its 

part number 36F1310.  This wire requires linear spacing of .  The inner circumference of 

the core is long enough to hold . 

 

The number of layers in the secondary winding will be .  

While one might be able to squeeze  into the bottom layer, the outer layers, which will have a 

reduced circumference to lie on, must have fewer turns. 

 

What we will do is this: we will wind an average of  in each of , giving a total numer of 

turns equal to .  (That this number of turns exceeds the 

 required is a personal preference – I am always skeptical about the effectiveness of that last 

quarter-turn in the primary winding.) 

 

Now, let us calculate the length of wire needed.  As shown in the figure above, the cross-section of the 

core has a width of  and a height of , giving a nominal 

perimeter of .  However, the thickness of the wire itself adds to the 

effective perimeter of the outer layers.  Let us assume that the outer diameter of the wire is 

.  Let us assume that we will coat each layer in the 

winding with transformer varnish and that the varnish coat will be  thick.  Then, looking from the 

surface of the core outwards, the secondary winding will consist of three layers of wire separated by two 

layers of varnish.  The average height of the layers’ centers from the surface of the core will be equal to 

.  The average perimeter of all the turns will be equal to  

. 

 

The length of wire needed will be .  The wire, 

which is Beldon #8055, has a resistance of , so the winding will have a total resistance of 

.  (Incidentally, the standard coil of this wire, as sold by Newark, 

contains just over  of wire.) 

 

The primary winding will be wrapped around the secondary winding.  We will use some heavy gauge 

wire for this purpose.  Let us suppose that the total resistance of this winding is , which should be 

enough to include the joints where the leads of the primary winding are soldered to the printed circuit 

board. 

 

Next, we need to estimate the inductances of the windings.  Using the standard formula for toroial cores 

with a circular shape (with all quantities converted to SI units), the inductance of the secondary winding 

will be equal to: 
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The primary winding, with its , will have an inductance equal to: 

 

 

 

Before finishing up with the transformer, we should ensure that everything else will be satisfactory.  We 

have already made sure that the primary’s Ampere-turns should not saturate the core.  In addition: 

 The N30 core material is designed to be used in the range of frequencies from  to .  

This suggests that the period of the charge-discharge cycles at which we operate the circuit 

should be in the range from  to . 

 The #30 gauge wire used in the secondary winding has a maximum recommended current of 

.  In our case, with a primary current of , the secondary current will be approximately 

 as much, or .  This is well within the capability of the wire.  In fact, we could use 

finer wire for the secondary winding. 

 The wire has double insulation –  polyurethane with a nylon overcoat.  Even so, its breakdown 

voltage at room temperature is .  Transformer varnish between the layers will add some 

extra protection but, even so, potential breakdown will be an issue.  The best remedy will be to 

wind the secondary in sections along the circumference of the core.  In order to leave a gap 

between the first and last sections, it will be necessary to more than three layers in each section.  

Appendix A attached describes a plan for winding the secondary to overcome the limited 

insulation breakdown voltage. 

 

The values we will use when analyzing the circuit are the following: 

 

 . 

 . 

 . 

 . 

 Charge-discharge cycle time should be in the range from  to . 

 

The rectifier diode 

 

The challenge is to get a high-voltage diode with both a fast recovery time and a low leakage current.  

The diode’s forward current capacity should not be a significant issue, since the current in the secondary 

circuit will only be  or so.  Similarly, the forward voltage drop over the diode should not a significant 

issue, and will be negligible when compared with the several  we propose to place on the 

capacitor. 

 

It seems to me that the MUR8100EG diode, made by ON Semiconductors and sold by Newark as its part 

number 88H4948, is a reasonable place to start.  It has a reverse recovery time of  and a reverse 

breakdown voltage of .  I propose to use six of these diodes in series.  That will give a combined 

reverse breakdown voltage of , which is 50% more than the target voltage of . 

 

The datasheet for this diode states that, at a forward current of  (far more than we will experience), 

the forward voltage drop is typically equal to .  That corresponds to a forward resistance of 

.  Six such diodes in series will have a combined forward voltage drop of 

.  Since our forward current is so far below , we will model the diode solely by its 
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forward voltage drop, with no additional resistance.  To be clear about this point, the diode’s series 

resistance, which was represented as component  in the schematic above, will be ignored. 

 

The datasheet gives a nominal reverse current of  at .  This corresponds to a reverse resistance 

of .  The reverse resistance of six such diodes in series will be 

.  When subject to a reverse voltage of , the six diodes will leak current of about 

.  What is the effect of this leakage current on the voltage over the capacitor?  

Let us make an estimate.   

 

Over the course of ten seconds, this current will carry charge from the load capacitor  in the amount of 

.  If the capacitor is initially charged to , then it holds 

charge in the amount of .  Ten seconds later, the capacitor’s charge 

will have decreased to  and the capacitor’s voltage will 

have decreased to   So, after the capacitor is charged, it 

will lose about  in ten seconds because of leakage through the diode.  This is minor.  (Of course, the 

capacitor will also leak all throughout the charging process.) 

 

In any event, the combined diode should be characterized by: 

 

 . 

 . 

  for SPICE simulation purposes. 

 

The MOSFET 

 

I like hexfets made by International Rectifier Corporation.  IRC’s IRFP4668 may suit this application.   

 

The IRFP4668’s nominal ON-resistance is given as .  As always, this is a nonsense figure.  It applies 

only if the junction is somehow kept at room temperature.  More realistic resistances can be derived 

directly from Figure 2 of the datasheet, which plots the drain-to-source current against the drain-to-source 

voltage.  We will be using gate-to-source voltages in the range from  to , all of which have pretty 

much the same I-V characteristic.  Two data points are convenient: (i)  when , 

corresponding to  and (ii)  when , corresponding to 

.  Both of these points obtain when the junction temperature is a more realistic 

175°C.  For design purposes, we will use a conservative ON-resistance of . 

 

One does not normally speak about the OFF-resistance of a hexfet.  Normally, the constraint on the 

design will be the length of time required to charge and/or discharge the gate capacitance.  In due course, 

below, we will get into these timing particulars.  For now, we will simply use an arbitrarily large number, 

say, , for the MOSFET’s OFF-resistance. 

  

The IRFP4668 has a drain-to-source breakdown voltage of 200V.  We will need to ensure that transient 

voltage spikes across the MOSFET do not exceed this voltage. 

 

For the MOSFET, then, we will use the following characteristics: 

 

 . 

 . 

 Breakdown will occur at . 
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Part #1 – A single charging cycle 

 

The following figure shows the schematic diagram for the above circuit, with the component values now 

shown.  This schematic will be used for a SPICE simulation of the charging cycle.  Since we will be 

looking at a “charging cycle” only, as opposed to a “discharging cycle”, the MOSFET has been replaced 

by its ON-resistance .   

I must say a word about diode , the three new voltage sources ,  and  and the two ideal switches 

 and .  They have been included so that the SPICE simulation gets the initial conditions right.  The 

sub-circuit feeding diode  puts the desired amount of initial voltage onto the capacitor.  One should 

note that a capacitor which is initially charged to some voltage  does not behave in the same way as 

an uncharged capacitor in series with a dc voltage of .  In order to model the circuit properly in (my 

version) of SPICE, it is necessary to explicitly charge the capacitor up to the desired initial voltage.  

Voltage source  is a dc voltage source at the desired initial voltage of the capacitor, in this case, .  

 is a simple SPST switch, whose operation is controlled by voltage source .  The SPICE directive for 

 shows that the switch closes at simulation time  and opens  later.  The capacitor charges 

up during the time the switch is closed.  , ,  and  do not do anything after the capacitor is 

charged. 

 

Switch  controls the primary circuit.  Like ,  is a simple SPST switch, but its operation is controlled 

by voltage source .  The SPICE directive for  shows that is closes at simulation time  

and does not open thereafter. 

 

These initial-condition details apply only to the SPICE model.  For the purposes of a mathematical 

analysis, we will use a different time base, and set time  at the instant when the MOSFET begins 

conducting.  We will assume that the capacitor has already been charged up to voltage  at time  

 

There are six circuit variables of interest: 
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  is the total current flowing through the primary circuit; 

  is the magnetizing current flowing through the primary winding; 

  is the voltage drop over the ideal inductance in the primary winding; 

  is the voltage drop over the ideal inductance in the secondary winding; 

  is the total current flowing in the secondary winding and 

  is the voltage drop over the load capacitor . 

 

In order to solve for six circuit variables, we had better be able to come up with six circuit equations. 

 

Sum of the voltage drops around the primary circuit 

 

 

 

For convenience, we will use the symbol  to represent the sum of the series 

resistances in the primary circuit.  Then, we can write this expression as: 

 

 

 

Sum of the currents flowing through the primary winding 

 

The current flowing through the primary winding will be the sum of: (i) the magnetizing current  and 

(ii) the current flowing through the secondary circuit, scaled up by the turns-ratio.  Since the inductance-

ratio is the square of the turns-ratio, we can write: 

  

 

 

The magnetizing current of the primary winding 

 

The magnetizing current is determined by the self-inductance of the primary winding.  It is related to the 

voltage drop over the primary winding by: 

 

 

 

The ratio of voltages between the two sides of the transformer 

 

The voltage drops over the ideal inductances of the transformer are related by the turns-ratio, thus: 

 

 

 

Sum of the voltage drops around the secondary circuit 

 

There are two cases to consider, depending on whether diode  is conducting or not: 
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V-I characteristic of the load capacitor 

 

The voltage drop over the load capacitor is related to the current flowing into it, and to its initial voltage, 

in the traditional manner, as: 

 

 

 

As a first step to combining these six equations, we can use Equation  to replace , Equation 

 to replace  and Equation  to replace , in each case replacing them wherever else 

they occur.  It is also useful to take the derivatives of Equation  and Equation .  We get three 

independent equations: 

 

 

 

It is convenient to separate the conducting and non-conducting cases, and to pursue them separately from 

here onwards.   

 

 

Part #1A – A single charging cycle, when diode  is conducting 

 

We can re-arrange Equation  to isolate variable , as follows: 

 

 

 

We can set equal Equation  and Equation , which will eliminate .  We get: 

 

 

 

Substituting  from Equation  into Equation  then gives the following second-order 

differential equation in the magnetizing current . 
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Collecting terms gives: 

 

 

 

It helps if we define three time-constants, as follows: 

 

  as the inductor-resistance time-constant in the primary circuit, ; 

  as the inductor-resistance time-constant in the secondary circuit,  and 

  as the resistance-capacitor time-constant in the secondary circuit, . 

 

With this notation, the differential equation in the charging case can be written as: 

 

 

 

We can guess that a general form of solution for this differential equation will be .  

Substitution gives: 

 

 

 

Collecting terms gives: 

 

 

 

For our guess to really be a solution, this last equation must hold true at any and all times .  Since the 

exponential term and the constant term depend on time in different ways, the only way this equation can 

hold true for any and all times  is if the two terms are separately equal to zero.  In turn, this requires that 

the coefficients of the two terms be equal to zero.  In other words, we must have: 

 

 

 

The equation in  is a quadratic, with the two roots  given by the quadratic formula: 
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Each root represents a separate solution of the differential equation.  Both solutions are valid and both 

must be included in the expression for , each with its own coefficient.  For convenience, we will call the 

two coefficients  and .  Incidentally, since this is a second order differential equation, there must be 

two and only two independent forms of solution.  It seems that our guess encompassed them both.  

Therefore, we are able to say that the magnetizing current  is equal to: 

 

 

 

The two coefficients  and will need to be found from the initial conditions.  For now, let us set aside 

the determination of  and  and, instead, work on getting expressions for the other five circuit 

variables.  Now that we have , we can work our way through the circuit equations, finding each circuit 

variable in terms of ones found before.  For convenience, we will not expand  or .  We get: 

 

 

 

Notice that the voltage  over the load capacitor is determined by integration, which leads to a third 

unknown constant , which will have to be found from a third initial condition. 

 

Now, let’s take a look at the initial conditions.  This is best done by referring back to the schematic 

diagram.  The magnetizing current  flowing through the primary winding is zero before switch  

closes.  Since this magnetizing current flows through an inductor, it cannot change instantaneously.  It 

will continue to be zero at the instant  immediately after switch  closes.  This means that: 
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That takes care of one initial condition.  The other is found using the voltage over the load capacitor.  The 

voltage  over the capacitor is  before switch  closes and it, being the voltage over a capacitor, 

cannot change instantaneously.  This means that: 

 

 

 

The third initial condition is a little bit trickier to see.  Although the magnetizing current  flowing 

through the primary winding will be zero immediately after switch  closes, it is only one of the two 

currents flowing through the primary winding.  The other current is proportional to the current flowing in 

the secondary circuit, and is the source of the energy being transferred from the primary circuit into the 

secondary circuit.  Energy will be transferred from the primary side to the secondary side right from the 

get-go.  As always, the ratio of voltages over the ideal inductances will be equal to the turns-ratio, as 

expressed in Equation .  There must be a balance between the non-magnetizing currents flowing in 

the primary and secondary windings which is consistent with this voltage ratio.  This will involve current 

 on the primary side and current  on the secondary side.  Taking the sum of the voltage drops 

around the primary circuit at time , immediately after switch  closes, gives: 

 

 

 

Taking the sum of the voltage drops around the secondary circuit at time , immediately after switch 

 closes, gives: 

 

 

 

These voltage drops, over the ideal primary and secondary windings, are related by the turn-ratio: 

 

 

 

Substituting the expressions from the two previous equations gives: 
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The three initial conditions have been expressed in the three Equations  through , which can 

now be solved for the three unknown (constant) coefficients ,  and .  The solutions for  and  

are: 

 

 

 

I have not troubled to expand  at this time. 

 

We can make a simplifying assumption based on the relative values of the time-constants.  These relative 

values are driven by the two principal characteristics of this type of charging circuit: (i) that the secondary 

inductance is much larger than the primary inductance and (ii) that the load capacitance is relatively large.  

To see this, one can evaluate the three time-constants defined above using our component values: 

 

 

 

These inequalities are very general and will almost certainly obtain for any circuit of this type: 

 

 

 

Let us begin by applying these inequalities to the frequencies  and . 
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We are not yet finished approximating: 

 

 

 

These two roots have the following implications for the waveform of .   will be linear combination of 

sinusoidal terms having an angular frequency of , whose amplitudes decrease exponentially 

with a time-constant of . 

 

Let us substitute these simplified forms for  and  into our expressions for  and .  For the time 

being, we will not worry about .  For , we get: 

 

 

 

Similarly, for , we get: 

 

 

 

And, continuing: 
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Now, let us make another simplifying assumption.  Let us assume that the times  of interest are very 

small.  If  and  are small, we can use the Taylor series expansion and approximation for the 

exponential function, that  for small .  Then, we can approximate as follows: 

 

 

 

Next, we are going to expand the expressions for the circuit variables, substituting  and , and using 

the two sets of approximations.  As you will see, two particular combinations of the constants  and  

and the roots  and  arise frequently, and it helps to expand and approximate them first: 

 

 

 

and 
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And, continuing: 

 

 

 

The circuit variable  can be expanded as: 

 

 

 

The circuit variable  can be expanded as: 

 

 

 

We will skip the circuit variable , which is just a multiple of .  Then, the circuit variable  can 

be expanded as: 
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Terms can be collected to give: 

 

 

 

All of the circuit variables have now been expressed as linear relationships with time, that is, in the form 

.  Let us look at the secondary current .  Equation  shows two things:  

 That  is initially approximately equal to .  Remember that the turns-ratio is very 

large so that the factor  is very small.  This causes the second term inside the first set of 

square brackets to be very small compared with the first term, . 

 That  decreases thereafter linearly with time.  This arises because of the minus sign in front of 

the coefficient of time . 

These two observations have two consequences: (i) that  is initially positive, which means that current 

flows through diode  in the positive direction, in its conduction mode, and (ii) that at some point in 

time, the secondary current will fall to zero. 

 

We can calculate the time  at which the secondary current reaches zero.  This is the moment 

when diode  will stop conducting.  Mathematically, this will happen when the expression in Equation 

 reaches zero.  Setting Equation  equal to zero at time  gives: 

 



~ 18 ~ 

 

 

 

How does the duration of the conduction period vary with the initial voltage over the load capacitor?  

Using our component values, Equation  becomes: 

 

 

 

 will be a positive time for all initial capacitor voltages up to .  

In other words, the charging circuit should charge up until this point.  (Remember that we added a few 

more turns to the secondary winding than was needed to arrive exactly at the target voltage .) 

 

Let us calculate two or three sample values.  When the initial load capacitor voltage is zero, the cut-off 

time will be   When the initial capacitor voltage is , the cut-off 

time will be   And, when the initial capacitor voltage is , the 

cut-off time will be    

 

We should not lose sight of the fact that our ferrite core works best at cycling periods in the range from 

 to .  Without considering other factors, such as the time needed to “reset” the current for the 

following charge cycle,  is not reached until .  In other words, when the initial 

voltage over the load capacitor is less than , a complete “charging cycle” takes longer than , 

which corresponds to a frequency of .  At the other extreme,  is reached when the 

load capacitor’s initial voltage is .  At initial voltages higher than , a complete 

“charging cycle” takes less than , which corresponds to a frequency of .  It seems that, at 

low voltages and at high voltages, the length of a complete “charging cycle” is such that it falls outside of 

the range of frequencies at which the material of the transformer’s core operates most efficiently. 

 

For the sake of clarity, I want to explain why the phrase “charging cycle” was put in quotation marks in 

the preceding paragraph.  The “charging cycle” referred to is not the cycle by which the load capacitor is 

charged up from zero to its target voltage of .  Far from it.  Instead, one “charging cycle” is the 

time during which the current flowing in the primary circuit rises from zero to its maximum value, .  

Once that happens, or even before, no more energy is transferred into the load capacitor, which is another 

way of saying that current stops flowing in the secondary circuit.  It will be necessary, somehow, to reset 

the primary circuit to zero current before starting another “charging cycle”.  During each “charging 

cycle”, a little more energy/voltage is added to the load capacitor.  A great number of “charging cycles” 

will be needed to charge the load capacitor up to the desired energy/voltage. 

 

It is useful to evaluate the expressions for the circuit variables using our component values, but leaving 

the initial capacitor voltage  as a variable. 
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For , the voltage drop over the transformer’s primary winding, Equation  becomes: 

 

 

 

For , the total current flowing in the primary circuit, Equation  becomes: 

 

 

 

For , the current flowing in the secondary circuit when diode  conducts, Equation  becomes: 

 

 

 

Let us evaluate these expressions at three different initial voltages over the load capacitor: ,  and 

.  All quantities have been expressed in SI units which, in the current context, means Volts and 

seconds. 

 

 

 

Now, let us take just one more step.  Let us evaluate these three circuit variables at time , when the 

charging cycle starts, and at the , when the charging cycle stops, for the three initial voltages over 

the load capacitor. 
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Observations: 

 

 Except for very low initial capacitor voltages, the voltage drop over the ideal primary inductance 

remains pretty constant throughout a single charging cycle. 

 The total primary current  also remains constant throughout a single charging cycle, 

although it decreases very slightly when the initial capacitor voltage is low and increases very 

slightly when the initial capacitor voltage is high. 

 As described above, the secondary current decreases to zero at time .  (Indeed, that event 

defines time .) 

 

To examine the accuracy of the circuit equations and the appropriateness of the approximations made, the 

SPICE model was run three times, once for each of the three initial voltages over the load capacitor.  The 

following graphs show the results obtained.  In each graph, three circuit variables are shown: 

 

 the voltage drop  over the ideal primary inductance.  The corresponding SPICE 

parameter names are V(vp)-V(vsw) and the trace is shown in red; 

 the total current  flowing in the primary circuit.  The current through resistor , which is 

the SPICE variable I(Rp), is used as a proxy for  and is shown in blue; and 

 the current  flowing in the secondary circuit.  The current through resistor , which is the 

SPICE parameter I(Rs), is shown in gray.  Note that its value is multiplied by 1000. 

 

The left vertical axis is the measure of voltage and the right vertical axis is the measure of current. 

 

For the uncharged load capacitor, the SPICE waveforms are: 
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When the load capacitor is initially charged to , the SPICE waveforms are: 

 

 

 

When the load capacitor is initially charged to , the SPICE waveforms are: 

 

 

 

Our mathematical analysis agrees remarkably well with the SPICE simulation. 

 

 

Part #1B – A single charging cycle, when diode  is NOT conducting 

 

The waveforms above give some idea about what happens once diode  stops conducting.  A “non-

conducting” phase in a “charging cycle” is a bit of a misnomer, but it happens anyway.  When diode  

stops conducting, the circuit is not in a steady-state.  Let us see what happens.  When we developed the 

circuit equations above, we reached a point where we had two equations for the secondary current .  The 

conducting phase we looked at in the previous section was one branch, characterized by current flowing 

through diode .  In this section, we will take the second branch, in which diode  is reverse-biased.  

We will resume the mathematical analysis with the circuit equations at the point where we branched 

before.  When we left off, we had the following equations for the non-conducting phase of the charging 

cycle. 
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Substituting  into Equation  gives, immediately, a first-order differential equation in the single 

variable , which is the magnetizing current though the primary winding: 

 

 

 

Using the time-constants we previously defined, this can be written as: 

 

 

 

We can guess that the general form of solution will be .  Substitution gives: 

 

 

 

Collecting terms gives: 

 

 

 

For our guess to really be a solution, this last equation must hold true for any and all times .  Since the 

exponential term and the constant term depend on times in different ways, the only way this equation can 

hold true for any and all times  is if the two terms are separately equal to zero.  In turn, this requires that 

the coefficients of the two terms be equal to zero.  Therefore, we must have: 

 

 

 

The root of the first equation is , so  will have the following waveform: 

 

 

 

This is a good deal simpler than the corresponding equation for the conducting phase of a charging cycle.  

There is a good reason why.  After diode  stops conducting, no more current flows in the secondary 

circuit.  In effect, the secondary circuit ceases to exist from the point-of-view of the primary circuit.  The 

primary circuit will carry on under the influence of its self-inductance  only, hence the absence of any 

dependence on the components in the secondary circuit. 

 

It is not really necessary for us to enquire into the initial conditions.  The initial conditions for the non-

conducting phase will be the circuit conditions when the conducting phase ended, at time . 

 

Of more interest is the “ending” condition of the non-conducting phase.  The ending condition will be the 

steady-state.  As time passes, the first term in Equation  will die out, leaving the steady-state current 

.  As expected, the steady-state current is determined by the supply voltage  and the series 

resistance  in the primary circuit.  In our circuit, this will be very close to . 
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The time-constant  determines how quickly the non-conducting phase will reach the steady-state 

condition.  Using our component values, we can evaluate , as we did above, to get .   

 

Although the time-constant  does not depend on the load capacitor’s initial voltage, the actual length of 

time that will be needed to reach the steady-state condition does.  The higher the capacitor’s initial 

voltage, the lower the primary current will be during the conducting phase.  Then, when the conducting 

phase ends, the longer it will take for the primary current to increase to its steady-state value.  A glance at 

the graphs above, for times after , confirm this. 

 

We can make a quick estimate of how long will be needed.  Let us begin with Equation  above, 

which is the total primary current during the conducting phase.  For convenient reference, it is repeated 

here: 

 

 

 

One of the observations we have already made is that this current does not change materially during the 

conducting phase.  At time , it is still equal to its initial value (within four decimal places).  We 

can therefore make the approximation: 

 

 

 

After time ,  and  are the same (there being no secondary current).  Therefore, this 

value is also the initial condition for the magnetizing current  for the n0on-conducting phase.  

Evaluating Equation  at the start of the non-conducting phase gives: 

 

 

 

so, the complete expression for  is: 

 

 

 

Suppose we declare that the non-conducting phase ends when  rises to within, say, , of its 

steady-state value.  We will call that time .  Then: 
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As described above, this becomes a more important issue, and the length of time  becomes longer, as 

the load capacitor’s initial voltage rises.  Once  becomes larger than, say, , this expression can 

be approximated as: 

 

 

 

If the capacitor is initially charged to , for example, then the time needed for the non-conducting 

phase will be approximately equal to: 

 

 

 

If the capacitor is initially charged to , then, it will take just over three time-constants, or , 

for the circuit to run through the non-conducting phase.  That assumes, of course, that there is a non-
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conducting phase.  We do have some control over the matter.  It would be useful to avoid the non-

conducting phase altogether.  Once diode  stops conducting, the load capacitor is no longer charging.  

There is no need or benefit to remaining in the charging cycle once diode  stops conducting.  The 

sooner we can “reset” the circuit and start a new charging cycle, the better.  We will look at ways to do 

this below. 

 

 

Part #2 – A single discharging cycle 

 

During the charging cycle, a substantial current flows through the primary circuit.  If the non-conducting 

phase of the charging cycle is allowed to run to completion, then the primary current will rise all the way 

to its steady-state value.  “Resetting” the circuit means bringing the primary current back down to zero, 

from which condition we can begin another charging cycle.  Opening switch  in the schematic diagram 

above, which is equivalent to turning off the MOSFET, will reset the circuit.  However, before going too 

far down this route, let us look at a small part of the circuit, in and around the MOSFET.  The following 

diagram shows the conceptual functions of switch  in a little more detail. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this conceptual diagram, the two modes of operation of the MOSFET – its ON and OFF modes – are 

represented by separate switches – S1 and S2 – of which one is closed when the other is open.  During a 

charging cycle, switch  is closed and switch  is open.  The MOSFET’s  ON-resistance is a part 

of the primary circuit.  Current will build up.  If we let the charging cycle run through the conducting 

phase and the subsequent non-conducting phase, all the way to the circuit’s steady-state, the current 

flowing through switch S1 will reach approximately .   

 

Then, we open switch  to allow the primary circuit to “discharge”.  Since the two switches represent the 

ON and OFF states of the MOSFET, opening switch  is tantamount to closing switch .  The 

MOSFET’s OFF-resistance, in the order of , say, will now be a series resistance in the primary 

circuit. 
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However, the magnetizing current flowing through the primary winding cannot, and will not, change 

instantaneously.  But, the magnetic field which had been built up in and around the primary winding will 

start to collapse.  The energy which had been stored in the magnetic field will start to be released into the 

primary circuit in the form of current.  The magnetic field will collapse at whatever rate is needed to 

maintain the flow of current at its prior value, .  The only route this current can take is through the 

other components in the primary circuit, which components now include the OFF-resistance of the 

MOSFET . 

   

An enormous voltage will be developed over switch  as this current is forced to flow through it.  This 

will drive the undotted end of the winding, at voltage point  in the schematic, wildly negative.  The 

transformer will step up the primary voltage drop in the normal manner and the voltage drop over the 

secondary winding will also go wildly negative. 

 

Diode  will be reverse-biased (if it does not break down), so no current will flow in the secondary 

circuit. 

 

We need to avoid this voltage spike, which we can do by providing an alternative route for current to take 

as the magnetic field of the primary winding collapses. 

 

The following schematic diagram shows diode , which has been introduced to “discharge” the primary 

winding when the primary circuit is cut off.  This diode is wired around the ideal inductance  and 

around its series resistance , which is not a physically separate component. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Resistor  (where the subscript “ ” stands for cut off) has been placed in series with diode .  The 

value of , of , is not arbitrary.  It has been selected as the best compromise between two 

competing goals. 
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The first goal is to limit the negative voltage drops over the primary and secondary windings.  If the 

steady-state current  is driven entirely through resistor  when the magnetic field 

collapses, then the voltage drop over  will be (using Ohm’s Law) .  Using our component 

values, the steady-state current of  will develop a voltage of .  The secondary voltage drop will be 

 times greater, or .  This might still be too high, but we certainly 

would not want it any higher.  This sets one limitation, that  should be , or less. 

 

The second goal is to expend the energy in the magnetic field as quickly as possible.  Time spent re-

setting the primary current to zero is time not spent on the next charging cycle.  The time-constant by 

which the current will burn off the energy in the magnetic field will be the usual inductor-resistor time-

constant, .  We need to allow about five times as long, or 53.6 , for the 

current to decay, exponentially, to zero.  This may be longer than we would like, but we certainly would 

not want it any longer.  This sets a competing limitation, that  should be , or more.  Caught 

between these two limits, let us set resistor  to . 

 

The circuit whose discharge cycle we will analyze is shown in the following schematic diagram. 

As before, diode  and its associated components charge up the capacitor to the desired initial voltage.  

This process occurs during the first  of the simulation.  At simulation time , voltage 

source  does high and closes switch .  This represents the MOSFET’s ON-mode and the beginning of 

the charging cycle.  The SPICE directives show that switch  is left closed for .  (I chose to leave the 

MOSFET ON for  simply because  is longer than needed for a complete charging cycle at any 

initial voltage over the load capacitor.)  At simulation time , switch  opens and switch  

closes.  The discharging cycle begins at this instant.  For the following mathematical analysis, this instant, 

at which switch S2 closes, is used as the time-base . 

 

We can simplify the six circuit equations for the discharging cycle by recognizing that there will be 

virtually no current flowing through the MOSFET.  The value of  shown, of , was selected 
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rather arbitrarily.  For analysis purposes, we will simply leave the primary circuit as an open circuit.  Note 

that this will cause the circuit variable  to be identically equal to zero. 

 

We also need to introduce a new circuit variable  for the current flowing through diode , which we 

will assume to be positive when the current flows in this diode forward-conduction direction, which is 

upwards in the schematic diagram.   

 

With these changes, we can write down the circuit equations which apply during the discharging cycle. 

 

Sum of the voltage drops around the primary circuit 

 

 

 

Sum of the currents flowing through the primary winding 

 

The current flowing through the primary winding will be the sum of: (i) the magnetizing current  and 

(ii) the current flowing through the secondary circuit, scaled up by the turns-ratio.  Since no current will 

be flowing in the secondary circuit during the discharging cycle, this reduces to: 

  

 

 

The magnetizing current of the primary winding 

 

The magnetizing current is determined by the self-inductance of the primary winding.  It is related to the 

voltage drop over the primary winding by: 

 

 

 

The ratio of voltages between the two sides of the transformer 

 

The voltage drops over the ideal inductances of the transformer are related by the turns-ratio, thus: 

 

 

 

Combining the first three of these equations gives a first-order differential equation in the circuit variable 

: 

 

 

 

We can define another time-constant, the “cut-off” time-constant, as follows: 
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Then, the differential equation can then be written as: 

 

 

 

which has the solution: 

 

 

 

Now, let us look at the initial condition.  Since the magnetizing current flowing through the primary 

winding cannot change instantaneously upon switches  and  changing state, the magnetizing current 

 will initially be equal to the steady-state current, thus: 

 

 

 

Therefore, the complete expressions for the circuit variables are: 

 

 

 

Using our component values, the initial values of the circuit variables are: 
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The following two graphs show the results of the SPICE simulation, starting from the instant when switch 

 is closed.  For the run shown, the initial voltage over the load capacitor was .  The first graph 

shows the primary voltage drop . 

 

 

 

 

 

 

 

 

 

 
We calculated above that the primary voltage drop is about  during the conducting phase of the 

charging cycle, which lasts for about .  The primary voltage drop falls to zero during the non-

conducting phase of the charging cycle, and remains zero for the rest of the charging cycle.  The 

discharging cycle starts at time  in the graph.  At that time, the primary voltage drop plunges to minus 

.  This negative voltage drop is slightly more than we just calculated. 

 

The following graph shows the secondary voltage drop V(vs) and the current flowing through the cut-off 

resistor I(Rp). 

 

 

 

 

 

 

 

 

 

 

 

 
The duration of the discharging cycle looks to be about  on the graph, slightly less than we 

calculated. 

 
The differences between the waveforms in the graphs and our calculations are probably the result of the 

fact that we treated diode  as a perfect ideal diode in the circuit equations.  We ignored both its forward 

voltage drop and its forward resistance.  Ignoring the diode’s forward voltage drop means that it will take 

a little longer for current to start flowing through  than we had planned, meaning that the voltage 

overshoot will be a little greater than we had planned.  Ignoring the diode’s forward resistance means that 

the energy from the collapsing magnetic field will be burned off a little more quickly than we had planned 

and the discharging cycle will be completed a little more quickly than we had planned. 

 

The  diode used in the SPICE simulation is a MURS320.  It is an ultra-fast power diode specifically 

designed for “free-wheeling” applications like this one.  It can handle  continuously with a forward 

voltage drop of about .  Its reverse recovery time should not be more than about . 

 

 

 

non-conducting phase 

conducting phase 
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Part #3 – Efficiency 

 

In this section, we will begin to examine the efficiency with which energy is transferred from the power 

supply into the load capacitor.  In order that the analysis does not get out of hand, we will look at a single 

charging cycle and its following discharging cycle, where the load capacitor starts out with an initial 

voltage of .  In order to simplify things a little bit more, we will also restrict our attention to initial 

capacitor voltages that are much greater than .  We can then approximate the duration of the 

conducting phase of the charging cycle [Equation ] as follows: 

 

 

 

The numerator has been approximated as we did above, by noting that the turns-ratio  is very 

large.  The denominator has been approximated using the assumption that . 
 

During the conducting phase of the charging cycle, the power supply delivers current of .  

Equation  sets out the expression for  which applies during this period.  We have seen that 

this current is approximately constant during the conducting phase.  We can, therefore, approximate 

 with its value at the start of the conducting phase.  This value is: 

 

 

 

The instantaneous power supplied by the power supply is, as always, equal to the voltage  multiplied by 

the instantaneous current .  To the extent that the instantaneous current is constant, the 

instantaneous power will be constant, too.  The total amount of energy  which the power supply 

delivers during the complete conducting phase of the charging cycle can therefore be written as: 

 

 

 

Now, let us look at the current  flowing in the secondary circuit during the conducting phase of the 

charging cycle.  Equation  sets out the expression for  which applies during this period.  We have 

seen that the waveform is a linear decline, from some initial value to zero, in a time period equal to .  

The average current is therefore equal to one-half of the initial value, or: 
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Now, as always, the total amount of charge  which is carried by current  in time  is equal 

to: 

 

 

 

All of this charge  is added to the capacitor.  We can calculate how much energy this added charge 

represents.  Recall that the energy stored in a capacitance  charged to voltage  is equal to .  Recall 

also that the charge stored in a capacitance  when it is charged to voltage  is equal to .  We can 

work with these two relationships as follows. 

 

At the start of the charging cycle, when charged to voltage , the load capacitor  holds charge  

equal to: 

 
 

 

During the conducting phase, charge  is added to the load capacitor, so its ending charge  is equal to: 

 

 

 

The load capacitor’s ending voltage  will be equal to: 

 

 

 

The increase  in the capacitor’s stored energy during the conducting phase is equal to the end at the 

end of the period less the energy at the start of the period, thus: 
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And, continuing: 

 

 

 

 is the energy added to the capacitor during the conducting phase;  is the energy supplied by the 

power supply during the same period.  The fraction of the energy supplied which is added to the capacitor 

is therefore equal to: 

 

 

 

The factor .  Dividing by  reduces the factor to .  The 

transfer efficiency for various initial capacitor voltages can be calculated as follows: 

 

 

 

These are the efficiencies during the conducting phase only of the charging cycle.  Should the charging 

cycle continue on to its non-conducting phase, things get worse.  The power supply continues to deliver 

current, and an increasing amount of current at that, none of which adds energy to the capacitor.  

Similarly, during the discharging cycle, no energy is added to the load capacitor.  Happily, though, the 

power supply does not supply any power during the discharging cycle.  The lesson to take away is that the  

non-conducting phase must be kept limited in duration, or perhaps avoided all together.  If that is done, 

then the efficiency of the circuit, which starts off very low, increases to a maximum of 50% as the voltage 

over the load capacitor approaches the maximum permitted by the transformer.   

 

 

Part 4 – Adding a real MOSFET 

 

In this part, we will insert a real switch – an n-channel enhancement-mode MOSFET, the IFRP4886 from 

International Rectifier – into the circuit.  The MOSFET is shown as component  in the following 

schematic diagram, along with its driver transistor .  The schematic still does not have a real timing sub-

circuit, and the base of the driver transistor  is controlled simply by the pulsed voltage supply . 
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The resistances  and  are now gone from the schematic, having been incorporated as properties of 

the IRFP4886.  Charge is delivered to the IRFP4886’s gate through resistor , which is connected to the 

collector of its driver transistor , a common 2N2222 npn transistor.  When transistor  is active, or in its 

saturation mode, its collector is pulled down to ground potential.  This turns off the MOSFET.   

 

For simulation purposes, transistor ’s base is driven directly by voltage source .   has a nominal 

voltage of .  Note the SPICE directive for .  At the start of the simulation,  is high, putting 

transistor  into saturation, and cutting off the MOSFET.  As has been done before, the first  of the 

simulation is the time period during which the load capacitor is charged up to its initial voltage, in this 

case, , through diode  and its associated components. 

 

 into the simulation, voltage source  goes low.  As will be explained below, this allows ’s gate 

to drift high.  Current will begin to flow through the primary circuit.  This is the start of the charging 

cycle. 

 

 later, at simulation time , voltage source  goes high once again.  This cuts off the 

primary circuit and begins the discharging cycle.  The results of the simulation are graphed for the  

period starting  into the simulation.  We will look at the waveforms after we figure out what should 

be expected. 

 

The value of ’s base resistor  has been selected to limit the current flowing into ’s base to  

or so.  The datasheet for the 2N2222 shows that its base-emitter saturation voltage can be as high as  

when the base is sinking   If the base-emitter voltage is , then the voltage drop over  will be 

 and the current flowing through  will be equal to . 

 

When voltage source  is high, at a voltage of , transistor  will be forward-biased.  If it operates in 

its linear region, then its collector current should be equal to the base current multiplied by the transistor’s 

dc-current gain .  The datasheet for the 2N2222 shows that its dc-current gain is typically in the range 

35-100.  Even with the minimum value of dc-current gain (35), the voltage drop over the collector resistor 

 would be equal to .  This is not possible.  The impossibility will be 

resolved as follows: transistor  will not operate in its linear region, but in its saturation mode. 
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The datasheet for the 2N2222 shows that its collector-emitter voltage is a maximum of  when the base 

current is .   

 

What all of this means is that, when the control voltage  is high, the IRFP4886’s gate will in effect be 

connected to a  voltage source though gate resistor .  This should drain away the charge on 

the MOSFET’s gate and turn it off. 

 

Now, let us look at the case when the control voltage  goes low.  Transistor  will be cut off.  In its cut-

off state, its collector terminal is free to float, and the voltage to which it will drift is determined by the 

circuitry outside of the transistor.  In our case, the collector terminal will be pulled up to the supply 

voltage ( ) by the collector resistor .  The IRFP4886’s gate will then be connected to a  voltage 

source through the series combination of  and .  This should charge up the MOSFET’s gate and turn 

it on. 

 

The principal characteristic of the MOSFET’s gate is its capacitance, and the charge it carries.  Whereas a 

bipolar transistor is “on” when current flows into its base, a MOSFET is “on” when its gate capacitance is 

charged up.  The speed with which the MOSFET is turned “on” or “off” is determined by the speed with 

which charge is added to, or removed from, its gate capacitance.  The datasheet for the IRFP4886 shows 

that: (i) its total gate charge is typically , and (ii) its input capacitance is typically .  Note 

that these two measures are only consistent at a voltage of .  I am told that it is better 

practice to use the gate charge in calculations and not to rely on the gate capacitance. 

 

The following sub-schematics show the essential features of the circuit when the IRFP4886 gate is 

discharging (on the left) and charging (on the right). 

 

 

 

 

 

 

 

 

 

 

 

If the gate capacitance is , then the gate will discharge through resistor  with a time-constant 

of .  This is extremely fast.  If the gate is initially charged up to , then 

the initial discharge current will be  .  This is extremely high, but the current will not 

last very long.  In any event, the gate will be completely discharged within five time-constants or so, 

which is approximately one-half nanosecond. 

 

On the other hand, when charging, the gate will charge up through the series resistance of  and  with 

a time-constant of .  If the gate is initially at zero volts, then the initial 

charging current will be  .  In any event, the gate will charge up within five time-

constants, being  or thereabouts. 

 

From an overall point-of-view, one can say that the MOSFET’s gate is pulled down when transistor  is 

turned on and allowed to float up when transistor  is turned off.  It would be possible to add another 

transistor, in a push-pull configuration with , so that the MOSFET’s gate is both pushed and pulled.  I 

do not believe this addition is necessary – the charge and discharge times seem to be suitably fast. 
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The following graph shows the result of the SPICE simulation.  The variables shown are the MOSFET’s 

gate voltage  (being the SPICE variable V(vg), shown in blue), the primary current flowing through 

resistor  (being the SPICE variable I(Rp), shown in red) and the secondary current flowing through 

diode  (being the SPICE variable I(D1), shown in gray).  Note that the secondary current is multiplied 

by 1000 for display purposes – the secondary current starts off at just under 5.0mA. 

. 

All is as expected.  The gate voltage rises from zero to  in a time frame too short to show on the 

graph.  Once the MOSFET is turned on, the primary current is (approximately) constant while current 

flows in the secondary circuit.  As soon as the secondary circuit stops charging the load capacitor, the 

primary current rises to its steady-state value.  When transistor  is then turned on, the MOSFET’s gate 

voltage decreases to zero instantaneously, at least on the scale visible in the chart.  This begins the 

discharging cycle, during which the energy stored in the magnetic field is dissipated by current flowing 

through resistor . 

 

 

Part 5 – Asynchronous operation with a 555 timer 

 

In this section, we will add a sub-circuit to control the timing.  We will use a 555 timer wired for astable, 

or cyclic, operation.  The timer will generate pulses having a fixed length and a fixed duty cycle.  

Choosing the best lengths for the “on”-time and the “off”-time is going to require some compromise and 

therefore some loss of efficiency.   

 

The discharging cycle should not be too much of a problem.  Recall that the power supply does not 

supply any power during the discharging cycle, so no power is wasted per se during the discharging 

cycle.  We can easily configure the 555 timer to generate pulses 53.0  long, which will allow five  

time-constants for the discharging cycle.  Furthermore, the length of the discharging cycle does not 

depend on the load capacitor’s initial voltage, so the same length of pulse can be used for the entire 

operation.   

 

The charging cycle presents more of a challenge.  The length of the charging cycle does depend on the 

capacitor’s initial voltage.  In fact, the length of the discharging cycle varies widely.  It is  when 

the capacitor is uncharged, decreases to  when the capacitor is charged to  and decreases all 

the way down to  when the capacitor reaches 3 .  No single length of charging time can suit 

all capacitor voltages.  So, what should we do? 

 

If we end a charging cycle before the time  which applies for the capacitor’s current voltage level, 

then we waste time.  The secondary circuit was ready, willing and able to add more charge to the load 

capacitor, but we, by stopping the cycle early, did not permit it. 
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On the other hand, if we wait until after  before starting the discharge, then we waste energy in the 

non-conducting phase of the charging cycle, as well as wasting time. 

 

Somewhat arbitrarily, I have selected a charging period of  and a discharging period of .  The 

capacitor voltage at which  is the perfect  is .  At lower voltages, we waste time.  At 

higher voltages, we waste energy and time. 

 

The following schematic diagram shows the circuit which we will simulate in this section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The 555 timer is wired as an astable.  With the component values shown, its output pulse will have the 

following high and low times. 

 

 

 

We need the MOSFET’s gate to be high for the duration of the 555’s low pulse.  That necessitates the 

inverter INV shown on the timer’s output line.  The limitations of my version of SPICE require that the 

inverter’s output, which is a logical 0-1 output, be scaled to  by using switch  and voltage source 

.  In practice, a normal (12V) inverter would suffice.  

 

The following graph is the result of the SPICE simulation for the first  (three minutes) of operation.  

The traces graphed are the voltage  over the capacitor (being the SPICE variable V(vc), shown in blue) 

and the energy  stored in the capacitor (calculated using the formula on the graph, shown in red). 
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By the end of three minutes, the load capacitor has reached about  and holds about . 

 

The following graph shows the continuation of the above waveform to  (thirty minutes) of 

operation.  At the end of thirty minutes, the capacitor has reached about  and holds about . 

 

 
 

 

Part 6 – Where to go next? 

 

The 555 timer is not a very effective way to control the timing in this circuit.  The pulse controlling the 

charging cycle should not have a fixed length, but should decrease as the voltage over the load capacitor 

increase.  There are asynchronous ways to do this, by which I mean ways to decrease the pulse length 

according to some plan which does not require that the voltage over the load capacitor be measured. 

 

A better way, of course, would be some kind of feedback mechanism, which has as its input the voltage 

over the capacitor.  Direct measurement is undesirable, since the secondary circuit operates at high 

voltages.  An indirect measurement, using a third coil on the transformer, would be better. 

 

However, there is another issue.  This paper has been an examination of a “boost” type of circuit, in 

which current flows in the transformer’s secondary circuit at the same time as it flows in the primary 

circuit.  This is the typical way in which transformers operate.  But, it is not the only way.  One of the 

fundamental deficiencies of this circuit is that it wastes the energy which is built up in the transformer 

during the charging cycle.  At the end of the charging cycle, the MOSFET is turned off and the energy 

released by the collapse of the magnetic field is dissipated.  In fact, we introduced resistor  for the 

specific purpose of “burning off” the energy in the form of heat.  That is a waste and accounts for the fact 

that the maximum efficiency achievable by the circuit is only 50%. 

 

The alternative approach is a “buck-boost” configuration.  It is described in another paper, entitled A 

High-Voltage “Buck-Boost” Capacitor Charger.  It has so many advantages over the “boost”-type 

charger that I have not examined the “boost” charger any further. 
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Appendix A 

 

Layout of turns in the secondary winding 

 

Step 1: Divide the core into four segments.  No windings will be placed in segment A.  Segments B, C 

and D are equal in size, and each encompasses one inch of the inner circumference.  Segment A is 

slightly smaller, and encompasses 0.77 inch of the inner circumference. 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 2: Wind 350 turns on segment D before winding any turns on segments B or C.  The 350 turns will 

be wound in five layers: 90 turns in the first layer, 75 turns in the second and third layers and 55 

turns in the fourth and fifth layers.  This is shown schematically as: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 3: Wind 350 turns on segment C before winding any turns on segment B. 

 

Step 4: Wind 350 turns on segment B. 

 

Because the total voltage drop of  is divided into three separate segments, the voltage drops 

between adjacent turns will never exceed . 
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