
~ 1 ~

A homebrew telephone wardialer

The purpose of a “wardialer” is to dial a single telephone number repeatedly. One might think

that would be a nuisance and, indeed, so it is. Here in Canada, there is a government-sponsored

no-call list, which advertisers and telemarketers are supposed to respect. Perhaps they do.

However, the no-call list does not apply to telemarketing by facsimile (fax). I designed and built

this Wardialer to respond in kind to telemarketers who plague our fax machine.

There are three sheets for the schematic (see the Appendices). Sheet #1 shows the circuit that is

the interface with the external telephone line. Sheet #2 shows the circuits that process signals on

their way to or from the telephone line. Sheet #3 shows the microcontroller (a Microchip PIC

16F882) and the user interface.

Schematic sheet #3

Let me refer to Sheet #3 first. The user enters numerical data data through a 12-key (three

columns by four rows) keypad (component Kypd). Pressing any key closes the contact which

shorts the connection between that key‟s row and column. The keypad is interrogated whenever

the PIC wants, or expects, an input. (The keypad does not generate interrupts.) To read the

keypad, the PIC applies the supply voltage (+5V) to all rows (pins RB0-RB3 on the PIC) and

then polls the three columns one after another to determine if any contacts have been shorted.

Debouncing is done in software.

The four lines which deliver the voltage to the rows of the keypad have a dual use. They are also

used to send four bits of data to the LCD display. Both uses are outputs from the point-of-view

of the PIC, so buffering between the two uses is not needed. On the one hand, the LCD ignores

the voltage on the common data lines unless and until the PIC manipulates the LCD‟s control

lines in the prescribed manner. On the other hand, the voltages applied to the keypad‟s rows are

irrelevant unless the PIC intends to read the columns.

For convenience, the three keypad columns have dedicated input pins on the PIC (pins RB4-

RB6). The three 10K resistors R36 through R38 keep the input column-lines at ground level

until a key press connects one of them to a row. Since the PIC treats all three lines as inputs, it is

important that they not be floating when the PIC reads them.

The LCD I used is a two-row by 20 character display, with a backlight. It is a Lumex

S02002DSF, which Newark sells as their part number 19J7674. Its “datasheet” is simply a

dimensional drawing and is quite unsuitable for actually figuring out how to operate the device.

Midas, a competing manufacturer, has a .pdf document I found on the internet titled

Specification – MC22005A6W-FPTLW. It contains an excellent description of how to control an

LCD, and the description can be applied with no trouble to the Lumex LCD. Note that I have

use the 4-bit mode of operation, in which 8-bit character data is transmitted to the LCD in two

consecutive nibbles.

The backlighting is entirely independent from the data circuit. It is just like a diode. Pins 15 and

16 on the LCD module are the anode (A+) and cathode (K-), respectively. Applying the 5V

~ 2 ~

supply voltage directly over these two pins will not burn out the backlight; at least, it did not

burn out the one I have. But I don‟t think it is recommended. I wired a small 10Ω resistor into

the anode-cathode circuit to reduce the level of illumination. This is resistor Rxxx in the

schematic. If your 5V power supply doesn‟t supply enough current for the backlighting, it would

be possible to draw power from upstream of the regulator.

I am running the PIC (component U5) with a 10MHz ceramic resonator (component X2). For

timing purposes in the software, the instruction cycle time (one instruction takes four clock

cycles) is 400 ns (0.4µs).

R25 and C36 comprise a cheap and dirty PIC reset. The R-C time constant for this pair is

10K × 10μ = 0.1s. After the on-off switch is turned on, it will take about one-tenth of a second

for the voltage on the capacitor to reach one-half of the supply voltage. This voltage is applied

to the PIC‟s /MCLR pin, so the PIC will not begin operating until voltages throughout the rest of

the circuit have had a chance to settle down.

Schematic sheet #1

Let me now turn to the hardware interface between the external telephone line and the rest of the

circuit. The tip and ring lines from the telephone company‟s central office are screwed to a two-

terminal connector (component Jtel) on the PCB (printed circuit board) and wired to the two

contacts of a double-pole single-throw relay (component Rly).

The voltage drop on the external line is sampled by a TS117 telephone relay (component U1).

Two back-to-back 18V zener diodes (components D1 and D2) allow current to flow through

U1‟s input branch only when the voltage drop exceeds about 20V. This enables U1 to

distinguish between the two cases: (i) when the line is free, and the voltage drop is 48V and (ii)

when another telephone is using the line, and the voltage drop is, say, 5V. When the PIC want to

determine if the telephone line is available for the Wardialer‟s use, it powers up the infrared LED

between pins 1 and 2. This closes the relay between pins 7 and 8. If the voltage drop is 48V,

then current will flow through U1‟s input branch. This will cause one of the infrared LEDs

between pins 5 and 6 to glow, and enable the output transistor between pins 3 and 4. The PIC

will read the voltage on pin 3. If it is low, then current is flowing through the input circuit and

the line is not in use and is free for the Wardialer‟s use.

Back-to-back diodes D1 and D2 are used so that the tip and ring wires from the telephone

company can be connected to connector Jtel in either polarity. Current can flow through the pair

of diodes in either direction if the applied voltage is greater than the sum of the reverse

breakdown voltage of one of the diodes (18V) and the forward voltage drop (about 0.7V) of the

other diode. It is for this same reason that there are two parallel, but oppositely directed, infrared

LEDs between pins 5 and 6 of the TS117 telephone relay. Whichever way the current flows, one

of the LEDs will light up.

If the external line is free, then the PIC will connect it to the rest of the circuit by closing the

contacts of the DPST relay Rly. The PIC does this by driving the base of transistor Q1 high.

~ 3 ~

Diode D3 exists to dissipate the magnetic field stored in the relay‟s coil when transistor Q1 is

turned off.

The audio signal from the external telephone line is applied across the primary coil of a small

600Ω:600Ω telephone transformer (component TRtel). Like almost all modern versions of these

transformers, it is a “dry” type. That means it is not designed to have any DC current flowing

through the primary. Blocking capacitor C3 achieves that goal. Note that C3 has a voltage

rating of 100V, sufficient to withstand the 48V that will prevail on the external line at the instant

when the relay closes. A question to ask is whether C3 should actually have a higher voltage

rating. The telephone company delivers a ring signal using a 90Vac waveform, which has a peak

voltage of 127V. If the relay happened to be closed when a ring signal comes in, capacitor C3

would have to withstand the full 127V. That should never happen because of the subcircuit I

will describe next. This subcircuit begins to operate at the instant the relay closes and, among

other things, tells the telephone company that this telephone is now off-hook. The telephone

company should never send a ring signal to a telephone that is off-hook.

The telephone company‟s central office monitors the line to determine when the parties hang up.

As long as a minimum amount of DC current keeps flowing, the telephone company knows the

conversation is continuing. Once the DC current stops, the telephone company releases the

connection between the two customers‟ central offices. What constitutes a minimum amount of

DC current varies. It will likely be between 40mA and 50mA. What we need to do is draw

some DC current in from the external line. In the previous telephone circuits I have built, I have

used a resistor to do this. For example, a 150Ω resistor will draw 40mA if the central office

keeps the voltage drop on the external line at 6V.

For this device, I have not used a resistor, but a “gyrator” circuit. The following is an LTSpice

schematic of this subcircuit on a stand-alone basis.

The 6V voltage source

represents the DC voltage

supplied by the telephone

company. Diodes D4 and D7

are whichever pair of diodes

in the bridge rectifier happen

to be conducting. (If the tip

and ring wires were connected

with the other polarity, diodes

D5 and D8 would do th

conducting.) The bridge

rectifier ensures that the

positive end of the voltage

drop is applied to the top of

resistor R5.

The net voltage from point A to point B will be equal to the central office voltage (say, 6V) less

two diode voltages drops. 1N4148 diodes are silicon diodes, so their forward voltage drop will

~ 4 ~

be about 0.7V each. Therefore, VAB will be about 6 − 0.7 − 0.7 = 4.6V. Since very little

current will flow into the base of transistor Q2, resistors R5 and R6 will divide VAB in half. If

we ignore the tiny voltage drop over base resistor R7, then that mid-point voltage of 2.3V must

be equal to the sum of: (i) the voltage drop over R8 plus (ii) the base-to-emitter voltage drops of

transistors Q2 and Q3. They are silicon transistors, so their base-to-emitter voltage drops are

going to be about 0.7V as well. This means the voltage drop over R8 must be equal to 4.6 −
0.7 − 0.7 = 0.9V. Since R8 is a 20Ω resistor, it will allow 0.9V/0.02K = 45mA of current to

flow through. Since very little current flows through the R5-R6 resistor chain compared to the

transistor, the current through the diodes will be approximately equal to the current through

resistor R8. We have got our 45mA draw of DC current which tells the central office that our

telephone is off-hook.

The following table sets out the more exact values calculated by LTSpice for a range of central

office voltages.

Voltage Current

4V 4.56 mA

5V 20.95 mA

6V 41.14 mA

7V 62.44 mA

I did not experience any problems using a 20Ω resistor for R8. If problems do occur, it is

probably because the off-hook voltage from the telephone company is on the low side, so the DC

current drawn is too low for them to interpret correctly. One remedy is to reduce the value of

R8. Another is to use germanium diodes for D5 through D8 instead of silicon diodes. The

reduced voltage drop over germanium diodes will widen the voltage between points A and B in

the subcircuit.

Before moving on from the gyrator, I should say a word about capacitor C2. It is a large value

capacitor whose purpose is to stabilize the mid-point voltage of the resistor divider. It should be

able to withstand high voltages, at least 50V. When the line goes off-hook, the central office will

reduce the voltage from 48V to five or six volts. But that reduction will not happen

instantaneously. Indeed, it is the purpose of the gyrator to help cause that transition. In any case,

the gyrator must be able to withstand the normal resting line voltage.

There are two OpAmps on the inboard side of telecom transformer TRtel. Any general purpose

OpAmp will do, since they are used for low-frequency audio signals. I happened to have some

OPA340 chips on hand and used them. U3 (the upper one in the schematic) handles the outgoing

DTMF tones of the telephone number being dialled. U2 (the lower one in the schematic) handles

the incoming call progress tones, which include the dial tone, busy signal and ringback. The call

progress tones are also DTMF waveforms.

DTMF is the acronym for “dual tone multi-frequency”. All of the DTMF tones are the sum of

two sinusoidal waveforms with the same amplitudes. The frequencies of the sinusoidal

waveforms lie between about 300 Hz and 600 Hz. Each DTMF tone corresponds to a separate

pair of frequencies. It is an ingenious concept but its drawback is that the frequencies are spaced

~ 5 ~

very closely, so the hardware has to be put together with some care. One of the challenges is to
make sure that the circuit that handles the outgoing signals and the circuit that handles the

incoming signals do not interfere with each other.

Let me describe the outgoing, or “Transmit”, OpAmp (U3) first.

C12 blocks the DC bias of the OpAmp from affecting the logic further upstream. At 500Hz, the

capacitive reactance (1 2𝜋𝑓𝐶) of C12 is 3200Ω, a lot less than 47K resistor R17 with which it is

in series. R14 and R15 form a voltage divider that sets the bias voltage at 2.5V. The OpAmp

will source or sink current from its output pin 6 in whatever amount keeps the voltage at its

negative input terminal (pin 2) equal to the bias voltage applied to its positive input terminal (pin

3). Resistors R16 and R17 set the gain to a factor of about two (100K/47K). The output from

the OpAmp runs through a 300Ω resistor (R9) and a 20µF capacitor (C4, being two cheaper

10µF capacitors wired in parallel). At the frequencies of interest, say 500 Hz, the reactance of

this capacitor is 16Ω. A large capacitor is desired, since it will have a lower reactance and

therefore less influence on the 300Ω resistance of R9. The job of C4 is to block the DC bias at

the OpAmp‟s output from causing a DC current to flow through the coil of the telecom

transformer. (Note that the transformer runs both ways, so it is not accurate to call one coil the

primary, as I did above, and the other coil the secondary.)

Taps are taken from both ends of resistor R9 to the input of the other OpAmp, which is the

“Receive” OpAmp (U2) processing incoming signals. U2 has the same overall gain (100K/
47K ≈ 2) as U3. It also has a DC blocking output capacitor C8 which keeps its DC bias from

affecting the circuits which follow. The interesting part is how the DC bias voltage at the non-

inverting input terminal of U2 (pin 3) is established. And why.

The bias level of the receive OpAmp U2 is not a fixed voltage like it is for the transmit OpAmp

U3. Consider what would happen if it was a fixed voltage, and therefore produced a fixed

amount of gain. Things would be fine with U2 when it processed signals coming from the

transformer. But things would not be not be fine when U2 processed signals coming from U3.

U3 already amplified them by a factor of two. U2 would amplify them by another factor of two.

In other words, U2 would feed its following circuits (including the speaker) with unnecessarily

high outgoing DTMF signals. It is more important for the user to be able to hear what is going

on at the other end, and not to be blasted with signals generated by the Wardialer itself.

I set the following goal for the amplifier circuits: (i) to amplify audio voltages coming in from

transformer TRtel by a factor of two, and (ii) to reduce Transmit audio voltages generated by the

Wardialer by a factor of two. For this purpose, I have assumed that the peak amplitude of the

audio voltage received from the external telephone line is 100mV and that the peak amplitude of

the audio voltage from the Wardialer‟s DTMF generator is 210mV.

The following LTSpice model shows the Transmit (U3) and Receive (U2) OpAmps and the

resistors which control the differential amplification. I used this model to look at what happens

when the Wardialer is sending a DTMF telephone number onto the external line.

~ 6 ~

The audio signal to be transmitted is generated by voltage source V3, and is a 350Hz sinusoid

with a peak amplitude of 210mV (described in more detail below). Transformer TRtel is treated

as the load for the audio signal being transmitted. I have modeled the transformer simply as a

600Ω load. There are a lot of initial conditions, by which I set the capacitors‟ initial voltages to

their steady-state values, just to avoid having the simulation waste time charging up capacitors.

Let me make a couple of observations about the initial conditions. The average bias voltage on

U2‟s non-inverting terminal (node U2+) is indeed 2.5V, but it is not fixed at that voltage. An,

the voltages over blocking capacitors C4 and C8 settle at 2.5V so the steady-state voltage drops

over the two loads RX and RL are zero.

In operation, U3 will amplify the V3 sinusoid, producing at its output pin (node U3out) a

sinusoid with a peak amplitude of about 420mV superimposed on

the 2.5V DC level. This output signal is applied to the top of a

voltage divider that has three series elements: R9, C4 and RX. The

highlights of this voltage divider are shown at the left.

We can treat this as a simple three-element voltage divider because

resistor R12 has such a large value that the current flowing through

it can be ignored.

Note that I have put the reactance of C4 into the voltage divider,

using the 16Ω value calculated above. Putting aside the fact that

XC4 is a reactance (and so 90º out of phase with the two pure

~ 7 ~

resistances), the peak amplitude of the AC component of Vac U3out = 420mV will be divided

as follows:

Vac C4 =
16 + 600

300 + 16 + 600
× Vac(U3out) = 282mV

Vac TRtel =
600

300 + 16 + 600
× Vac(U3out) = 275mV

Of course, there will be some loss of power in transformer TRtel, in DC blocking capacitor C3,

the contacts of relay Rly and so on, with the result that the peak AC voltage that actually reaches

the external telephone line will be somewhat less than Vac TRtel , probably 200mV or so.

The voltage which reaches the two input terminals of OpAmp U2 will be much less than this.

The voltages at these two terminals are brought from the two ends of resistor R9. The voltage

difference between the two ends is Vac U3out − Vac C4 = 420mV − 282mV = 138mV.

And only half of that will reach U2 because of the action of a second voltage divider. Resistors

R10 and R11 and capacitor C5 constitute another three-element voltage divider, shown here.

The non-inverting terminal of U2 will not draw current

away from node U2+. Therefore, current will flow down

through R10, R11 and C5 to ground. At the frequencies

of interest, say, 350Hz, the reactance of C4 is 1.5K. The

peak AC voltage at node U2+ will be:

Vac U2 + =
110K + 1.5K

100K + 110K + 1.5K
× Vac U3out

= 221mV

It should be noted that the RC time constant of the R11-

C5 pair is 𝜏 = 110K × 0.3μ = 33ms. This is much

longer than the 2.9ms period of the 350Hz signal. One

concludes that the DC voltage level over capacitor C5

will not change very much, even though there is an

alternating voltage at the non-inverting terminal.

The operation of OpAmp U2 is such that it will source or sink as much current as is necessary to

keep the voltage at its inverting terminal (U2-) the same as the voltage at the non-inverting

terminal. The bits of the circuit which are relevant to this equality are shown in the next

schematic.

If we let 𝑖12 be the current (assumed to flow from left-to-right) through R12, then the equality

can be written as follows:

Vac U2 − = Vac(U2+)

→ Vac C4 − R12𝑖𝑅12 = Vac(𝑈2+)

~ 8 ~

Substituting the expansions for Vac(C4) and Vac(U2+) from above gives:

16 + 600

300 + 16 + 600
× Vac(U3out) − R12𝑖𝑅12 =

110K + 1.5K

100K + 110K + 1.5K
× Vac U3out

→ R12𝑖𝑅12 = 0.145302 × Vac U3out

→ 𝑖𝑅12 = 0.00309 × Vac U3out , measured in mA

Since 𝑖𝑅12 is algebraically positive, it confirms that the current does flow from left-to-right

through R12 and that U2 is sinking that current. The voltage drop over the 100K feedback

resistor R13 (from left-to-right) is given by:

∆Vac R13 = 100K × 𝑖𝑅12 = 0.309 × Vac U3out , measured in Volts

The voltage at node U2out, relative to ground, is the voltage at node U2+ less the differential

voltage ∆Vac(R13). This total is equal to:

Vac(U2out) = Vac U2 + − ∆Vac R13

=
110K + 1.5K

100K + 110K + 1.5K
× Vac U3out − 0.309 × Vac U3out

= 0.219 × Vac U3out

= 0.219 × 420mV
= 92mV

This is the AC component of U2‟s output voltage when it is processing a Transmit waveform

with a 210mV amplitude. (This will, of course, be superimposed on the 2.5 DC bias.) This

represents suppression by a factor of about one-half (92 210 = 43.8%), which is the second

goal I set out above. Execution of the LTSpice model confirms this outcome.

The following LTSpice model shows the other case of interest, when the input circuit is

processing a DTMF signal received from the external telephone line.

~ 9 ~

V1 is the input sinusoid for this case. It is assumed to have a peak amplitude of 100mV. This

time around, there is no AC component in the Transmit signal, so the output from OpAmp U3

(U3out) will be a constant 2.5V. The voltage drop over capacitor C5 will stabilize at the level

where the reference voltage at U2‟s positive terminal will also be a constant 2.5V. The audio

signal from the transformer will be doubled by the 100K 47K ≈ 2 gain of U2. This achieves

the first goal I set out above.

The DTMF tone generator for dialling telephone numbers

I am going to move on to Sheet #2 of the schematic. This sheet includes the IC (U6) which

generates the outgoing DTMF tones and the ICs (U9 and U10) which decode the incoming call

progress tones.

U6 is a 14-pin DTMF tone generator (Holtek HT9200A). It has three control lines: (i) a chip

enable line (pin 1), (ii) a clock input (pin 5) and (iii) an input data line (pin 6). It requires its own

external oscillator, which is a 3.58MHz ceramic resonator (component X1). I wired U6 in its

serial mode, in which it receives data bits one-by-one, but it can also be wired in a parallel mode

with a 4-bit data bus. I used the serial mode to reduce the number of I/O lines that the PIC uses

to control the various peripherals. The PIC sends information to U6 asynchronously as a stream

of bits. There are two types of information packets: (i) 8-bit instruction bytes and (ii) 8-bit data

bytes. The output from U6 (on pin 7) is the DTMF tone specified by the information packet

most-recently sent to U6 by the PIC.

~ 10 ~

The datasheet states that the nominal amplitude of the DTMF output will be 150mV. This is an

RMS voltage, so the nominal peak amplitude will be a factor of 2 greater, or 210mV. (This is

the peak voltage of the audio Transmit signal I used in the previous section.)

In this application, U6 is used to generate the DTMF tones which correspond to the ten basic

numerals 0, 1, ..., 8, 9 which make up telephone numbers. Although U6 can also generate a few

other DTMF tones, they are not used in this application.

The protocol for delivering information to U6 is not very complicated, but it must be followed

exactly. The datasheet has diagrams which describe the timing, and they should be compared

with the assembly listing set out in the Appendices. Only one subroutine is needed to manage

U6; in the source code it is named SendOneDTMFCode(). Unlike the LCD, U6 does not need a

special initialization procedure. There are two points to note:

1. I wrote the source code so that the telephone number would be dialled relatively slowly.

I send each numeric DTMF tone for 500ms, and leave a silent interval of 500ms before

the next DTMF code. As long as each code (digit) is more than 100ms long, the

telephone company should be able to detect it.

2. There are 16 frequency pairs in the basic set of DTMF tones. Each tone can therefore be

represented by a single hexadecimal digit. A huge amount of wasted time can be avoided

by observing that the hexadecimal digit for the numeral zero is not 0x00 = b‟0000‟ as one

might expect, but is 0x0A = „1010‟.

The DTMF decoder for call progress tones

The telephone company sends certain DTMF signals to a telephone. There are perhaps a dozen

such signals. They are called “call progress” tones. The most familiar ones are the dial tone, the

busy signal, the ringback and the message-waiting signal.

Aside #1: The ringback is the ringing signal you hear after you have dialled a phone number

and the telephone at the other end starts to ring. The ringback is generated by the

telephone company‟s central office at your geographical end, and it is completely

independent from the ring signal on the other end, which is generated by the central

office at the callee‟s geographical end. The ringback pulses you hear have a timing

that is not related to the ring pulses which the callee hears his telephone make.

Aside #2: The message-waiting signal is used to tell you that you have a message waiting on

your answering machine. Although it is often called a “fast-busy” signal, that is not

correct; the message-waiting signal uses different frequencies than the busy signal.

You may hear a message-waiting signal instead of a dial tone when you pick up the

handset in preparation for making a call. We need the Wardialer to recognize

message-waiting signals, and to treat them in the same way as it treats normal dial

tones.

~ 11 ~

Aside #3: Call progress tones can be distinguished from each other in two completely separate

ways. One way is to sort out the two frequencies that comprise them. But, there is

another way. Each type of call progress also has a distinct pattern of pulse lengths.

The timing of the pulses and silences is called the “cadence”. Either, or both, of the

frequencies or the timing can be used to figure out what type of call progress signal

is being received. For the Wardialer, I have chosen to make the distinction based

solely on frequencies. It completely ignores the length of the pulses and inter-pulse

silences. The reason is this –

 Any procedure based on timing must wait through at least one complete pulse and

one complete silent interval. Since the procedure is likely to begin partway through

a pulse or a silent period, some additional wait time will be required before the first

full pulse or silent period begins. As an example, the cadence of a ringback signal in

Canada and the U.S. is a two-second pulse and a four-second silence. If the callee

answers his telephone after the first pulse, the procedure will be confused. It will

have to wait through the full four seconds before it realizes that there is no second

call progress pulse and that, therefore, the callee must have picked up the handset.

Discriminating between call progress tones using only the frequencies avoids this

awkward delay because it can be accomplished in a fraction of one pulse.

The following table sets out the component frequencies of the call progress tones the Wardialer

must be able to decode. For reference purposes only, the table also set out the corresponding

cadences.

Call progress

tone

Frequency

#1

Frequency

#2
Cadence

Dial tone 440Hz 350Hz continuous

Message-waiting 440Hz 350Hz 250ms pulse; 250 ms silence

Busy signal 480Hz 620Hz 500ms pulse; 500ms silence

Ringback 480Hz 440Hz 2s pulse; 4s silence

Silence none none no pulse

Note that the two frequencies for message-waiting are the same as for a dial tone. Detecting one

is tantamount to detecting the other. The table includes four distinct frequencies, but it turns out

that we can get away with looking at only two of them.

Call progress

tone
480Hz 440Hz

Dial tone Absent Present

Message-waiting Absent Present

Busy signal Present Absent

Ringback Resent Present

Silence Absent Absent

~ 12 ~

The Wardialer uses two ICs, U9 and U10, to detect these two frequencies. Each one is an 8-pin

LM567 tone decoder designed for applications like this one. They use external resistors and

capacitors to set the set the central frequency and bandwidth of a filter. One is tuned to 480Hz,

the other to 440Hz. Their outputs go to separate pins on the PIC (RC2 and RC3), so the PIC can

read the outputs whenever it chooses. The outputs of U9 and U10 are logic level voltages. The

default output is the power supply voltage (5V). When the incoming signal includes the central

frequency, the output voltage goes low.

The two frequencies are closely spaced – only 40Hz separates them – so one must adhere closely

to what is said in the datasheet to ensure reliable discrimination. The following diagram shows

the bits of the schematic that are relevant here.

The central frequency of each filter is set by the values of the resistors and capacitors wired to

pins 5 and 6. The formula is: 𝑓0 = 1.1 𝑅𝐶 . I chose the values so that:

U9 𝑓0 =
1.1

10.5K × 0.22μ
= 476.2Hz

U10 𝑓0 =
1.1

11.5K × 0.22μ
= 434.8Hz

These frequencies are a percent or two less than the target frequencies of 480Hz and 440Hz.

That is by choice. I planned on doing some fine tuning. That is most easily done by adding

some resistance in parallel to R29 and/or R32, which will reduce the denominator and increase

the central frequency. These tuning resistors are labelled Rx and Ry in the schematic. Even

though I planned to do some tuning, I still used precision components. I used 0.22µF capacitors

(Newark part number 04J5180) which have a tolerance of 2%. And I used resistors with a

tolerance of 1%.

~ 13 ~

When all was said and done, I got excellent results using a 270K resistor for Rx and a 500K

resistor for Ry. Let me say a word or two about how I did the tuning, which I did after having

made the printed circuit. When I soldered R29 and R32 to the PCB, I left them a small distance

above the board. That made it easy to clip various test resistors in parallel while the board is

powered up. I wrote a short test routine in the software, which was executed after the unit

dialled a telephone number. The test routine continuously sampled the outputs from U9 and U10

and displayed their values as “HH”, “HL”, “LH” or “LL” directly on the LCD. The test routine

loop continues until the telephone company puts an end to the call.

Among other things, the test routine showed a noticeable delay which occurs before the filters

produce a clear result. As one expects, these filters (indeed, any filters) need several cycles of

input signal before they can figure out what they‟ve got. The datasheet for the LM576 states that

the maximum turn on-turn off frequency is 𝑓0/20. I‟m not exactly sure what this frequency is,

but it may be the time it takes for the chip to respond to a change in the incoming signal. If so,

then 𝑓0/20 implies that the response time is 20 cycles. The period of one cycle at 440Hz is 2.3

milliseconds, so 20 cycles takes 46 milliseconds. That is very consistent with the delays I saw as

I watched the outputs from the filters on the LCD.

I learned another lesson from my tuning experiment. It is not enough to take just one sample of

the filter outputs. Not only is there a delay before the signals settle, but the two filters will not

settle at the same time. It is necessary to take several samples before reaching any conclusion. I

wrote the code to take 11 samples at intervals of 100µs, to take the complements of the samples,

and then to take the logical OR of the complements. If the central frequency was detected at

least once during the one second examination, it was reported as being “Present”.

Let me move on to control over the bandwidth of the filters in U9 and U10. The filters do not

have infinite Q. They will recognize as valid a range of frequencies on either side of their central

frequency. The resistors and capacitors connected to pin 2 of the LM576 give the designer some

control over the width of the recognition band. The bandwidth is a function of the parameter

𝑓0𝐶, where 𝐶 is the capacitance from pin 2 to ground. In our circuit, the capacitors for the two

chips are C26 and C32, respectively. I used 1µF capacitors. The parameter 𝑓0𝐶 is virtually the

same for the two frequencies, being approximately 460Hz × 1μ = 460 HzμF. Note the units of

the parameter. They are unusual, but that is neither here nor there. It is simply that the

manufacturer has found that the bandwidth is described most easily this way.

The datasheet describes two separate operating regions, distinguished by the amplitude of the

incoming DTMF signal. If the incoming DTMF signal has an RMS voltage greater than 200mV,

then Table 2 in datasheet states that a parameter 𝑓0𝐶 of 460 will cause the bandwidth to be about

14% of the central frequency. If the incoming DTMF has an RMS voltage less than 200mV,

then recourse must be made to Figure 5 in the datasheet. It shows how the bandwidth decreases

as the signal strength decreases. At 50mVrms, and with 𝑓0𝐶 = 460, the bandwidth will be down

to about 10% of the central frequency. These bandwidth are pretty broad and could be cause for

concern. At 480Hz, a 10% bandwidth is 48Hz, and extends far enough down to detect a 440Hz

signal. One might be tempted to increase the capacitance – a bigger capacitance (and so, bigger

parameter 𝑓0𝐶) tends to produce a smaller bandwidth. But, increasing C26 and C32 starts to

~ 14 ~

interfere with another recommendation made by the manufacturer: that the grounding capacitor

wired to pin 1 be at least twice as large as the bandwidth capacitor.

As luck would have it, I did not experience any problems with bandwidth using the values in the

schematic, so I did not pursue my concerns about this any further.

Inside the LM567, the output circuit is an npn transistor with an open collector. The collector is

tied high by an external resistor. R31 and R34 are the external pull-up resistors for U9 and U10,

respectively. When the central frequency is detected, the output transistor is driven into

saturation, which pulls output pin 8 low. In other words, when the desired frequency is present,

the output from the filters is low. The software must take this into account. In the code,

subroutine ReadCallProgress() reads the signals on RC2 (from U9) and RC3 (from U10) and

complements them, so that a “1” corresponds to the presence of the desired frequency.

The audio amplifier

The Wardialer includes a small 8Ω speaker. A SPST toggle switch on the front panel allows the

speaker to be turned on or off. It is useful to be able to listen to what is going on, particularly

when a number is being attacked for the first time. Once things are found to be running

smoothly, it‟s handy to be able to turn the speaker off and let the device run quietly.

The following schematic shows the details of the audio amplifier.

The Receive signal (generated by the circuits in the previous section) is applied to the positive

input terminal of OPA340 OpAmp U8. The DC bias voltage at the positive input terminals of

both OpAmps is set by a voltage divider comprised of R18 and R19. They divide the 5V supply

~ 15 ~

voltage by a fraction 6.2K (10K + 6.2K) to give a DV bias of 1.914V. While the DC bias

voltage is not critical to operation, setting it at this particular voltage gives the maximum voltage

swing over the speaker before clipping sets in.

For design purposes, I have assumed the incoming signal, represented by voltage source V1, has

a peak amplitude of between 100mV and 600mV. In combination with DC blocking capacitor

C16, the incoming AC waveform is superimposed on the 1.914V DC bias and applied to the non-

inverting terminal (node U8+) of OpAmp U8. U8 will work as hard as it can to keep the

instantaneous voltage at both of its input terminals the same. For now, don‟t worry about how it

does that, just note that the voltage at the right-hand end of resistor R27 (at node U8-) will be

equal to the DC bias plus the incoming AC waveform.

OpAmp U7 will also be working as hard as it can, to keep the voltage at its two terminals the

same. The voltage at its non-inverting terminal (node U7+) is also fixed at 1.914V. Smoothing

capacitor C17 damps down voltage excursions at this terminal. The voltage at the left-hand end

of resistor R27 will want to want to run up-and-down in synch with the voltage at its right-hand

end, which would tend to pull both ends of resistor R26 up-and-down as well. U7 will try to

prevent that. It will fire current out of its output terminal (node U7out). That current will flow

through R26 and then down to ground through R25. Because R25 has such a high value (1Meg),

a miniscule amount of current will be enough to adjust the voltage at the inverting terminal to

keep it at 1.914V. Furthermore, since the value of the feedback resistor R26 is so low compared

with R25, the drop in voltage from the output terminal of U7 (node U7out) back to the inverting

terminal will also be miniscule. The result is that voltage at node U7out will be kept virtually

equal to the DC bias voltage 1.914V.

We can therefore say that the voltage drop over resistor R27, from right-to-left, will be equal to

the input AC signal voltage. The current flowing through R27 will be equal to the input AC

signal voltage divided by R27‟s 10K resistance. That is the real purpose of U7 and R26: to

create an AC current which is proportional to the input AC voltage.

Now let‟s look at U8. Since no current flows into or out of its inverting terminal (node U8-), any

and all current which flows through R27 must also flow through R28. Since R28 has twice the

value of R27 but carries the same current, the voltage drop from U8‟s output terminal (node

U8out) to its inverting terminal (node U8-) will be twice the voltage drop over R27. Adding

things up, the voltage at node U8out will be equal to three times the voltage of the incoming AC

signal. As before, this AC voltage will be superimposed on the 1.914V DC bias.

This brings us to transistors Q4 and Q5. They are npn and pnp transistors, respectively, wired in

a push-pull arrangement to drive the speaker. Each transistor is biased for class-B operation.

The two transistors will conduct during alternate half cycles of the AC waveform.

Look at the pair of diodes which connect the bases of the two transistors. They are silicon

diodes. When they are forward-biased, each will drop an almost-constant voltage of 0.7V. The

two transistors are also made of silicon. When they are forward-biased, the voltage drops across

their base-to-emitter junctions will also be about 0.7V. The diodes keep both transistors just on

~ 16 ~

the verge of their active operating regions. The better the diodes and transistors are matched, the

less distortion will show up at the output.

The voltage drop between the bases of the two transistors will be approximately constant at

1.4V. Voltage swings at Q4‟s base will be absorbed by resistor R20. R20 will allow a greater or

lesser amount of current to flow through so that the voltages at the bases can move up or down in

lockstep. In the absence of an AC signal, the voltage drop over resistor R20 will be: (i) the 5V

supply voltage, less (ii) the 1.4V drop over the diodes and less (iii) the 1.914V DC bias at the

output of U8. That is 1.686V. The DC current which flows down through R20 will be

1.686V 1K = 1.686mA.

The steady-state voltage at the point where the diodes meet can be calculated in two ways. From

the top down, it is: (i) the 5V supply less (ii) the 1.686V drop over R20 and less (iii) the 0.7V

drop over diode D4, giving a total of 2.614V. From the bottom up, it is: (i) the 1.914V DC bias

at the output from U8 plus (ii) the 0.7V drop over diode D5, giving a total of 2.614V.

Let‟s take a quick look at the speaker, which I have modelled as an 8Ω resistor. DC blocking

capacitor C19 has quite a high value: 2200µF. At the frequencies we are looking at, say 460Hz

on average, the reactance (1 2𝜋𝑓𝐶) of C19 is 0.16Ω. We need a large capacitor here to

maximize the amount of power that reaches the speaker. Since transistors Q4 and Q5, and their

emitter resistors, are all wired symmetrically with respect to the power supply, C19 will charge

up to a DC voltage of 2.5V. When there is no AC signal, and with the two transistors on the

verge of their active regions, the voltage at Q4‟s base (node Q4b) will be this DC voltage plus

one base-to-emitter junction voltage drop. That is 2.5 + 0.7 = 3.3V. Similarly, the DC voltage

at Q5‟s base (node Q5b) will be 2.5 − 0.7 = 1.9V. This configuration centers the output at

2.5V, and allows for the maximum swing in voltage before transistors Q4 and Q5 stop operating

in their active regions. (It is for this reason that resistors R18 and R19 were selected above so

that the DC bias of the OpAmps is 1.9V or, more precisely, 1.914V.)

Consider the half-cycle of the input AC waveform during which the voltage at Q5‟s base (node

U8out) rises above the DC level. The voltage at the base of Q4 will also rise above its DC level.

pnp transistor Q5 will be cut off as the voltage drop over its base-to-emitter junction falls below

0.7V. But npn transistor Q4 will be driven into its active region. Current will flow down

through Q4, its emitter resistor R21 and out into the speaker. The flow of current through R21

will cause the voltage at Q4‟s emitter to rise. However, the amount of the rise is limited. It

cannot rise above the level that would take Q4 back out of its active region. The way it works

itself out is that the voltage at Q4‟s emitter will rise by the same amount as voltage at its base.

The peak magnitude of the rise will be three times the peak magnitude of the incoming AC

signal. The current from Q4‟s emitter flows through a series resistance of 11Ω, of which 8Ω is

the speaker. Therefore, the peak voltage over the speaker will be 3 × 8 11 = 2.18x′s the peak

voltage of the incoming AC signal. If the peak input voltage is 100mV, then the peak voltage

over the speaker will be 218mV.

During the other half-cycle of the input AC waveform, transistor Q4 will be cut off and Q5 will

be driven into its active region. Its emitter voltage will be drawn down in synch with the

drawdown of its base voltage. Current will be pulled in from the speaker. The speaker will

~ 17 ~

experience 8/11ths of the voltage swing. Again, the peak voltage (negative for this half-cycle)

will be 218mV.

How much power does the speaker dissipate? If the peak AC voltage over the speaker is

218mV, then the RMS equivalent is 218 2 = 154mV. The RMS current will be (using Ohm‟s

Law) 154mV 8 = 19.25mA. The product of voltage and current is the power: 154mV ×
19.25mA = 3.0mW.

The following is a plot of the input and output voltage waveforms produced by the LTSpice

simulation.

The input AC waveform is rendered in red. Its peak amplitude is 100mV. The voltage over the

speaker is rendered in black. Its peak amplitude is about 120mV – quite a bit less than the

218mV we calculated. The output voltage also has about 10mV of asymmetry, biased towards

the negative side. In addition, there is some distortion as the output voltage passes through zero.

All three of these faults arise because real diodes and transistors are not ideal. In particular, the

forward voltage over a diode is not constant, but does vary a little bit with the strength of the

current. The base-to-emitter junction of a real transistor has exactly the same kind of variation.

Furthermore, the boundary between a transistor‟s cut-off and active regions is not a sudden

change, but a gradual one. All of these realities permit the components to partially compensate

for externally-imposed changes by changing their own internal voltage drops. The combined

effect is that only a part of the externally-imposed changes find their way all the through to the

speaker.

Now, 100mV is about the minimum level of signal one would expect to come in from the

telephone line. Signals can be much bigger. The following plot shows the output voltage when

the input AC signal has a peak amplitude of 600mV. Once again, the input signal is shown in

black and the output signal is shown in red.

~ 18 ~

We see here the onset of a different kind of distortion. The output peaks are showing some

flatness, or “clipping”. We are trying to get more amplification than the transistors can deliver.

As the voltage swings get larger, the voltages at the transistors‟ bases skirt closer and closer to

the limits of the power supply. The transistors begin to leave their active operating regions and

enter saturation.

For the sinusoidal components of AC signals, the distortion on this most recent plot are not a

problem. But, it should be noted that the amplifier is at its limit. With the peak-to-peak voltage

of about 1.8V as shown in the plot, the speaker is dissipating about 𝑉 2
2

𝑅 = 1.82 16 =
203mW of power. I used a 150mW speaker (Digikey‟s part number 668-1136-ND), so this

amount of amplification is a little too much for the speaker as well.

The PIC program – data entry

The source code listing is set out in the Appendices below. There are two main parts to the

program. The first part runs when the Wardialer is powered up, and guides the user in entering

the parameters to be used for the endeavour. The second part is execution of the user‟s

instruction. This section describes the data entry procedure.

If you think through the steps of making a telephone call, it will become clear that several

choices need to be made. How many times should the callee‟s phone be allowed to ring before

deciding that the callee is ”not at home”? If the callee‟s phone is busy, it makes sense to try

again shortly. If it is busy on the second attempt, should a third attempt be made? How long

should the Wardialer wait between calls? And so on.

The following table sets out the prompts the Wardialer displays on the LCD. It also sets out the

names of the registers in which the user‟s entries are stored. The alphanumeric text in the

messages is stored in the PIC‟s flash memory, not in EEPROM. The numerals shown for the

prompts in the following table are related to their locations in the flash memory. The Wardialer

~ 19 ~

does some validation as the user enters the data. It displays appropriate error and warning

messages which have the reference numbers which are missing from the following table.

Prompt Data is stored in Purpose

#1 Telephone number: _
TelNum1, ...,
TelNum14

Target telephone number, up to 14

digits

#2 Test dial? (1=Y): _ Listen in on call progress

#3
Mins between calls,
max (0-255): _

MaxWaitToCall
Maximum number of minutes to wait

between making calls

#4
Mins between calls,
min (1-max): _

MinWaitToCall
Minimum number of minutes to wait

between making calls

#8
Secs between calls,
max (1-255): _

MinWaitToCall
Maximum number of seconds to wait

between making calls

#10
Number of telephone
calls (10-255): _

MaxNumCalls Maximum number of calls to make

#12
Number of ring
pulses (3-10): _

MaxNumRingbacks Number of ringback pulses to allow

#14
Number of busy
tries (5-50): _

MaxNumBusyTries Number of re-dial attempts if busy

#16
Max sec between busy
tries (5-50): _

MaxWaitOnBusy
Maximum number of seconds to wait

between re-dial attempts

#17
Min sec between busy
tries (1-max): _

MinWaitOnBusy
Minimum number of seconds to wait

between re-dial attempts

#20
Max sec to hold
callee (2-240): _

MaxSecsToHold
Maximum number of seconds to wait

before hanging up

There is a colon at the end of each of these prompts. After displaying the prompt, the cursor

settles on the second position after the prompt and the PIC enters a loop while it awaits the user‟s

keystrokes.

A word about the keypad is in order. The keypad is a normal 3-column by 4-row telephone-type

keypad. Ten of the keys are taken up by the basic ten digits. But the “*” key at the lower left

and the “#” key at the lower right have special meanings here. The “*” key is used as the

backspace key and the “#” key is used as the ENTER key. The PIC does not really begin to

process the user‟s entries until he presses the “#” (ENTER) key. Quite a lot of code is required

to keep track of the display and the cursor position as the user types in an entry.

The PIC uses different subroutines to process the telephone number, on the one hand, and the

other numeric entries, on the other hand. As the user enters telephone digits, the PIC simply

adds them to a stack of 14 registers dedicated to their storage. If the user backspaces, the PIC

simply moves down one item in the stack. When the user presses the “*” (ENTER) key, the

program records the number of digits in the telephone number in a separate register named

LenTelNum. The subroutine GetTelephoneNumber() is the procedure which, well, gets the

telephone number. As the user types in the digits, the subroutine updates the LCD display. It re-

~ 20 ~

writes the entire number, not just the most-recently added digit. It calls another subroutine,

named DisplayTelephoneNumber(), to display the current version of the telephone number.

The Wardialer does not validate the telephone number. It can include leading numerals to select

an outside line if it is connected to a PBX. It can include long-distance codes. As soon as the

user enters the telephone number, the next prompt is Test dial? (1=Y). If the user answers in

the affirmative, the device immediately goes through the process of dialling the telephone

number. If the speaker is turned on, the user can listen to the entire process. This is useful, not

just to ensure that the correct number has been entered, but (and especially for a new target

number) to ensure that the procedure unfolds as expected.

All of the other user entries, that is, the data other than the digits of the telephone number, are

designed so that their numerical values are between zero and d‟255‟, allowing them to be stored

in single byte registers. A maximum of three characters are all that is needed to display any of

the user‟s replies to these prompts. The user‟s keystrokes are saved in registers Digit1, Digit2

and Digit3 as the user enters them. Another register, named NumDigits, keeps track of how

many digits the user has entered. If the user tries to enter a fourth digit, it will simply overwrite

the third one. When the user presses the “#” (ENTER) key, the key calls subroutine

ConvertNumericFieldToBinary() to convert the user‟s entry into a binary value, which is then

stored in the appropriate register.

The program allows for a variable length of time between successive telephone calls. A variable

length of time between calls makes the process more confusing, and disruptive, for a human

callee. The user specifies maximum and minimum wait times. First, the PIC prompts the user to

enter the maximum length of time between calls, which it assumes is stat in minutes. This

number is stored in register MaxWaitToCall. If the user‟s entry is two or more, then the PIC

prompts for the minimum length of time between calls (also in minutes), which it stores in

register MinWaitToCall. The difference between these two extremes is calculated and stored in

register DeltaWaitToCall. At the end of a telephone call during the main operating loop, the

PIC will calculate how long to wait (in minutes) before starting the next call. The code includes

a small 8-bit random number generator, in subroutine Random(). Calling subroutine Random()

returns a random 8-bit sequence in the 𝑤 accumulator. The PIC treats the random number as a

binary fraction. The left-most bit (if present) represents one-half. The second bit from the left

(if present) represents one-quarter. The third bit from the left (if present) represents one-eighth.

And so on, all the way down to the right-most bit, which (if present) represents 1 28 , or one-two

hundred fifty sixth.

The PIC calls subroutine Multiply() to multiply this 8-bit random fraction by the 8-bit value

DeltaWaitToCall. Multiply() carries out a full 16-bit multiplication, but returns only the high

order 8 bits. The product is added to MinWaitToCall. The result of the addition is a random

integer somewhere between MinWaitToCall and MaxWaitToCall. The program waits this

number of minutes and then calls again. I might just point out that the subroutine

CalcAndDoWaitToCall() does the randomness calculation, and also waits through the

calculated number of minutes or seconds.

~ 21 ~

For some target telephones, it is useful to call more frequently than this. The PIC manages

things differently if the user enters either zero or one in reply to the prompt for MaxWaitToCall.
It then assumes that the user wants to measure the inter-call period in seconds, not minutes. The

PIC sets MaxWaitToCall to zero, and then displays the prompt “Secs between calls, max (1-
255):”. The user‟s entry is stored in register MinWaitToCall. The PIC can easily avoid

confusion by the dual use of register MinWaitToCall. It uses MaxWaitToCall as a kind of flag.

If MaxWaitToCall is not zero, then it and MinWaitToCall set the bounds of the desired duration

in minutes. On the other hand, if MaxWaitToCall is zero, then MinWaitToCall is the number of

seconds to wait. Well, not quite. More precisely, the program knows that MinWaitToCall is the

maximum number of seconds to wait (see the wording of the prompt). It assumes that the

minimum wait is one second. It uses the Random() and Multiply() subroutines to pick a random

number of seconds up to the number entered by the user.

The next couple of user entries are straight-forward. MaxNumCalls is the number of calls the

Wardialer will make during this session. After it has made these calls, the program will enter a

do-nothing loop until the user switches the device off.

MaxNumRings is the number of ringback pulses the procedure will wait through after it dials a

telephone number. In the event that the telephone at the far end is answered, the program will

hang up after waiting MaxSecsToHold seconds.

If the telephone at the other end is busy, then the program relies on three other parameters.

MaxNumBusyTries is the maximum number of times the program will attempt to re-dial in the

face of a busy signal. If the program hears a busy signal, it will immediately hang up. But, it

will then attempt to re-dial. Up to 50 re-dials are permitted; the user‟s selection is stored in

register MaxNumBusyTries. Just to be clear about it, this is the maximum number of attempts

to make during one telephone call. If the callee‟s phone is busy on every try, then the program

records this as a failed call, increments the running total in register NumBusyCalls, and then

starts to wait for the net call.

A question is: how long to wait between these attempted re-dials when the callee‟s telephone is

busy? The user is prompted to enter a maximum and a minimum wait time, assumed to be in

seconds. These two values are stored in registers MaxWaitOnBusy and MinWaitOnBusy. The

program handles these two parameters in the same way as the parameters that govern the wait

time between calls made in the ordinary course. It calculates the difference, which it stores in

register DeltaWaitOnBusy. When necessary it calls subroutine Random() to get a random

number, which it multiplies by the difference, and then adds to the minimum, to calculate the

number of seconds to wait before attempting a re-dial when busy. The subroutine

CalcAndDoWaitOnBusy() does the randomness calculation, and also waits through the

calculated number of seconds. This whole re-dialling procedure is stopped if, on one of the re-

dials, the callee‟s telephone does ring through.

During the data-entry procedure, the PIC can display other messages. The following table lists

these other messages.

~ 22 ~

Message Follow-up

#3 Turn on speaker Remind user to turn on the speaker

#7 Min minutes > Max Re-prompt with “Mins between calls, max (0-255): _”

#18 Min seconds > Max Re-prompt with “Secs between calls, max (1-255): _”

The last two messages alert the user that the cardinal order of the maximum and minimum wait

times he has entered cannot be correct. These messages are displayed for three seconds after

which the original prompts are displayed once more. No error messages are displayed if the user

tries to enter one of the one-byte parameters with a value outside of the prescribed range. The

PIC keeps the prompt displays until the user types in a satisfactory value.

To help the hapless programmer (which is to say, me) debug the data-entry procedure, I prepared

a flowchart for the procedure, which is set out in the Appendices.

The PIC program – operating loop

As soon as the user has entered the last of the parameters, the program will commence its main

operating loop. There is no delay before the PIC makes the first call. The following table sets

out the messages that the PIC may display during operations.

Message Meaning and follow-up

Line in use Our telephone line is being used; wait one minute and try again

No dial tone Not receiving a dial tone; wait one minute and try again

Dialling ... PIC is dialling the telephone number

Busy ... Telephone at far end is busy

Ringing ... Telephone at far end is ringing

Dialling try #xxx Attempt to re-dial a line that has been busy

Progress
Good:xxx
Busy:yyy
Rang:zzz

Progress report

All finished Procedure is finished

The first two messages will appear if the device is having trouble getting access to telephone

service. It is possible that some other device that uses the same external line, such as a fax

machine, is using the line. Or, for some reason, the device simply does not get a dial tone after

the DPDT relay is closed. In either case, the PIC will display the message for one minute, then

try again. Failure to make a call does not affect the statistics. That is, failure at our end does not

reduce the planned number of outgoing calls.

While it is dialling the telephone number, the PIC will display Dialling...

~ 23 ~

Once the callee‟s line begins to respond, the PIC will display either Busy ... or Ringing ...,
depending on what it hears. It is possible that the callee will answer the phone before a busy

signal or ringback is generated at our end. If that happens, the PIC will proceed with its

procedure for answered calls, and neither of these messages will be displayed.

If the callee‟s line is busy, the PIC will enter its procedure for dealing with busy lines. As it

makes each attempt to re-dial, it will display the message Dialling try #xxx. The number xxx

will be incremented on each attempt.

In between normal-course calls, the PIC will display a progress report. A “Good” call is defined

as one where the callee actually answered, or “picked up”. A “Rang” call is one where the

callee‟s telephone rang through the prescribed number of ringback pulses, but the telephone was

not answered. This is not to say that a “Good” or “Rang” call happened on the first attempt. It

may well be that several busy signals and re-dials were necessary before the call eventually rang

through. A “Busy” call is one where the prescribed MaxNumBusyTries was made, but the

callee‟s line was busy on every one of them. The program keeps track of these outcomes in the

three registers NumGoodCalls, NumRangCalls and NumBusyCalls. When the procedure is

all finished, the sum of these three numbers will be equal to the number of calls the user

requested in parameter MaxNumCalls.

To process these messages, the PIC needs to be able to take an 8-bit byte and display it on the

LCD as a three-digit decimal number. Here‟s how the PIC does that. A call to subroutine

ConvertBinaryToCharacterField() converts the contents of the 𝑤 accumulator into three decimal

digits in registers char1, char2 and char3. Next, a call to subroutine DisplayNumericField()
displays these three characters on the LCD. An important associated variable is stored in register

StartAdd. This is the address on the LCD display at which the numeric sequence is to start. For

reference purposes, note that address 0x00 is the start of the first line; address 0x40 is the start of

the second line. The LCD uses the ASCII representation of characters. This is helpful,

particularly for numerals. The ASCII representation of a numeral is 0x20 plus the binary

representation of the numeral. For example, 0x05 = d‟5‟ has an ASCII representation of 0x25.

Converting the binary contents of the char* registers for transmission to the LCD is therefore a

simple logical operation.

Let me say a word about the random number generator. The algorithm used here is a type of

linear-feedback shift register, of which there are many descriptions on the internet. The

following is subroutine Random(). At every call, it updates a random 8-bit user register named

Random, and for convenience also returns the updated number in the 𝑤 register. The result is

not truly random, of course, but pseudo-random. 256 successive calls to Random() will return

the 256 numbers d‟0‟ through d‟255‟ in what appears to be random order. Although not truly

random, the lengths of the wait times that this subroutine returns are more than adequate to

mislead the callee (even if AI) into believing that the caller is a human. Incidentally, register

Random needs to be seeded before its first use. For no particular reason, I seeded it with the

value 0x55.

~ 24 ~

Random

rlf random,w

 rlf random,w

 btfsc random,4

 xorlw 0x01

 btfsc random,5

 xorlw 0x01

 btfsc random,3

 xorlw 0x01

 movwf random

 return

To help the hapless programmer (once gain, me) debug the operating loop, I prepared a

flowchart, which is set out in the Appendices.

The PIC program – detecting call progress tones

Although the two LM576 filters provide the raw data for detecting DTMF call progress tones,

some software is required as well. The presence or absence of 440Hz and 480Hz components in

the call progress tones need to be interpreted into something more meaningful. Subroutine

ReadCallProgress() does the heavy lifting. It return its findings by setting bits in user-register

RetValues, whose name signifies that it holds values returned by subroutines. RetValues has

separate bits to flag the presence of dial tones, busy tones, ringback tones, and silence. A

flowchart for this subroutine is set out in the Appendices.

Construction

The circuit is built on two printed circuit boards (PCBs). The telephone line interface

(Schematic #1) is built on one. The telephone line control circuits (Schematic #2) and the data

entry and display circuits (Schematic #3) are both built on the second. Two PCBs were needed

in order to make everything fit inside the enclosure. The latter PCB is the bigger of the two, and

is mounted underneath the former in the enclosure. The second, third and fourth photographs in

the Appenices show the arrangement.

The lid of the enclosure is hinged on the left hand side. The LCD display, keypad and control

switches are all mounted on and through the lid. The last photograph in the Appendices shows

how access is gained to the rear of these controls.

February 2019

Jim Hawley

jim@jimhawley.ca or hawley@pathcom.com

(As always, an e-mail setting out errors or omissions would be welcome)

mailto:jim@jimhawley.ca

~ 25 ~

List of Appendices

Schematic #1 – Telephone line interface page 26

Schematic #2 – Telephone line control circuits page 27

Schematic #3 – Data entry and display circuits page 28

Parts list page 29

Printed circuit board #1 page 30

Printed circuit board #2 page 31

Layout of front panel page 32

Flowchart for the Data-Entry procedure page 33

Flowchart for making a telephone call page 37

Flowchart for subroutine ReadCallProgress() page 41

Photographs page 42

Listing of assembly code for PIC 16F882 page 45

~ 26 ~

~ 27 ~

~ 28 ~

~ 29 ~

~ 30 ~

PCB#1 – 2.8” wide by 5.0” high

(Includes circuit in Schematic #1)

~ 31 ~

PCB#2 – 4.7” wide by 5.0” high

(Includes circuits in Schematics #1 and #2)

~ 32 ~

Front panel layout – 5.0” wide by 5.0” high

~ 33 ~

Flowchart for Data-Entry procedure

DATA ENTRY

Message #1:
 Telephone number:

 12345678901234

GetTelephoneNumber()
stores data in LenTelNum and

TelNum1, TelNum2, ...

Message #2:
 Test dial? (1=Y): 1

Response = 1? N

Y

Message #3:
 Turn on speaker

DialTelephoneNumber()
Performs entire procedure,
including external line test

Wait one minute

Messages #4 and #5:
 Mins between calls,

 max (0-255): 123

Convert data to binary and
save in MaxWaitToCall

MaxWaitToCall = 0 or 1? Y

N

Maximum time will be
entered in seconds

~ 34 ~

Messages #4 and #6:
 Mins between calls,

 min (1-max): 123

Convert data to binary and
save in MinWaitToCall

MinWaitToCall = 0? Y

MinWaitToCall >
MaxWaitToCall?

N

N

Y

Message #7:
 Min Minutes > Max

Wait three seconds

Messages #8 and #9:
 Secs between calls,

 max (1-255): 123

Convert data to binary and
save in MinWaitToCall

MinWaitToCall = 0? Y

N

Messages #10 and #11:
 Number of telephone

 calls (10-255): 123

Convert data to binary and
save in MaxNumGoodCalls

MaxNumGoodCalls < 10? Y

N

Messages #12 and #13:
 Number of ring

 pulses (3-10): 123

~ 35 ~

Convert data to binary and
save in MaxNumRingbacks

3 <= MaxNumRingbacks <= 10? N

Y

Messages #14 and #15:
 Number of busy

 tries (5-50): 123

Convert data to binary and
save in MaxNumBusyTries

5 <= MaxNumBusyTries <= 50? N

Y

Messages #16 and #15:
 Max sec between busy

 tries (5-50): 123

Convert data to binary and
save in MaxWaitOnBusy

5 <= MaxWaitOnBusy <= 50? N

Y

Messages #17 and #18:
 Min sec between busy

 tries (1-max): 123

Convert data to binary and
save in MinWaitOnBusy

MinWaitOnBusy = 0? Y

N

~ 36 ~

MinWaitOnBusy >
MaxWaitOnBusy? Y

Message #19:
 Min Seconds > Max

Wait three seconds

N

Messages #20 and #21:
 Max sec to hold

 callee (2-240): 123

Convert data to binary and
save in MaxSecsToHold

2 <= MaxSecsToHold <= 240? N

Y

End of DATA ENTRY

~ 37 ~

Flowchart for making a telephone call

Label: CheckExternalLine
Is outgoing telephone line

being used?

Set program totals:
NumGoodCalls = 0
NumFailedCalls = 0
NumBusyCalls = 0

Message #22: “Line in use”

N

Y

Label: ConnectToExternalLine
Close relay to connect to
external telephone line

Wait one minute

Label: MainProgram
DeltaWaitToCall = MaxWaitToCall - MinWaitToCall

DeltaWaitOnBusy = MaxWaitOnBusy - MinWaitOnBusy

Set counters for first call:
NumRingbacks = 0
NumBusyTries = 0

A

Call Wait2SecForDialTone()
Wait for dial tone. Check

every 10ms for two seconds.
F

Open relay to disconnect
from external telephone line

Message #23: “No dial tone”

Wait one minute

S

Message #24: “Dialling”

Call DialTelephoneNumber()

Wait 500ms

Call InterpretCallProgress()

~ 38 ~

RetValues<Busy> = 1? goto Label: CalleeIsBusy Y

N

RetValues<Ring> = 1? goto Label: CalleeIsRinging Y

N

RetValues<None> = 1? goto Label: CalleeAnswered Y

N

A dial tone should never
be observed here

goto Label: TelephoneSystemError

Label: CalleeIsBusy

Message #25: “Busy ...”

Open relay to disconnect
from external telephone line

Increment NumBusyTries

NumBusyTries =
MaxNumBusyTries? N

Y

Increment NumBusyCalls

Set counters for next call:
NumRingbacks = 0
NumBusyTries = 0 Message #26: “Dialling try #xxx”

Call CalcAndDoWaitOnBusy()
Wait a random interval

A

Call DisplayProgressReport()

Call CalcAndDoWaitToCall()
Wait a random interval

A

~ 39 ~

Label: CalleeIsRinging

Message #27: “Ringing ...”

Increment NumRingbacks

Call Wait3SecForSilence()
Wait for silence. Check every

10ms for three seconds.

RetValues<None> = 1?

Y

N RetValues<Dial> = 1?

Y

N
goto Label:

CalleeAnswered

Call InterpretCallProgress() A busy signal should never
be observed here

goto Label: TelephoneSystemError

RetValues<Ring> = 1?

Y

N goto Label: CalleeAnswered

Increment NumRingbacks

NumRingbacks =
MaxNumRingbacks? N

Y

goto Label: RangCallCompleted

~ 40 ~

Y

Label: CalleeAnsered

Wait one second

Call ReadCallProgress()

RetValues<None> = 1?

N

Y

Label: GoodCallCompleted

Decrement NumSecsToHold

NumSecsToHold = 0? N

Open relay to disconnect
from external telephone line

Increment NumRangCalls

Set counters for next call:
NumRingbacks = 0
NumBusyTries = 0

Call DisplayProgressReport()

Call CalcAndDoWaitToCall()
Wait a random interval

A

NumSecsToHold = MaxNumSecsToHold

~ 41 ~

Flowchart for subroutine ReadCallProgress()

CP480HzPin = portC<2> input signal from 480Hz filter
CP 440HzPin = portC<3> input signal from 440Hz filter

CP480HzBit = tempRCP2<2> of user register tempRCP2
CP440HzBit = tempRCP2<3> of user register tempRCP2

RetValues<7> = 1 denotes a busy signal
RetValues<6> = 1 denotes a ringback tone
RetValues<5> = 1 denotes a dial tone
RetValues<4> = 1 denotes silence

Silence

ReadCallProgress()

Set counter = 11
Set 480HzBit = 0
Set 440HzBit = 0

Sample 480HzPin
Sample 440HzPin

480HzBit = 480HzBit OR NOT(480HzPin)
440HzBit = 440HzBit OR NOT(440HzPin)

wait 100us

counter = counter - 1

counter = 0?
No

Yes

480HzBit = 1?
No

440HzBit = 1?
No

Yes

440HzBit = 1?

Yes

Ringback

No
Busy signal

Yes

Dial tone

~ 42 ~

Photographs

View of interior

Top PCB swung up to
show bottom PCB

Finished unit during entry of telephone number

~ 43 ~

Close-up view of bottom PCB

With top PCB secured back in place

~ 44 ~

Close-up of inside of front panel

~ 45 ~

Listing of assembly code for PIC 16F882

; Program for Wardialer, for 16F882 microprocessor

;

; 1. The duration of DTMF tones and pauses is fixed at 500ms. This is very

; conservative, but little would be gained by speed dialling.

;

; 2. This application does not use interrupts.

;

; 3. The code has ten main blocks:

; A. The main program, which starts on power-up, and handles data entry

; B. The main operating program, which runs the dialler

; C. Routines needed to operate the LCD hardware

; D. Routines needed to operate the keypad hardware

; E. Routines needed to operate the telephone line hardware

; F. Routines which send messages to the LCD

; G. Routines which interpret key strokes

; H. Miscellaneous subroutines

; I. Routines used for debugging

; J. ASCII look-up tables with prompts and messages

;

; Configuration Words for 16F882

; b<13>=1 Disable in-circuit debugger

; b<12>=0 Disable Low-Voltage Programming

; b<11>=0 Disable fail-safe clock monitor

; b<10>=0 Disable internal/external switchover

; b<9-8>=00 Disable brown-out reset

; b<7>=1 Turn OFF EEPROM memory protection

; b<6>=1 Turn OFF program memory protection

; b<5>=1 Set standard /MCLR operation

; b<4>=1 Disable power-up timer

; b<3>=0 Disable watch-dog timer

; b<2-0>=010 Set HS oscillator gain

 #include "p16F882.inc"

 processor 16F882

 __CONFIG _CONFIG1, 0x20F2 ; b'xx10 0000 1111 0010'

 __CONFIG _CONFIG2, 0x3FFF

;

; Crystal frequency is 10MHz, so the instruction cycle time is 400ns.

;

; **

; Variable definitions - PIC 16F882 control registers

; **

;

; Registers in Bank0

TMR0 equ 0x01 ; Timer0 count register

PCL equ 0x02 ; Program counter, low byte

status equ 0x03 ; Status register

carry equ 0x00 ; carry from MSB occurred

zero equ 0x02 ; result of operation is zero

page0 equ 0x05 ; register bank selector low bit

page1 equ 0x06 ; register bank selector high bit

portA equ 0x05

portB equ 0x06

portC equ 0x07

~ 46 ~

PCLATH equ 0x0A ; Program counter, high byte

INTCON equ 0x0B ; Interrupt control register

T1CON equ 0x10 ; Timer1 control register

SSPCON equ 0x14 ; Synch serial port control register 1

CCP1CON equ 0x17 ; Capture/compare/PWM control register 1

RCSTA equ 0x18 ; Receive status and control register

CCP2CON equ 0x1D ; Capture/compare/PWM control register 2

ADCON0 equ 0x1F ; Analogue-to-digital control register 0

;

; Registers in Bank1

OPTION_REG equ 0x81 ; Option register

TRISA equ 0x85 ; portA pin I/O direction

TRISB equ 0x86 ; portB pin I/O direction

TRISC equ 0x87 ; portC pin I/O direction

PCON equ 0x8E ; Power control register

WPUB equ 0x95 ; Weak pull-up portB register

IOCB equ 0x96 ; Interrupt-on-change portB

PSTRCON equ 0x9D ; Pulse steering control

;

; Registers in Bank2

CM1CON0 equ 0x107 ; Comparator C1 control register 0

CM2CON0 equ 0x108 ; Comparator C2 control register 0

CM2CON1 equ 0x109 ; Comparator C2 control register 1

;

; Registers in Bank3

ANSEL equ 0x188 ; Analogue select low register

ANSELH equ 0x189 ; Analogue select high register

;

f equ 0x01 ; f and w identify destination register

w equ 0x00

;

; **

; Variable definitions - User RAM - Accessible only in bank0

; **

;

; I/O ports

portAmirror equ 0x20

Col1 equ 0x00 ; Input - Keypad column #1

Col2 equ 0x01 ; Input - Keypad column #2

Col3 equ 0x02 ; Input - Keypad column #3

ncRA3 equ 0x03 ; Output - n/c

ncRA4 equ 0x04 ; Output - n/c

ncRA5 equ 0x05 ; Output - n/c

portBmirror equ 0x21

R1D4 equ 0x00 ; Output - Keypad row #1; LCD data #4

R2D5 equ 0x01 ; Output - Keypad row #2; LCD data #5

R3D6 equ 0x02 ; Output - Keypad row #3; LCD data #6

R4D7 equ 0x03 ; Output - Keypad row #4; LCD data #7

LCDE equ 0x04 ; Output - LCD control line "E"

LCDRS equ 0x05 ; Output - LCD control line "RS"

LCDRW equ 0x06 ; Output - LCD control line "R/W"

ncRB7 equ 0x07 ; Output - n/c

portCmirror equ 0x22

LIU equ 0x00 ; Input - LOW if telephone line is free

CheckLine equ 0x01 ; Output - LOW to check status of line

~ 47 ~

CP480Hz equ 0x02 ; Input - LOW when 480Hz tone is present

CP440Hz equ 0x03 ; Input - LOW when 440Hz tone is present

Connect equ 0x04 ; Output - HIGH closes telephone relay

DTMFClock equ 0x05 ; Output - DTMF clock

DTMFData equ 0x06 ; Output - DTMF data (DTMF code)

DTMFEnable equ 0x07 ; Output - LOW enables DTMF generator

; return values from calls to subroutines

RetValues equ 0x23 ; bit = 1 if ...

KeyPress equ 0x00 ; a key is being pressed/closed

LineInUse equ 0x01 ; the telephone line is being used

ncRetValues equ 0x02 ; not used

CP_error equ 0X03 ; CP tone information is corrupt

CP_none equ 0x04 ; no call progress tone is detected

CP_dial equ 0x05 ; a dial tone is detected

CP_ring equ 0x06 ; a ringback tone is detected

CP_busy equ 0x07 ; a busy signal is detected

; registers used to process user entries, other than the telephone number

KeyPressed equ 0x24 ; holds most-recently pressed key

NumDigits equ 0x25 ; number of digits in user-entered field

Digit1 equ 0x26 ; digit #1 - leftmost/first digit

Digit2 equ 0x27 ; digit #2

Digit3 equ 0x28 ; digit #3 - rightmost/last digit

StartAdd equ 0x29 ; starting address on LCD display

MaxValue equ 0x2A ; maximum numeric value for field

MinValue equ 0x2B ; minimum numeric value for field

CurValue equ 0x2C ; current numeric value for field

; variables used to access the table of messages

MSGstart equ 0x2D ; starting offset in MSGtable

MSGlength equ 0x2E ; length of message

; storage for the telephone number

LenTelNum equ 0x2F ; number of digits in telephone number

TelNum1 equ 0x30 ; digit #1 - leftmost/first digit

TelNum2 equ 0x31 ; digit #2

TelNum3 equ 0x32 ; digit #3

TelNum4 equ 0x33 ; digit #4

TelNum5 equ 0x34 ; digit #5

TelNum6 equ 0x35 ; digit #6

TelNum7 equ 0x36 ; digit #7

TelNum8 equ 0x37 ; digit #8

TelNum9 equ 0x38 ; digit #9

TelNum10 equ 0x39 ; digit #10

TelNum11 equ 0x3A ; digit #11

TelNum12 equ 0x3B ; digit #12

TelNum13 equ 0x3C ; digit #13

TelNum14 equ 0x3D ; digit #14 - rightmost/last digit

; registers used to store user entries

MaxWaitToCall equ 0x3E ; max num minutes between call attempts

MinWaitToCall equ 0x3F ; min num minutes between call attempts

DeltaWaitToCall equ 0x40 ; difference: maximum - minimum

MaxNumGoodCalls equ 0x41 ; max number of good calls to attempt

MaxNumRingbacks equ 0x42 ; max number of rings before hanging up

MaxNumBusyTries equ 0x43 ; max number of quick repeats when busy

~ 48 ~

MaxWaitOnBusy equ 0x44 ; max num sec between quick busy repeats

MinWaitOnBusy equ 0x45 ; min num sec between quick busy repeats

DeltaWaitOnBusy equ 0x46 ; difference: maximum - minimum

MaxSecsToHold equ 0x47 ; max num seconds to hold callee on line

; registers used during main operation to store CUMULATIVE number of ...

NumGoodCalls equ 0x48 ; ... answered calls

NumRangCalls equ 0x49 ; ... not-busy, but call not answered

NumBusyCalls equ 0x4A ; ... calls which never rang

NumBusyTries equ 0x4B ; ... attempts in a busy cycle

NumRingbacks equ 0x4C ; ... pulses in a ring cycle

NumSecsToHold equ 0x4D ; ... seconds to hold callee on line

; registers used during main operation to display number of calls

char1 equ 0x4E

char2 equ 0x4F

char3 equ 0x50

; register used by random number generator

random equ 0x51 ; random 8-bit number

; counters used in timing delay subroutines

count1 equ 0x52 ; del100us()

count2 equ 0x53 ; del1ms() and del10ms()

count3 equ 0x54 ; del100ms() and del500ms()

count4 equ 0x55 ; del3sec(), del10sec() and del1min()

; temporary registers used in the subroutines indicated

tempWOIBTL equ 0x56 ; WriteOneInstructionByteToLCD()

tempWODBTL equ 0x57 ; WriteOneDataByteToLCD()

tempDispTN equ 0x58 ; DisplayTelephoneNumber()

tempDispNF equ 0x59 ; DisplayNumericField()

tempLTK equ 0x5A ; LoopThroughKeys()

tempWFK1 equ 0x5B ; WaitForKey()

tempWFK2 equ 0x5C ; "

tempCNFTB1 equ 0x5D ; ConvertNumericFieldTBinary()

tempCNFTB2 equ 0x5E ; "

tempCBTCF equ 0x5F ; ConvertBinaryToCharacterField()

tempCADWTC equ 0x60 ; CalcAndDoWaitToCall()

tempCADWOB equ 0x61 ; CalcAndDoWaitOnBusy()

tempM1H equ 0x62 ; Multiply()

tempM1L equ 0x63 ; "

tempM2 equ 0x64 ; "

tempM3H equ 0x65 ; "

tempM3L equ 0x66 ; "

tempM4 equ 0x67 ; "

tempCLIU equ 0x68 ; CheckLineInUse()

tempRCP1 equ 0x69 ; ReadCallProgress()

tempRCP2 equ 0x6A ; "

tempWFDT equ 0x6B ; Wait2SecForDialTone()

tempICP1 equ 0x6C ; InterpretCallProgress()

tempICP2 equ 0x6D ; "

tempWFS equ 0x6E ; Wait3SecForSilence()

tempSODC equ 0x6F ; SendOneDTMFCode()

tempDialTN equ 0x70 ; DialTelephoneNumber()

;

; **

~ 49 ~

; Hard reset

; **

;

 org 0x0000

 ;

 ; Select register bank 0

 bcf status,page0

 bcf status,page1

 ; INTCON=0 disables all interrupt activity (affects portB)

 clrf INTCON

 ; T1CON=0 disables Timer1 (affects portC)

 clrf T1CON

 ; SSPCON<5>=0 disables synchronous serial port (affects portA and portC)

 clrf SSPCON

 ; CCP1CON=0 disables Enhanced C/C/P module (affects portB and portC)

 clrf CCP1CON

 ; RCSTA=0 disables the serial port (affects portC)

 clrf RCSTA

 ; CCP2CON=0 disables Capture/Compare/PWM module (affects portC)

 clrf CCP2CON

 ; ADCON0=0 disables Analogue-to-digital converter (affects portA)

 clrf ADCON0

 ;

 ; Select register bank 1

 bsf status,page0

 ; Configure OPTION_REG (affects portB)

 ; <7>=1 disable PortB pull-up resistors

 ; <6>=1 RB0 interrupt on rising edge

 ; <5>=0 internal clock drives Timer0

 ; <4>=0 increment Timer0 on low-to-high

 ; <3>=0 assign prescalar to Timer0

 ; <2-0>=111 set Timer0 prescalar 256:1

 movlw 0xC7

 movwf OPTION_REG

 ; Configure RA0-RA2 for input; RA3-RA5 for output

 movlw 0x07

 movwf TRISA

 ; Configure all pins of portB for output

 clrf TRISB

 ; Configure RC0,RC2-RC3 for input; RC1,RC4-RC7 for output

 movlw 0x0D

 movwf TRISC

 ; PCON<ULPWUE>=0 disables ultra low-power wake-up current on RA0

 ; PCON<SBOREN>=0 disables brown-out reset

 ; (affects portA)

 bcf PCON,5

 bcf PCON,4

 ; WPUB=0 disables weak pull-up resistors (affects portB)

 clrf WPUB

 ; IOCB=0 disables Interrupt-on-change (affects portB)

 clrf IOCB

 ; PSTRCON=0 zeroes the pulse steering pin assignments (affects portC)

 clrf PSTRCON

 ;

 ; Select register bank 2

 bcf status,page0

 bsf status,page1

~ 50 ~

 ; Disable Comparator module 1 (affects pins on portA)

 clrf CM1CON0

 ; Disable Comparator module 2 (affects pins on portA)

 clrf CM2CON0

 ; Disable Comparator module 2 (affects pins on portA and portB)

 clrf CM2CON1

 ;

 ; Select register bank 3

 bsf status,page0

 ; Disable analogue-to-digital on A/D channels 0-7 (affects portA)

 clrf ANSEL

 ; Disable analogue-to-digital on A/D channels 8-13 (affects portB)

 clrf ANSELH

 ;

 ; Select register bank 0 for main program

 bcf status,page0

 bcf status,page1

InitializePorts

 clrf portAmirror

 movf portAmirror,w

 movwf portA

 clrf portBmirror

 movf portBmirror,w

 movwf portB

 clrf portCmirror

 movf portCmirror,w

 movwf portC

InitializeHardware

 call InitializeLCD

 bsf portCmirror,CheckLine ; deactivate the TS117 chip

 bcf portCmirror,Connect ; open the telephone line relay

 bsf portCmirror,DTMFEnable ; disable the DTMF generator

 movf portCmirror,w

 movwf portC

InitializeRandomNumberGenerator

 movlw 0x55 ; random seed

 movwf random

;

; **

; Block A - The main program, which starts on power-up, and handles data entry

; **

;

DataEntry

 call ClearLCDDisplay

 movlw 0x00

 movwf MSGstart

 movlw 0x11

 movwf MSGlength

 call DisplayMessageL ; Message1 = "Telephone number:"

 call PutCursorAtStartOfLine2InDisplay

 call GetTelephoneNumber

TestDial

 call ClearLCDDisplay

 movlw 0x11

 movwf MSGstart

 movlw 0x13

 movwf MSGlength

~ 51 ~

 call DisplayMessageL ; Message2 = "Test dial? (1-Yes):"

 call PutCursorAtStartOfLine2InDisplay

 call GetNumericField

 call ConvertNumericFieldToBinary

 movf CurValue,w

 xorlw 0x01

 btfss status,zero ; skip if CurValue=1

 goto GetMaxMinutes

 call ClearLCDDisplay

 movlw 0x24

 movwf MSGstart

 movlw 0x0F

 movwf MSGlength

 call DisplayMessageL ; Message3 = "Turn on speaker"

 call HideCursor

 call CloseRelayTel ; DO NOT CHECK FOR LINE-IN-USE ...

 call del3sec ; ... just wait and then dial

 call DialTelephoneNumber ; Dial the telephone number

 call del1min ; Listen to what happens for one minute

 call OpenRelayTel ; disconnect and wait 500ms

GetMaxMinutes

 call ClearLCDDisplay

 movlw 0x33

 movwf MSGstart

 movlw 0x13

 movwf MSGlength

 call DisplayMessageL ; Message4 = "Mins between calls,"

 call PutCursorAtStartOfLine2InDisplay

 movlw 0x46

 movwf MSGstart

 movlw 0x0D

 movwf MSGlength

 call DisplayMessageL ; Message5 = "max (0-255): "

 movlw 0x4D

 movwf StartAdd

 call GetNumericField ; keypad entry will be 0-255

 call ConvertNumericFieldToBinary

 movf CurValue,w

 movwf MaxWaitToCall

 andlw 0xFE ; result=0 if MaxWaitToCall=0 or 1

 btfsc status,zero ; check if keypad entry is zero

 goto GetMaxSeconds ; goto if MaxWaitToCall=0 or 1

GetMinMinutes

 call ClearLCDDisplay

 movlw 0x33

 movwf MSGstart

 movlw 0x13

 movwf MSGlength

 call DisplayMessageL ; Message4 = "Mins between calls,"

 call PutCursorAtStartOfLine2InDisplay

 movlw 0x53

 movwf MSGstart

 movlw 0x0D

 movwf MSGlength

 call DisplayMessageL ; Message6 = "min (1-max): "

 movlw 0x4D

 movwf StartAdd

~ 52 ~

 call GetNumericField ; keypad entry will be 0-255

 call ConvertNumericFieldToBinary

 movf CurValue,w

 movwf MinWaitToCall ; save MinWaitToCall

 btfsc status,zero ; check if keypad entry is zero

 goto GetMinMinutes ; if zero, get another number

 subwf MaxWaitToCall,w ; subtract Max - Min (2's comp)

 btfss status,carry ; carry = 1 if difference positive

 goto Error_GetMinMinutes

 goto GetMaxNumGoodCalls

Error_GetMinMinutes

 call ClearLCDDisplay

 movlw 0x60

 movwf MSGstart

 movlw 0x11

 movwf MSGlength

 call DisplayMessageL ; Message7 = "Min Minutes > Max"

 call HideCursor

 call del3sec

 goto GetMaxMinutes ; On error, get new Max and Min

GetMaxSeconds

 clrf MaxWaitToCall ; wait time will be in seconds

 call ClearLCDDisplay

 movlw 0x71

 movwf MSGstart

 movlw 0x13

 movwf MSGlength

 call DisplayMessageL ; Message8 = "Secs between calls,"

 call PutCursorAtStartOfLine2InDisplay

 movlw 0x84

 movwf MSGstart

 movlw 0x0D

 movwf MSGlength

 call DisplayMessageL ; Message9 = "max (1-255): "

 movlw 0x4D

 movwf StartAdd

 call GetNumericField ; keypad entry will be 0-255

 call ConvertNumericFieldToBinary

 movf CurValue,w

 btfsc status,zero ; check if keypad entry is zero

 goto GetMaxSeconds ; if zero, get another number

 movwf MinWaitToCall ; save MinWaitToCall

GetMaxNumGoodCalls

 call ClearLCDDisplay

 movlw 0x91

 movwf MSGstart

 movlw 0x13

 movwf MSGlength

 call DisplayMessageL ; Message10 = "Number of telephone"

 call PutCursorAtStartOfLine2InDisplay

 movlw 0xA4

 movwf MSGstart

 movlw 0x10

 movwf MSGlength

 call DisplayMessageL ; Message11 = "calls (10-255): "

 movlw 0x50

 movwf StartAdd

~ 53 ~

 call GetNumericField ; keypad entry will be 0-255

 call ConvertNumericFieldToBinary

 movf CurValue,w

 movwf MaxNumGoodCalls ; save MaxNumGoodCalls

 sublw 0x09 ; subtract d'9' - MaxNumGoodCalls

 btfsc status,carry ; carry = 0 if difference negative

 goto GetMaxNumGoodCalls ; re-start if MaxNumGoodCalls < 10

GetMaxNumRings

 call ClearLCDDisplay

 movlw 0xB4

 movwf MSGstart

 movlw 0x0E

 movwf MSGlength

 call DisplayMessageL ; Message12 = "Number of ring"

 call PutCursorAtStartOfLine2InDisplay

 movlw 0xC2

 movwf MSGstart

 movlw 0x0F

 movwf MSGlength

 call DisplayMessageL ; Message13 = "pulses (3-10): "

 movlw 0x4F

 movwf StartAdd

 call GetNumericField ; keypad entry will be 0-255

 call ConvertNumericFieldToBinary

 movf CurValue,w

 movwf MaxNumRingbacks ; save MaxNumRingbacks

 sublw 0x02 ; subtract d'2' - MaxNumRings

 btfsc status,carry ; carry = 1 if difference positive

 goto GetMaxNumRings ; re-start if MaxNumRings < 3

 movlw 0x0B ; 0x0B = d'11'

 subwf MaxNumRingbacks,w ; subtract Max - d'11'

 btfsc status,carry ; carry = 0 if difference negative

 goto GetMaxNumRings ; re-start if MaxNumRings >= 11

GetMaxNumBusyTries

 call ClearLCDDisplay

 movlw 0xD1

 movwf MSGstart

 movlw 0x0E

 movwf MSGlength

 call DisplayMessageL ; Message14 = "Number of busy"

 call PutCursorAtStartOfLine2InDisplay

 movlw 0x00

 movwf MSGstart

 movlw 0x0E

 movwf MSGlength

 call DisplayMessageU ; Message15 = "tries (5-50): "

 movlw 0x4E

 movwf StartAdd

 call GetNumericField ; keypad entry will be 0-255

 call ConvertNumericFieldToBinary

 movf CurValue,w

 movwf MaxNumBusyTries ; save MaxNumBusyTries

 sublw 0x04 ; subtract d'4' - MaxNumBusyTries

 btfsc status,carry ; carry = 1 if difference positive

 goto GetMaxNumBusyTries ; re-start if MaxNumBusyTries < 5

 movlw 0x33 ; 0x33 = d'51'

 subwf MaxNumBusyTries,w ; subtract Max - d'51'

~ 54 ~

 btfsc status,carry ; carry = 0 if difference negative

 goto GetMaxNumBusyTries ; re-start if MaxNumBusyTries >= 51

GetMaxWaitOnBusy

 call ClearLCDDisplay

 movlw 0x0E

 movwf MSGstart

 movlw 0x14

 movwf MSGlength

 call DisplayMessageU ; Message16 = "Max sec between busy"

 call PutCursorAtStartOfLine2InDisplay

 movlw 0x00

 movwf MSGstart

 movlw 0x0E

 movwf MSGlength

 call DisplayMessageU ; Message15 = "tries (5-50): "

 movlw 0x4E

 movwf StartAdd

 call GetNumericField ; keypad entry will be 0-255

 call ConvertNumericFieldToBinary

 movf CurValue,w

 movwf MaxWaitOnBusy ; save MaxWaitOnBusy

 sublw 0x04 ; subtract d'4' - MaxWaitOnBusy

 btfsc status,carry ; carry = 1 if difference positive

 goto GetMaxWaitOnBusy ; re-start if MaxWaitOnBusy < 5

 movlw 0x33 ; d'51' = 0x33

 subwf MaxWaitOnBusy,w ; subtract Max - d'51'

 btfsc status,carry ; carry = 0 if difference negative

 goto GetMaxWaitOnBusy ; re-start of MaxWaitOnBusy >= 51

GetMinWaitOnBusy

 call ClearLCDDisplay

 movlw 0x22

 movwf MSGstart

 movlw 0x14

 movwf MSGlength

 call DisplayMessageU ; Message17 = "Min sec between busy"

 call PutCursorAtStartOfLine2InDisplay

 movlw 0x36

 movwf MSGstart

 movlw 0x0F

 movwf MSGlength

 call DisplayMessageU ; Message18 = "tries (1-max): "

 movlw 0x4F

 movwf StartAdd

 call GetNumericField ; keypad entry will be 0-255

 call ConvertNumericFieldToBinary

 movf CurValue,w

 movwf MinWaitOnBusy ; save MinWaitOnBusy

 btfsc status,zero ; check if keypad entry is zero

 goto GetMinWaitOnBusy ; if zero, get another number

 subwf MaxWaitOnBusy,w ; subtract Max - Min (2's comp)

 btfss status,carry ; carry = 1 if difference positive

 goto Error_GetMinWaitOnBusy

 goto GetMaxSecsToHold

Error_GetMinWaitOnBusy

 call ClearLCDDisplay

 movlw 0x45

 movwf MSGstart

~ 55 ~

 movlw 0x11

 movwf MSGlength

 call DisplayMessageU ; Message19 = "Min seconds > Max"

 call HideCursor

 call del3sec

 goto GetMaxWaitOnBusy ; On error, get new Max and Min

GetMaxSecsToHold

 call ClearLCDDisplay

 movlw 0x56

 movwf MSGstart

 movlw 0x13

 movwf MSGlength

 call DisplayMessageU ; Message20 = "Max seconds to hold"

 call PutCursorAtStartOfLine2InDisplay

 movlw 0x69

 movwf MSGstart

 movlw 0x10

 movwf MSGlength

 call DisplayMessageU ; Message21 = "callee (2-240): "

 movlw 0x50

 movwf StartAdd

 call GetNumericField ; keypad entry will be 0-255

 call ConvertNumericFieldToBinary

 movf CurValue,w

 movwf MaxSecsToHold ; save MaxSecsToHold the callee on line

 sublw 0x01 ; subtract d'1' - MaxSecsToHold

 btfsc status,carry ; carry = 1 if difference positive

 goto GetMaxSecsToHold ; re-start if MaxSecsToHold < 2

 movlw 0xF1 ; 0xF1 = d'241'

 subwf MaxSecsToHold,w ; subtract Max - d'241'

 btfsc status,carry ; carry = 0 if difference positive

 goto GetMaxSecsToHold ; re-start if MaxSecsToHold >= 241

;

; **

; Block B - The main operating program, which runs the dialler

; **

;

MainProgram

 movf MinWaitToCall,w

 subwf MaxWaitToCall,w

 movwf DeltaWaitToCall ; Max - Min --> DeltaWaitToCall

 movf MinWaitOnBusy,w

 subwf MaxWaitOnBusy,w

 movwf DeltaWaitOnBusy ; Max - Min --> DeltaWaitOnBusy

 clrf NumGoodCalls ; clear the cumulative totals

 clrf NumRangCalls

 clrf NumBusyCalls

 clrf NumRingbacks ; clear NumRingbacks for first call

 clrf NumBusyTries ; clear NumBusyTries for first call

CheckExternalLine

 call CheckLineInUse

 btfss RetValues,LineInUse ; LineInUse=1 if line is in use

 goto ConnectToExternalLine

Error_LineInUse

 call ClearLCDDisplay

 movlw 0x7C

 movwf MSGstart

~ 56 ~

 movlw 0x0B

 movwf MSGlength

 call DisplayMessageU ; Message22 = "Line in use"

 call HideCursor

 call del1min ; wait one minute for line to clear

 goto CheckExternalLine ; try again after one minute

ConnectToExternalLine

 call CloseRelayTel ; connect and wait 500ms

 call Wait2SecForDialTone ; wait 2 seconds for dial tone

 btfsc RetValues,CP_dial ; CP_dial=1 if there is a dial tone

 goto StartDialing

Error_NoDialTone

 call OpenRelayTel ; disconnect and wait 500ms

 call ClearLCDDisplay

 movlw 0x87

 movwf MSGstart

 movlw 0x0C

 movwf MSGlength

 call DisplayMessageU ; Message23 = "No dial tone"

 call HideCursor

 call del1min ; wait one minute for a change

 goto CheckExternalLine ; try again after one minute

StartDialing

 call ClearLCDDisplay

 movlw 0x93

 movwf MSGstart

 movlw 0x0C

 movwf MSGlength

 call DisplayMessageU ; Message24 = "Dialling ..."

 call HideCursor

 call DialTelephoneNumber

 call del500ms ; wait 500ms before testing

InterpretCallProgressSignal

 call InterpretCallProgress ; interpret the callee's response

 btfsc RetValues,CP_busy ; CP_busy=1 if line is busy

 goto CalleeIsBusy

 btfsc RetValues,CP_ring ; CP_ring=1 if phone is ringing

 goto CalleeIsRinging

 btfsc RetValues,CP_none ; CP_none=1 if phone picked up

 goto CalleeAnswered ; no tone -> callee picked up

 goto TelephoneSystemError ; should never be a dial tone here

CalleeIsBusy

 call ClearLCDDisplay

 movlw 0x9F

 movwf MSGstart

 movlw 0x08

 movwf MSGlength

 call DisplayMessageU ; Message25 = "Busy ..."

 call HideCursor

 call OpenRelayTel ; disconnect and wait 500ms

 incf NumBusyTries,f

 movf NumBusyTries,w

 xorwf MaxNumBusyTries,w ; zero if they are equal

 btfss status,zero

 goto CalleeIsBusy_TryAgain

 goto CalleeIsBusy_StopTrying

CalleeIsBusy_TryAgain

~ 57 ~

 call ClearLCDDisplay

 movlw 0xA7

 movwf MSGstart

 movlw 0x0E

 movwf MSGlength

 call DisplayMessageU ; Message26 = "Dialling try #"

 movlw 0x8E ; DB7=b'1' in the instruction

 ; LCD address is 0x0E

 call WriteOneInstructionByteToLCD

 movf NumBusyTries,w

 call ConvertBinaryToCharacterField

 movf char1,w

 call WriteOneDataByteToLCD

 movf char2,w

 call WriteOneDataByteToLCD

 movf char3,w

 call WriteOneDataByteToLCD

 call HideCursor

 call CalcAndDoWaitOnBusy ; wait before trying again

 goto CheckExternalLine ; try dialling again

CalleeIsBusy_StopTrying

 incf NumBusyCalls,f ; increment the cumulative total

 clrf NumRingbacks ; clear NumRingbacks for next call

 clrf NumBusyTries ; clear NumBusyTries for next call

 call DisplayProgressReport

 call CalcAndDoWaitToCall ; wait a random time for next call

 goto CheckExternalLine ; start next call attempt

CalleeIsRinging ; we are here at the start of the ...

 call ClearLCDDisplay ; ... first ringback pulse

 movlw 0xB5

 movwf MSGstart

 movlw 0x0B

 movwf MSGlength

 call DisplayMessageU ; Message27 = "Ringing ..."

 call HideCursor

 incf NumRingbacks,f ; the first ringback is in progress

CallIsUnderway1 ; we are here at the start of a ringback

 call Wait3SecForSilence ; wait up to 3 seconds for silence

 btfsc RetValues,CP_none ; CP_none=1 if there is silence

 goto CallIsUnderway2

 btfss RetValues,CP_dial ; CP_dial=1 if there is a dial tone

 goto CalleeAnswered ; dial tone means the callee hung up

 goto TelephoneSystemError ; should never end up here (busy signal)

CallIsUnderway2 ; we are here at the start of silence

 call InterpretCallProgress ; interpret the callee's response

 btfss RetValues,CP_ring ; CP_ring=1 if line is ringing

 goto CalleeAnswered

 incf NumRingbacks,f ; increment number of ringbacks

 movf NumRingbacks,w

 xorwf MaxNumRingbacks,w ; zero if they are equal

 btfss status,zero

 goto CallIsUnderway1

 goto RangCallCompleted ; maximum number of ringbacks, no answer

CalleeAnswered

 ; Once the callee picks up the handset, we will wait until the earlier of:

 ; (i) the callee hangs up, or (ii) MaxSecsToHold seconds elapse. When the

 ; callee hangs up, one would expect to hear a dial tone. However, one could

~ 58 ~

 ; get a call-waiting fast busy, or perhaps something else. I have decided to

 ; proceed as follows: after the callee answers, I will start monitoring the

 ; line for any call progress tone (not just a dial tone) and interpret the

 ; detection of any call progress tone as the result of the callee hanging up.

 ; The line is sampled once every second for this purpose.

 movf MaxSecsToHold,w

 movwf NumSecsToHold ; counter for seconds remaining

CalleeIsOnLine

 call del500ms ; sample the line every second

 call del500ms

 call ReadCallProgress

 btfss RetValues,CP_none ; if CP_none=1, then there is no CP ...

 goto GoodCallCompleted ; ... tone and the callee is still on

 decfsz NumSecsToHold,f

 goto CalleeIsOnLine ; since NumSecsToHold>0, keep holding

GoodCallCompleted

 call OpenRelayTel ; disconnect and wait 500ms

 incf NumGoodCalls,f ; increment the cumulative total

 clrf NumRingbacks ; clear NumRingbacks for next call

 clrf NumBusyTries ; clear NumBusyTries for next call

 call DisplayProgressReport

 call CalcAndDoWaitToCall ; wait a random time for next call

 decfsz MaxNumGoodCalls,f ; decrement number of good calls to go

 goto CheckExternalLine ; either start the next call ...

 goto FinalLoop ; ... or stop the procedure

RangCallCompleted

 call OpenRelayTel ; disconnect and wait 500ms

 incf NumRangCalls,f ; increment the cumulative total

 clrf NumRingbacks ; clear NumRingbacks for next call

 clrf NumBusyTries ; clear NumBusyTries for next call

 call DisplayProgressReport

 call CalcAndDoWaitToCall ; wait a random time for next call

 goto CheckExternalLine ; start next call attempt

TelephoneSystemError

 call ClearLCDDisplay

 movlw 0xEA

 movwf MSGstart

 movlw 0x10

 movwf MSGlength

 call DisplayMessageU ; Message31 = "Tel system error"

 call HideCursor

 goto FinalLoop

FinalLoop

 call ClearLCDDisplay ; Alternate "All finished" with ...

 movlw 0xC0 ; ... final progress report, ...

 movwf MSGstart ; ... showing each for one minute

 movlw 0x0C

 movwf MSGlength

 call DisplayMessageU ; Message28 = "All finished"

 call HideCursor

 call del1min

 call DisplayProgressReport

 call del1min

 goto FinalLoop

;

; **

; Block C - Routines needed to operate the LCD hardware

~ 59 ~

; The LCD is operated using the 4-bit interface mode. No timing checks are

; done. Instead, after each instruction is sent, a delay is introduced equal

; in length to the maximum required execution time.

; Subroutines:-

; WriteOneInstructionNibbleToLCD()

; WriteOneInstructionByteToLCD()

; WriteOneDataNibbleToLCD()

; WriteOneDataByteToLCD()

; InitializeLCD()

; PutCursorAtStartOfLine2InDisplay()

; ClearLCDDisplay()

; **

;

WriteOneInstructionNibbleToLCD

; Assumes: Data is stored in the low nibble of register w

; This subroutine includes all timing delays needed by the LCD

 movwf portBmirror ; store in portBmirror low nibble

 bcf portBmirror,LCDE

 bcf portBmirror,LCDRW ; assert low for write

 movf portBmirror,w

 movwf portB

 nop ; delay 400ns

 bsf portBmirror,LCDE ; set E bit high

 movf portBmirror,w

 movwf portB

 nop ; delay 400ns

 bcf portBmirror,LCDE ; assert E bit low

 movf portBmirror,w

 movwf portB

 call del100us ; delay 100us

 return

;

WriteOneInstructionByteToLCD

; Assumes: Data is stored in register w

; This subroutine includes all timing delays needed by the LCD

 movwf tempWOIBTL ; save data in register tempWOIBTL

 swapf tempWOIBTL,w ; move high nibble into w low nibble

 andlw 0x0F

 call WriteOneInstructionNibbleToLCD

 movf tempWOIBTL,w ; move low nibble into w low nibble

 andlw 0x0F

 call WriteOneInstructionNibbleToLCD

 return

;

WriteOneDataNibbleToLCD

; Assumes: Data is stored in the low nibble of register w

; This subroutine includes all timing delays needed by the LCD

 movwf portBmirror ; store in portBmirror low nibble

 bcf portBmirror,LCDE

 bsf portBmirror,LCDRS ; <-- NB INSTRUCTION versus DATA

 bcf portBmirror,LCDRW ; assert low for write

 movf portBmirror,w

 movwf portB

 nop ; delay 400ns

 bsf portBmirror,LCDE ; set E bit high

 movf portBmirror,w

 movwf portB

~ 60 ~

 nop ; delay 400ns

 bcf portBmirror,LCDE ; assert E bit low

 movf portBmirror,w

 movwf portB

 call del100us ; delay 400ns

 return

;

WriteOneDataByteToLCD

; Assumes: Data is stored in register w

; This subroutine includes all timing delays needed by the LCD

 movwf tempWODBTL ; save data in register tempWODBTL

 swapf tempWODBTL,w ; move high nibble into w low nibble

 andlw 0x0F

 call WriteOneDataNibbleToLCD

 movf tempWODBTL,w ; move low nibble into w low nibble

 andlw 0x0F

 call WriteOneDataNibbleToLCD

 return

;

InitializeLCD

; This subroutine includes all timing delays needed by the LCD

 call del10ms ; wait at least 15ms

 call del10ms

 movlw 0x03

 call WriteOneInstructionNibbleToLCD

 call del10ms ; wait at least 4.1ms

 movlw 0x03

 call WriteOneInstructionNibbleToLCD

 call del1ms ; wait at least 100us

 movlw 0x03

 call WriteOneInstructionNibbleToLCD

 call del100us ; wait at least 100us

 movlw 0x03

 call WriteOneInstructionNibbleToLCD

 call del100us ; wait at least 38us

 movlw 0x02 ; set interface to 4 bits

 call WriteOneInstructionNibbleToLCD

 call del100us ; wait at least 38us

 movlw 0x2C ; set the functions

 ; DB<7-5>=b'001'

 ; DB4=0 for 4-bit interface

 ; DB3=1 for 2-line display

 ; DB2=1 for 5x11 font

 ; DB<1-0>=b'00'

 call WriteOneInstructionByteToLCD

 call del100us ; wait at least 38us

 movlw 0x0F ; set the display parameters

 ; DB<7-3>=b'00001'

 ; DB2=1 turns on the display

 ; DB1=1 turns on the cursor

 ; DB0=1 causes the cursor to blink

 call WriteOneInstructionByteToLCD

 call del100us ; wait at least 38us

 movlw 0x01 ; clear the display

 call WriteOneInstructionByteToLCD

 call del10ms ; wait at least 1.52ms

 movlw 0x06 ; set the entry mode

~ 61 ~

 ; DB<7-2>=b'000001'

 ; DB1=1 selects left-to-right entry

 ; DB0=0 prevents shifting display

 call WriteOneInstructionByteToLCD

 call del100us ; wait at least 38us

 return

;

PutCursorAtStartOfLine2InDisplay

; Assumes portB is configured for LCD write operations

; This subroutine includes all timing delays needed by the LCD. It also places

; the start of the second line into register StartAdd.

 movlw 0xC0 ; Set the DRAM address

 ; DB7=b'1'

 ; Address=0x40=b'1000000'

 call WriteOneInstructionByteToLCD

 movlw 0x40

 movwf StartAdd

 return

;

HideCursor

; Assumes portB is configured for LCD write operations

; This subroutine moves the cursor to the 21st spot on the second line

; This subroutine includes all timing delays needed by the LCD

 movlw 0xD5 ; Set the DRAM address

 ; DB7=b'1'

 ; Address=0x55=b'1010101'

 call WriteOneInstructionByteToLCD

 return

;

ClearLCDDisplay

; Assumes portB is configured for LCD write operations

; This subroutine includes all timing delays needed by the LCD. It also places

; the start of the first line into register StartAdd.

 movlw 0x01

 call WriteOneInstructionByteToLCD

 call del10ms ; wait at least 1.52ms

 clrf StartAdd

 return

;

; **

; Block D - Routines needed to operate the keypad hardware

; Subroutines:-

; LoopThroughKeys()

; WaitForKey()

; **

;

LoopThroughKeys

; Returns: 1. If no key is pressed, RetValues<KeyPress>=0

; 2. If a key is pressed,

; a. register w holds the key value

; b. RetValues<KeyPress>=1

; 3. The key values are the LCD codes:

; 0 = b'00110000' = 0x30

; 1 = b'00110001' = 0x31

; 9 = b'00111001' = 0x39

; * = b'00101010' = 0x2A

; # = b'00100011' = 0x23

~ 62 ~

; This routine does not do any debouncing

 movlw 0x01

 movwf portBmirror ; Activate row #1

 movwf portB

 call del100us

 movf portA,w ; Read all columns

 andlw 0x07 ; Zero out all non-column bits ...

 movwf tempLTK ; ... and save in register tempLTK

 btfss tempLTK,Col1 ; Test column #1

 goto LTK1

 movlw 0x31 ; The "1" key is pressed

 goto LTK_pressed

LTK1

 btfss tempLTK,Col2 ; Test column #2

 goto LTK2

 movlw 0x32 ; The "2" key is pressed

 goto LTK_pressed

LTK2

 btfss tempLTK,Col3 ; Test column #3

 goto LTK3

 movlw 0x33 ; The "3" key is pressed

 goto LTK_pressed

LTK3

 movlw 0x02

 movwf portBmirror ; Activate row #2

 movwf portB

 call del100us

 movf portA,w ; Read all columns

 andlw 0x07 ; Zero out all non-column bits ...

 movwf tempLTK ; ... and save in register tempLTK

 btfss tempLTK,Col1 ; Test column #1

 goto LTK4

 movlw 0x34 ; The "4" key is pressed

 goto LTK_pressed

LTK4

 btfss tempLTK,Col2 ; Test column #2

 goto LTK5

 movlw 0x35 ; The "5" key is pressed

 goto LTK_pressed

LTK5

 btfss tempLTK,Col3 ; Test column #3

 goto LTK6

 movlw 0x36 ; The "6" key is pressed

 goto LTK_pressed

LTK6

 movlw 0x04

 movwf portBmirror ; Activate row #3

 movwf portB

 call del100us

 movf portA,w ; Read all columns

 andlw 0x07 ; Zero out all non-column bits ...

 movwf tempLTK ; ... and save in register tempLTK

 btfss tempLTK,Col1 ; Test column #1

 goto LTK7

 movlw 0x37 ; The "7" key is pressed

 goto LTK_pressed

LTK7

~ 63 ~

 btfss tempLTK,Col2 ; Test column #2

 goto LTK8

 movlw 0x38 ; The "8" key is pressed

 goto LTK_pressed

LTK8

 btfss tempLTK,Col3 ; Test column #3

 goto LTK9

 movlw 0x39 ; The "6" key is pressed

 goto LTK_pressed

LTK9

 movlw 0x08

 movwf portBmirror ; Activate row #4

 movwf portB

 call del100us

 movf portA,w ; Read all columns

 andlw 0x07 ; Zero out all non-column bits ...

 movwf tempLTK ; ... and save in register tempLTK

 btfss tempLTK,Col1 ; Test column #1

 goto LTK10

 movlw 0x2A ; The "*" key is pressed

 goto LTK_pressed

LTK10

 btfss tempLTK,Col2 ; Test column #2

 goto LTK11

 movlw 0x30 ; The "0" key is pressed

 goto LTK_pressed

LTK11

 btfss tempLTK,Col3 ; Test column #3

 goto LTK_nokey

 movlw 0x23 ; The "#" key is pressed

 goto LTK_pressed

LTK_nokey

 clrf RetValues

 return

LTK_pressed

 clrf RetValues

 bsf RetValues,KeyPress

 return

;

WaitForKey

; This subroutine waits indefinitely for any key to be pressed

; It returns the key code in register KeyPressed

; This routine uses 10ms debouncing on Open and Close

 call LoopThroughKeys

 movwf tempWFK1 ; save key, if any, in tempWFK1

 btfsc RetValues,KeyPress

 goto WFK1 ; jump if a key is pressed

 call del10ms ; wait 10ms before checking again

 goto WaitForKey

WFK1

 call del10ms ; wait 10ms before confirming key

 call LoopThroughKeys

 movwf tempWFK2 ; save key, if any, in tempWFK2

 btfss RetValues,KeyPress

 goto WaitForKey ; start over again if no key pressed

 movf tempWFK1,w

 xorwf tempWFK2,w ; Compare new key with original

~ 64 ~

 btfss status,zero

 goto WaitForKey ; Failure: a different key was read

WFK2

 call del10ms ; wait 10ms before checking again

 call LoopThroughKeys ; Loop/wait until key is released

 btfsc RetValues,KeyPress

 goto WFK2 ; key is still pressed, keep waiting

 movf tempWFK1,w

 movwf KeyPressed ; Place keystroke in KeyPressed

 return

;

; **

; Block E - Routines needed to operate the telephone line

; Subroutines:-

; CheckLineInUse() - determines if the telephone line is in use

; OpenRelayTel() - opens Rly, disconnecting from the telephone line

; CloseRelayTel() - closes Rly, connecting to the telephone line

; ReadCallProgress() - samples the call progress tones at one instant

; Wait2SecForDialTone() - waits up to 2 seconds for a dial tone

; InterpretCallProgress() - determines type of callee response

; Wait3SecForSilence() - waits up to 2 seconds for silence on the line

; SendOneDTMFCode() - transmits one DTMF code and the following silence

; DialTelephoneNumber() - dials a complete telephone number

; **

;

CheckLineInUse

; This subroutine determines if the telephone line is in use

; Assumes: 1. Status of TS117 (U3) is unknown

; Returns: 1. TS117 is deactivated

; 2. If the line is in use, RetValues<LineInUse>=1

; 3. If the line is free, RetValues<LineInUse>=0

; Step #1 - Activate the TS117 chip

 bcf portCmirror,CheckLine

 movf portCmirror,w

 movwf portC

 call del10ms

 ; Step #2 - Set the default return value to "in use"

 bsf RetValues,LineInUse

 ; Step #3 - Read the line-in-use bit

 movf portC,w

 movwf tempCLIU

 btfss tempCLIU,LIU ; if LIU bit is high, line is in use

 bcf RetValues,LineInUse ; if LIU bit is low, line is free

 ; Step #4 - Deactivate the TS117 chip

 bsf portCmirror,CheckLine

 movf portCmirror,w

 movwf portC

 call del10ms

 return

;

OpenRelayTel

; This subroutine opens Rly, disconnecting from the telephone line. It waits

; one-half second before returning.

 bcf portCmirror,Connect

 movf portCmirror,w

 movwf portC

 call del500ms

~ 65 ~

 return

;

CloseRelayTel

; This subroutine closes Rly, connecting to the telephone line. It waits

; one-half second before returning.

 bsf portCmirror,Connect

 movf portCmirror,w

 movwf portC

 call del500ms

 return

;

ReadCallProgress

; This subroutine samples the outputs of the 440Hz and 480Hz filters every

; 100us for 1ms, making 11 observations. The results of the 11 samples are

; inverted and then inclusively OR-ed together. When the desired frequencies

; are present, the filter outputs are zero, so their complements are one.

; Any single sample which includes a desired frequency will be recorded as a

; one in the accumulated OR-result. In other words, one observation of a

; desired frequency will be enough to determine a positive result. At the

; end of the sampling, the subroutine will set one of the five RetValues<CP_****>

; bits to correspond with what was heard.

; A dial tone is characterized by: 480Hz not present; 440Hz is present.

; A busy signal is characterized by: 480Hz is present; 440Hz is not present.

; A ringback is characterized by both 480Hz and 440Hz are present.

; portC<CP480Hz = 2> is the 480Hz filter input line

; portC<CP440Hz = 3> is the 440Hz filter input line

 movlw 0x0B ; 0x0B = d'11'

 movwf tempRCP1 ; use tempRCP1 as a loop counter

 clrf tempRCP2 ; use tempRCP2 to hold the result

RCP1

 movf portC,w ; read the call progress port

 andlw 0x0C ; keep only the two filter bits

 xorlw 0x0C ; complement the two filter bits

 iorwf tempRCP2,f

 call del100us ; loop delay is 100us

 decfsz tempRCP1,f ; repeat d'11'times

 goto RCP1

 ; Now, set one of the RetValues<CP_****> bits

 movf RetValues,w ; clear the five <CP_****> bits

 andlw 0x1F

 movwf RetValues

 movf tempRCP2,w ; test tempRCP2 = 0x0C?

 xorlw 0x0C ; result is zero if exact match

 btfsc status,zero

 bsf RetValues,CP_ring ; both bits are high --> ringback

 movf tempRCP2,w ; test tempRCP2 = 0x08?

 xorlw 0x08 ; result is zero if exact match

 btfsc status,zero

 bsf RetValues,CP_dial ; 440Hz only --> dial tone

 movf tempRCP2,w ; test tempRCP2 = 0x04?

 xorlw 0x04 ; result is zero if exact match

 btfsc status,zero

 bsf RetValues,CP_busy ; 480Hz only --> busy signal

 movf tempRCP2,w ; test tempRCP2 = 0x00?

 xorlw 0x00 ; result is zero if exact match

 btfsc status,zero

 bsf RetValues,CP_none ; no tone --> silence

~ 66 ~

 return

;

Wait2SecForDialTone

; This subroutine checks for a dial tone every 10ms for two seconds.

; If a dial tone is heard, and heard again after 10ms, then the subroutine

; will return with bit RetValues<CP_dial> set high. If the two seconds runs

; out without the dial tone being heard twice, then the subroutine will return

; with RetValues<CP_dial> set low. Since a dial tone is a continuous tone, and

; since subroutine CloseRelayTel() waits one-half second after closing the

; relay, one would expect a dial tone to be heard within the two seconds

; allowed. Furthermore, since the relay is closed only after the external line

; has been checked and confirmed to be available, the absence of a dial tone

; should be a very rare event.

 movlw 0xC8 ; 0xC8 = d'200'

 movwf tempWFDT ; use tempWFDT as timeout counter

WFDT1

 call ReadCallProgress

 btfss RetValues,CP_dial

 goto WFDT2 ; goto if it is not a dial tone

 ; Second call to ReadCallProgress to confirm a dial tone

 call del10ms ; wait 10ms before confirming

 call ReadCallProgress

 btfss RetValues,CP_dial

 goto WFDT2 ; goto if dial tone is not confirmed

 return ; return with <CP_dial> bit high

WFDT2 ; we are here if there is no dial tone (either silence or something else)

 call del10ms ; keep waiting

 decfsz tempWFDT,f ; all finished when tempWFDT=0

 goto WFDT1 ; start a new test if tempWFDT<>0

 bsf RetValues,CP_none ; return with <CP_none> bit high

 bcf RetValues,CP_dial ; return with <CP_dial> bit low

 bcf RetValues,CP_ring

 bcf RetValues,CP_busy

 return

;

InterpretCallProgress

; This subroutine is called after the telephone number has been dialled. It tries

; to determine the type of response by considering both the timing of the pulses

; and their frequency content. It call subroutine ReadCallProgress() every 20ms

; until it can make a determination. It returns with only one of the five

; RetValues<CP_****> bits set high.

 movf RetValues,w

 andlw 0xC0 ; 0xC0 = b'11000000'

 movwf RetValues ; clear all RetValues<CP_****> bits

 clrf tempICP1 ; tempICP1 is the counter

ICP1

 call ReadCallProgress

 btfss RetValues,CP_none ; RetValues<CP_none>=1 if silent

 goto ICP2 ; goto if not silence

 call del10ms ; wait 20ms

 call del10ms

 incf tempICP1,f ; counter = counter + 1

 movlw 0xD7 ; 0xD7 = d'215'

 subwf tempICP1,w ; w <-- counter - d'215'

 btfsc status,carry ; carry=1 if d'215' <= counter

 goto ICP1 ; keep waiting

 return ; return with RetValues<CP_none>=1

~ 67 ~

ICP2

 ; First transition from silence to a CP pulse (point "B" in flow chart)

 clrf tempICP1 ; set counter=0

ICP3

 call ReadCallProgress

 btfsc RetValues,CP_none ; RetValues<CP_none>=1 if silent

 goto ICP6 ; goto if CP pulse has stopped

 movf RetValues,w

 movwf tempICP2 ; tempICP2 is storage for CP_**** bit

 call del10ms ; wait 20ms

 call del10ms

 incf tempICP1,f ; counter = counter + 1

 movlw 0x0A ; 0x0A = d'10'

 subwf tempICP1,w ; w <-- counter - d'10'

 btfsc status,carry ; carry=1 if d'10' <= counter

 goto ICP3 ; keep waiting

 movlw 0xD7 ; 0xD7 = d'215'

 subwf tempICP1,w ; w <-- counter - d'215'

 btfsc status,carry ; carry=1 if d'215' <= counter

 goto ICP5

 ; we are here if counter >= 215

 btfss tempICP2,CP_dial

 goto ICP4

 bsf RetValues,CP_dial

 return ; return with RetValues<CP_dial>=1

ICP4

 bsf RetValues,CP_error

 return ; return with RetValues<CP_error>=1

ICP5

 ; we are here if counter < 215

 movlw 0x1D ; 0x1D = d'29'

 subwf tempICP1,w ; w <-- counter - d'29'

 btfsc status,carry ; carry=1 if d'29' <= counter

 goto ICP2

 btfss tempICP2,CP_ring

 goto ICP2

 bsf RetValues,CP_ring

 return ; return with RetValues<CP_ring>=1

ICP6

 ; Definite transition from CP tone to silence (point "C" in flow chart)

 clrf tempICP1 ; set counter=0

ICP7

 call ReadCallProgress

 btfss RetValues,CP_none ; RetValues<CP_none>=1 if silent

 goto ICP8 ; goto if not silent

 call del10ms ; wait 20ms

 call del10ms

 incf tempICP1,f ; counter = counter + 1

 movlw 0xD7 ; 0xD7 = d'215'

 subwf tempICP1,w ; w <-- counter - d'215'

 btfsc status,carry ; carry=1 if d'215' <= counter

 goto ICP7 ; keep waiting if silence continues

 return ; return with <CP_ring> bit high

ICP8

 ; we are here if the first full silent period has ended

 movlw 0xD3 ; 0xD3 = d'211'

 subwf tempICP1,w ; w <-- counter - d'211'

~ 68 ~

 btfss status,carry ; carry=1 if d'211' <= counter

 goto ICP9

 clrf RetValues

 bsf RetValues,CP_error

 return ; return with RetValues<CP_error)=1

ICP9

 movlw 0xAB ; 0xAB = d'171'

 subwf tempICP1,w ; w <-- counter - d'171'

 btfsc status,carry ; carry=1 if d'171' <= counter

 goto ICP10

 clrf RetValues

 bsf RetValues,CP_ring

 return ; return with RetValues<CP_ring>=1

ICP10

 movlw 0x1E ; 0x1E = d'30'

 subwf tempICP1,w ; w <-- counter - d'30'

 btfss status,carry ; carry=1 if d'30' <= counter

 goto ICP11

 clrf RetValues

 bsf RetValues,CP_error

 return ; return with RetValues<CP_error>=1

ICP11

 movlw 0x13 ; 0x13 = d'19'

 subwf tempICP1,w ; w <-- counter - d'19'

 btfss status,carry ; carry=1 if d'19' <= counter

 goto ICP12

 clrf RetValues

 bsf RetValues,CP_busy

 return ; return with RetValues<CP_busy>=1

ICP12

 clrf RetValues

 bsf RetValues,CP_error

 return ; return with RetValues<CP_error>=1

;

Wait3SecForSilence

; This subroutines checks for silence every 100ms for three seconds.

; If a silent period starts, and repeated after 10ms, then the subroutine

; will return with bit RetValues<CP_none> set high. If the three seconds run

; out without silence being heard twice, then the subroutine will return with

; RetValues<CP_none> set low.

 movlw 0x1E ; 0x1E = d'30'

 movwf tempWFS ; use tempWFS as timeout counter

WFS1

 call ReadCallProgress

 btfss RetValues,CP_none

 goto WFS2 ; goto if there is not silence

 ; Second call to ReadCallProgress to confirm silence

 call del10ms ; wait 10ms before confirming

 call ReadCallProgress

 btfss RetValues,CP_none

 goto WFS2 ; goto if silence is not confirmed

 return ; return with <CP_none> bit high

WFS2 ; we are here if there is not silence

 call del100ms ; keep waiting

 decfsz tempWFS,f ; all finished when tempWFS=0

 goto WFS1 ; start a new test if tempWFS<>0

 bcf RetValues,CP_none

~ 69 ~

 bcf RetValues,CP_dial

 bcf RetValues,CP_ring

 bcf RetValues,CP_busy

 return ; return with <CP_none> bit low

;

SendOneDTMFCode

; This subroutine sends one DTMF code

; Assumes: 1. The DTMF generator (U4) is enabled and in serial mode

; 2. The decimal digit is contained in the low nibble of register w

; This subroutine transmits the code for about 500ms and then waits silent

; for about 500ms before returning.

 ; Step #1 - convert the decimal digit "0" to the DTMF code "A"

 andlw 0x0F ; keep only the low nibble

 btfsc status,zero ; skip if digit is non-zero

 movlw 0x0A ; 0x0A is the DTMF code for zero

 movwf tempSODC ; save the DTMF code in tempSODC

 ; Step #2 - transmit the least-significant bit

 bsf portCmirror,DTMFClock

 bcf portCmirror,DTMFData

 rrf tempSODC,f ; rotate right through the carry bit

 btfsc status,carry

 bsf portCmirror,DTMFData

 movf portCmirror,w

 movwf portC ; send data bit with the clock high

 call del100us ; hold clock high for 100us

 bcf portCmirror,DTMFClock

 movf portCmirror,w

 movwf portC ; assert the clock low

 call del100us ; hold clock low for 100us

 ; Step #3 - transmit the second least-significant bit

 bsf portCmirror,DTMFClock

 bcf portCmirror,DTMFData

 rrf tempSODC,f ; rotate right through the carry bit

 btfsc status,carry

 bsf portCmirror,DTMFData

 movf portCmirror,w

 movwf portC ; send data bit with the clock high

 call del100us ; hold clock high for 100us

 bcf portCmirror,DTMFClock

 movf portCmirror,w

 movwf portC ; assert the clock low

 call del100us ; hold clock low for 100us

 ; Step #4 - transmit the second most-significant bit

 bsf portCmirror,DTMFClock

 bcf portCmirror,DTMFData

 rrf tempSODC,f ; rotate right through the carry bit

 btfsc status,carry

 bsf portCmirror,DTMFData

 movf portCmirror,w

 movwf portC ; send data bit with the clock high

 call del100us ; hold clock high for 100us

 bcf portCmirror,DTMFClock

 movf portCmirror,w

 movwf portC ; assert the clock low

 call del100us ; hold clock low for 100us

 ; Step #4 - transmit the most-significant bit

 bsf portCmirror,DTMFClock

~ 70 ~

 bcf portCmirror,DTMFData

 rrf tempSODC,f ; rotate right through the carry bit

 btfsc status,carry

 bsf portCmirror,DTMFData

 movf portCmirror,w

 movwf portC ; send data bit with the clock high

 call del100us ; hold clock high for 100us

 bcf portCmirror,DTMFClock

 movf portCmirror,w

 movwf portC ; assert the clock low

 call del100us ; hold clock low for 100us

 ; Step #5 - a fifth bit must be sent. It is zero for all ten digits.

 bsf portCmirror,DTMFClock

 bcf portCmirror,DTMFData

 movf portCmirror,w

 movwf portC ; send the zero with the clock high

 call del100us ; hold clock high for 100us

 bcf portCmirror,DTMFClock

 movf portCmirror,w

 movwf portC ; assert the clock low

 call del100us ; hold clock low for 100us

 ; Step #6 - return the clock high

 bsf portCmirror,DTMFClock

 movf portCmirror,w

 movwf portC

 ; Step #7 - send the DTMF tone for one-half second

 call del500ms

 ; Step #8 - send b'11111' to stop transmitting the DTMF tone

 movlw 0x05

 movwf tempSODC ; use register tempSODC as a counter

 bsf portCmirror,DTMFData

SODC1

 bsf portCmirror,DTMFClock

 movf portCmirror,w

 movwf portC ; send the one with the clock high

 call del100us ; hold clock high for 100us

 bcf portCmirror,DTMFClock

 movf portCmirror,w

 movwf portC ; assert the clock low

 call del100us ; hold clock low for 100us

 decfsz tempSODC,f

 goto SODC1 ; repeat five times

 ; Step #9 - return the clock high

 bsf portCmirror,DTMFClock

 movf portCmirror,w

 movwf portC

 ; Step #10 - Remain silent for one-half second

 call del500ms

 return

;

DialTelephoneNumber

; Assumes: 1. LenTelNum holds the number of digits in the number

; 2. The decimal digits are stored in the low nibbles of

; TelNum1, TelNum2, TelNum3, etc.

; 3. portC is configured for output

; 4. The state of the DTMF generator (U4) is unknown

; Step #1 - Save the number of digits in tempDialTN for use as a counter

~ 71 ~

 movf LenTelNum,w

 movwf tempDialTN

 ; Step #2 - Configure the DTMF generator

 bcf portCmirror,DTMFEnable

 bsf portCmirror,DTMFClock

 bsf portCmirror,DTMFData

 movf portCmirror,w

 movwf portC

 call del10ms ; wait for the oscillator to steady

 ; Step #3 - Transmit the digits one-by-one. Subroutine SendOneDTMFCode

 ; includes a half-second of silence after each tone.

 movf TelNum1,w

 call SendOneDTMFCode

 decf tempDialTN,f

 btfsc status,zero

 goto DTNDone

 movf TelNum2,w

 call SendOneDTMFCode

 decf tempDialTN,f

 btfsc status,zero

 goto DTNDone

 movf TelNum3,w

 call SendOneDTMFCode

 decf tempDialTN,f

 btfsc status,zero

 goto DTNDone

 movf TelNum4,w

 call SendOneDTMFCode

 decf tempDialTN,f

 btfsc status,zero

 goto DTNDone

 movf TelNum5,w

 call SendOneDTMFCode

 decf tempDialTN,f

 btfsc status,zero

 goto DTNDone

 movf TelNum6,w

 call SendOneDTMFCode

 decf tempDialTN,f

 btfsc status,zero

 goto DTNDone

 movf TelNum7,w

 call SendOneDTMFCode

 decf tempDialTN,f

 btfsc status,zero

 goto DTNDone

 movf TelNum8,w

 call SendOneDTMFCode

 decf tempDialTN,f

 btfsc status,zero

 goto DTNDone

 movf TelNum9,w

 call SendOneDTMFCode

 decf tempDialTN,f

 btfsc status,zero

 goto DTNDone

 movf TelNum10,w

~ 72 ~

 call SendOneDTMFCode

 decf tempDialTN,f

 btfsc status,zero

 goto DTNDone

 movf TelNum11,w

 call SendOneDTMFCode

DTNDone

 bsf portCmirror,DTMFEnable

 bsf portCmirror,DTMFClock

 bsf portCmirror,DTMFData

 movf portCmirror,w

 movwf portC

 return

;

; **

; Block F - Routines which send messages to the LCD

; Subroutines:-

; DisplayTelephoneNumber()

; DisplayNumericField()

; DisplayProgressReport()

; **

;

DisplayTelephoneNumber

; Assumes: 1.Number of digits is stored in register LenTelNum

; 2. Digits are stored in registers TelNum1, TelNum2, ...

; Step #1: Put the cursor at the correct position in the display

 call PutCursorAtStartOfLine2InDisplay

 movf StartAdd,w ; set the DRAM address

 xorlw 0x80 ; DB7=b'1' in the instruction

 call WriteOneInstructionByteToLCD

 call del100us ; wait at least 38us

; Step #2: Display the digits one-by-one

 movf LenTelNum,w

 movwf tempDispTN ; use tempDispTN to count LenTelNum

 movf tempDispTN,f ; set the zero flag

 btfsc status,zero

 goto DTNDoneDigits ; goto if LenTelNum=0

 movf TelNum1,w ; else, display TelNum1

 call WriteOneDataByteToLCD

 decf tempDispTN,f ; this also sets the zero flag

 btfsc status,zero

 goto DTNDoneDigits ; goto if LenTelNum=1

 movf TelNum2,w ; else, display TelNum2

 call WriteOneDataByteToLCD

 decf tempDispTN,f

 btfsc status,zero

 goto DTNDoneDigits ; goto if LenTelNum=2

 movf TelNum3,w ; else, display TelNum3

 call WriteOneDataByteToLCD

 decf tempDispTN,f

 btfsc status,zero

 goto DTNDoneDigits ; goto if LenTelNum=3

 movf TelNum4,w ; else, display TelNum4

 call WriteOneDataByteToLCD

 decf tempDispTN,f

 btfsc status,zero

 goto DTNDoneDigits ; goto if LenTelNum=4

~ 73 ~

 movf TelNum5,w ; else, display TelNum5

 call WriteOneDataByteToLCD

 decf tempDispTN,f

 btfsc status,zero

 goto DTNDoneDigits ; goto if LenTelNum=5

 movf TelNum6,w ; else, display TelNum6

 call WriteOneDataByteToLCD

 decf tempDispTN,f

 btfsc status,zero

 goto DTNDoneDigits ; goto if LenTelNum=6

 movf TelNum7,w ; else, display TelNum7

 call WriteOneDataByteToLCD

 decf tempDispTN,f

 btfsc status,zero

 goto DTNDoneDigits ; goto if LenTelNum=7

 movf TelNum8,w ; else, display TelNum8

 call WriteOneDataByteToLCD

 decf tempDispTN,f

 btfsc status,zero

 goto DTNDoneDigits ; goto if LenTelNum=8

 movf TelNum9,w ; else, display TelNum9

 call WriteOneDataByteToLCD

 decf tempDispTN,f

 btfsc status,zero

 goto DTNDoneDigits ; goto if LenTelNum=9

 movf TelNum10,w ; else, display TelNum10

 call WriteOneDataByteToLCD

 decf tempDispTN,f

 btfsc status,zero

 goto DTNDoneDigits ; goto if LenTelNum=10

 movf TelNum11,w ; else, display TelNum11

 call WriteOneDataByteToLCD

 decf tempDispTN,f

 btfsc status,zero

 goto DTNDoneDigits ; goto if LenTelNum=11

 movf TelNum12,w ; else, display TelNum12

 call WriteOneDataByteToLCD

 decf tempDispTN,f

 btfsc status,zero

 goto DTNDoneDigits ; goto if LenTelNum=12

 movf TelNum13,w ; else, display TelNum13

 call WriteOneDataByteToLCD

 decf tempDispTN,f

 btfsc status,zero

 goto DTNDoneDigits ; goto if LenTelNum=13

 movf TelNum14,w ; else, display TelNum14

 call WriteOneDataByteToLCD

DTNDoneDigits

 ; Step #3 - Display a following blank, to cover up a Backspace

 movlw 0x20

 call WriteOneDataByteToLCD

 ; Step #4 - Place the cursor after the last digit

 movf StartAdd,w

 addwf LenTelNum,w

 xorlw 0x80 ; DB7=b'1' in the instruction

 call WriteOneInstructionByteToLCD

 call del100us ; wait at least 38us

~ 74 ~

 return

;

DisplayNumericField

; Assumes: 1. Initial cursor address is stored in register StartAdd

; 2. Number of digits in field is stored in register NumDigits

; 3. Digits are stored in registers digit1, digit2, ...

; Step #1: Put the cursor at the correct position in the display

 movf StartAdd,w ; set the DRAM address

 xorlw 0x80 ; DB7=b'1' in the instruction

 call WriteOneInstructionByteToLCD

 call del100us ; wait at least 38us

 ; Step #2: Display the digits one-by-one

 movf NumDigits,w

 movwf tempDispNF ; use tempDispNF to count NumDigits

 movf tempDispNF,f ; set the zero flag

 btfsc status,zero

 goto DNFDoneDigits ; goto if NumDigits=0

 movf Digit1,w ; else, display Digit1

 call WriteOneDataByteToLCD

 decf tempDispNF,f ; this also sets the zero flag

 btfsc status,zero

 goto DNFDoneDigits ; goto if NumDigits=1

 movf Digit2,w ; else, display Digit2

 call WriteOneDataByteToLCD

 decf tempDispNF,f

 btfsc status,zero

 goto DNFDoneDigits ; goto if NumDigits=2

 movf Digit3,w ; else, display Digit3

 call WriteOneDataByteToLCD

DNFDoneDigits

 ; Step #3 - Display a following blank, to cover up a Backspace

 movlw 0x20

 call WriteOneDataByteToLCD

 ; Step #4 - Place the cursor after the last digit

 movf StartAdd,w

 addwf NumDigits,w

 xorlw 0x80 ; DB7=b'1' in the instruction

 call WriteOneInstructionByteToLCD

 call del100us ; wait at least 38us

 return

;

DisplayProgressReport

 ; Step #1: Display the LCD template

 call ClearLCDDisplay

 movlw 0xCC

 movwf MSGstart

 movlw 0x0F

 movwf MSGlength

 call DisplayMessageU ; Message29 = "Progress Good:"

 call PutCursorAtStartOfLine2InDisplay

 movlw 0xDB

 movwf MSGstart

 movlw 0x0F

 movwf MSGlength

 call DisplayMessageU ; Message30 = "Busy: Rang:"

 ; Step #2: Put the cursor at the correct position for "Good"

 movlw 0x8F ; DB7=b'1' in the instruction

~ 75 ~

 ; LCD address is 0x0F

 call WriteOneInstructionByteToLCD

 ; Step #3: Display NumGoodCalls

 movf NumGoodCalls,w

 call ConvertBinaryToCharacterField

 movf char1,w

 call WriteOneDataByteToLCD

 movf char2,w

 call WriteOneDataByteToLCD

 movf char3,w

 call WriteOneDataByteToLCD

 ; Step #4: Put the cursor at the correct position for "Busy"

 movlw 0xC5 ; DB7=b'1' in the instruction

 ; LCD address is 0x45

 call WriteOneInstructionByteToLCD

 ; Step #5: Display NumBusyCalls

 movf NumBusyCalls,w

 call ConvertBinaryToCharacterField

 movf char1,w

 call WriteOneDataByteToLCD

 movf char2,w

 call WriteOneDataByteToLCD

 movf char3,w

 call WriteOneDataByteToLCD

 ; Step #6: Put the cursor at the correct position for "Rang"

 movlw 0xCF ; DB7=b'1' in the instruction

 ; LCD address is 0x4F

 call WriteOneInstructionByteToLCD

 ; Step #7: Display NumRangCalls

 movf NumRangCalls,w

 call ConvertBinaryToCharacterField

 movf char1,w

 call WriteOneDataByteToLCD

 movf char2,w

 call WriteOneDataByteToLCD

 movf char3,w

 call WriteOneDataByteToLCD

 call HideCursor

 return

;

; **

; Block G - Routines which interpret key strokes

; Subroutines:-

; GetTelephoneNumber()

; GetNumericField()

; **

;

GetTelephoneNumber

; This subroutine reads a telephone number from the keypad. It does not do any

; validation of the entry. This subroutine updates the LCD display on the fly.

; A maximum of 14 digits can be entered.

; Assumes: 1. Configuration of portB is unknown

; 2. The LCD display is unknown

; Returns: 1. Number of digits in register LenTelNum

; 2. Digits are stored L-to-R in TelNum1, TelNum2, ...

 clrf LenTelNum

GTN1

~ 76 ~

 ; Step #1: wait for the next key to be pressed

 call WaitForKey

 ; Step #2: process the Enter (#=0x23) key

 movlw 0x23

 xorwf KeyPressed,w ; Compare new key with Enter key

 btfsc status,zero ; skip if not the Enter key

 return ; return if Enter key was pressed

 ; Step #3: process numeric keys 0-9

 movlw 0x2A

 xorwf KeyPressed,w ; compare new key with Backspace key

 btfsc status,zero ; skip if not the Backspace key

 goto GTNBackspace ; goto if Backspace key was pressed

 incf LenTelNum,f ; increment the number of digits

 movlw 0x01 ; save key code in register digit*

 xorwf LenTelNum,w

 btfss status,zero

 goto GTN2 ; goto GTN2 if LenTelNum <> 1, ...

 movf KeyPressed,w ; ... else save in TelNum1

 movwf TelNum1

 goto GTNUpdateDisplay

GTN2

 movlw 0x02

 xorwf LenTelNum,w

 btfss status,zero

 goto GTN3 ; goto GTN3 if LenTelNum <> 2, ...

 movf KeyPressed,w ; ... else save in TelNum2

 movwf TelNum2

 goto GTNUpdateDisplay

GTN3

 movlw 0x03

 xorwf LenTelNum,w

 btfss status,zero

 goto GTN4 ; goto GTN4 if LenTelNum <> 3, ...

 movf KeyPressed,w ; ... else save in TelNum3

 movwf TelNum3

 goto GTNUpdateDisplay

GTN4

 movlw 0x04

 xorwf LenTelNum,w

 btfss status,zero

 goto GTN5 ; goto GTN5 if LenTelNum <> 4, ...

 movf KeyPressed,w ; ... else save in TelNum4

 movwf TelNum4

 goto GTNUpdateDisplay

GTN5

 movlw 0x05

 xorwf LenTelNum,w

 btfss status,zero

 goto GTN6 ; goto GTN6 if LenTelNum <> 5, ...

 movf KeyPressed,w ; ... else save in TelNum5

 movwf TelNum5

 goto GTNUpdateDisplay

GTN6

 movlw 0x06

 xorwf LenTelNum,w

 btfss status,zero

 goto GTN7 ; goto GTN7 if LenTelNum <> 6, ...

~ 77 ~

 movf KeyPressed,w ; ... else save in TelNum6

 movwf TelNum6

 goto GTNUpdateDisplay

GTN7

 movlw 0x07

 xorwf LenTelNum,w

 btfss status,zero

 goto GTN8 ; goto GTN8 if LenTelNum <> 7, ...

 movf KeyPressed,w ; ... else save in TelNum7

 movwf TelNum7

 goto GTNUpdateDisplay

GTN8

 movlw 0x08

 xorwf LenTelNum,w

 btfss status,zero

 goto GTN9 ; goto GTN9 if LenTelNum <> 8, ...

 movf KeyPressed,w ; ... else save in TelNum8

 movwf TelNum8

 goto GTNUpdateDisplay

GTN9

 movlw 0x09

 xorwf LenTelNum,w

 btfss status,zero

 goto GTN10 ; goto GTN10 if LenTelNum <> 9, ...

 movf KeyPressed,w ; ... else save in TelNum9

 movwf TelNum9

 goto GTNUpdateDisplay

GTN10

 movlw 0x0A

 xorwf LenTelNum,w

 btfss status,zero

 goto GTN11 ; goto GTN11 if LenTelNum <> 10, ...

 movf KeyPressed,w ; ... else save in TelNum10

 movwf TelNum10

 goto GTNUpdateDisplay

GTN11

 movlw 0x0B

 xorwf LenTelNum,w

 btfss status,zero

 goto GTN12 ; goto GTN12 if LenTelNum <> 11, ...

 movf KeyPressed,w ; ... else save in TelNum11

 movwf TelNum11

 goto GTNUpdateDisplay

GTN12

 movlw 0x0C

 xorwf LenTelNum,w

 btfss status,zero

 goto GTN13 ; goto GTN13 if LenTelNum <> 12, ...

 movf KeyPressed,w ; ... else save in TelNum12

 movwf TelNum12

 goto GTNUpdateDisplay

GTN13

 movlw 0x0D

 xorwf LenTelNum,w

 btfss status,zero

 goto GTN14 ; goto GTN14 if LenTelNum <> 13, ...

 movf KeyPressed,w ; ... else save in TelNum13

~ 78 ~

 movwf TelNum13

 goto GTNUpdateDisplay

GTN14

 movf KeyPressed,w ; do not store more than 14 digits

 movwf TelNum14

 movlw 0x0E ; set LenTelNum = 14

 movwf LenTelNum

GTNUpdateDisplay

 call DisplayTelephoneNumber

 goto GTN1

GTNBackspace

 ; Step #4: process the Backspace (*=0x2A) key

 movlw 0x00

 xorwf LenTelNum,w

 btfsc status,zero

 goto GTN1 ; do nothing if there are no digits

 decf LenTelNum,f ; decrement the number of digits

 call DisplayTelephoneNumber

 goto GTN1

;

GetNumericField

; This subroutine reads a numeric entry from the keypad. The numeric entry can

; be up to three decimal digits. This subroutine does not do any validation of

; the field. This subroutine updates the LCD display on the fly.

; Assumes: 1. Configuration of portB is unknown

; 2. A prompt message has been displayed on the LCD

; 3. Initial cursor address is stored in register StartAdd

; Returns: 1. Number of digits in field is stored in register NumDigits

; 2. Digits are stored in registers Digit1, Digit2, Digit3

 clrf NumDigits ; set the default to no digits

GNF1

 ; Step #1: wait for the next key to be pressed

 call WaitForKey

 ; Step #2: process the Enter (#=0x23) key

 movlw 0x23

 xorwf KeyPressed,w ; Compare new key with Enter key

 btfsc status,zero ; skip if not the Enter key

 return ; return if Enter key was pressed

 ; Step #3: process numeric keys 0-9

 movlw 0x2A

 xorwf KeyPressed,w ; compare new key with Backspace key

 btfsc status,zero ; skip if not the Backspace key

 goto GNFBackspace ; goto if Backspace key was pressed

 incf NumDigits,f ; increment the number of digits

 movlw 0x01

 xorwf NumDigits,w

 btfss status,zero

 goto GNF2 ; goto GNF2 if NumDigits <> 1, ...

 movf KeyPressed,w ; ... else save in Digit1

 movwf Digit1

 goto GNFUpdateDisplay

GNF2

 movlw 0x02

 xorwf NumDigits,w

 btfss status,zero

 goto GNF3 ; goto GNF3 if NumDigits <> 2, ...

 movf KeyPressed,w ; ... else save in Digit2

~ 79 ~

 movwf Digit2

 goto GNFUpdateDisplay

GNF3

 movf KeyPressed,w ; do not store more than 3 digits

 movwf Digit3

 movlw 0x03 ; set NumDigits = 3

 movwf NumDigits

 goto GNFUpdateDisplay

GNFUpdateDisplay

 call DisplayNumericField

 goto GNF1

GNFBackspace

 ; Step #4: process the Backspace (*=0x2A) key

 movlw 0x00

 xorwf NumDigits,w

 btfsc status,zero

 goto GNF1 ; do nothing if there are no digits

 decf NumDigits,f ; decrement the number of digits

 call DisplayNumericField

 goto GNF1

;

; **

; Block H - Miscellaneous subroutines

; Subroutines:-

; ConvertNumericFieldToBinary()

; ConvertBinaryToCharacterField()

; CalcAndDoWaitToCall() - calculates a new wait period and then waits

; CalcAndDoWaitOnBusy() - calculates a new wait period and then waits

; Random() - random number generator

; Multiply() - multiplies register w by register random

; del1min - uninterrupted delay of approximately one minute

; del3sec - uninterrupted delay of approximately ten seconds

; del3sec - uninterrupted delay of approximately three seconds

; del500ms - uninterrupted delay of 503.082ms

; del100ms - uninterrupted delay of 100.618ms

; del10ms - uninterrupted delay of 10.0604ms

; del1ms - uninterrupted delay of 1.018ms

; del100us - uninterrupted delay of 100.4us

; **

;

ConvertNumericFieldToBinary

; This subroutine converts numeric fields of up to d'255' into a single-byte

; binary value. The input data is stored in the registers Digit1 (the left-most

; digit) through Digit3. The number of digits which are relevant is stored in

; register NumDigits. It is assumed that NumDigits is in the range 0 through 3.

; The digits themselves are stored with the values used by the LCD instructions.

; Therefore, the high-order nibble of each Digit* needs to be zeroed out. This

; subroutine automatically converts overflows to d'255'. It also automatically

; converts blank numeric fields (i.e., only the enter key was pressed) into

; d'1'.

; Assumes: 1. Data is in Digit1 (most-significant), Digit2 and Digit3

; 2. Number of relevant digits is in NumDigits

; Returns: 1. The binary value is stored in register CurValue

; 2. Digit1, Digit2 and Digit3 are left unchanged

 movlw 0x01

 movwf CurValue ; set CurValue=1 as default value

 movlw 0x00

~ 80 ~

 xorwf NumDigits,w

 btfsc status,zero

 return ; return if there are no digits

 ; Step #1 - Convert from LCD codes to binary

 movlw 0x0F

 andwf Digit1,f

 andwf Digit2,f

 andwf Digit3,f

 ; Step #2 - Process the most-significant digit

 movf Digit1,w

 movwf CurValue

 movlw 0x01

 xorwf NumDigits,w

 btfsc status,zero

 return ; return if there is only 1 digit

 ; Step #3 - Multiply CurValue by 10, by adding Digit1 9 more times

 movlw 0x09

 movwf tempCNFTB1 ; tempCNFTB1 counts additions

CNFTB1

 movf Digit1,w

 addwf CurValue,f

 decf tempCNFTB1,f

 btfss status,zero

 goto CNFTB1

 ; Step #4 - Add the second most-significant digit

 movf Digit2,w

 addwf CurValue,f

 movlw 0x02

 xorwf NumDigits,w

 btfsc status,zero

 return ; return if there are only 2 digits

 ; Step #5 - Multiply CurValue by 10, by adding 10 times

 movlw 0x0A

 movwf tempCNFTB1 ; tempCNFTB1 counts additions

 clrf tempCNFTB2 ; tempCNFTB2 holds the product

CNFTB2

 movf CurValue,w

 addwf tempCNFTB2,f

 btfsc status,carry

 goto CNFTBOverflow ; on overflow, goto CNFTBOverflow

 decf tempCNFTB1,f

 btfss status,zero

 goto CNFTB2

 ; Step #6 - Add the least-significant digit to tempCNFTB2

 movf tempCNFTB2,w

 addwf Digit3,w

 btfsc status,carry

 goto CNFTBOverflow ; on overflow, goto CNFTBOverflow

 movwf CurValue

 return

CNFTBOverflow

 movlw 0xFF

 movwf CurValue

 return

;

ConvertBinaryToCharacterField

; This subroutine converts single-byte binary value to a three-character field

~ 81 ~

; for display on the LCD. numeric fields of up to d'255' into a single-byte binary

; value. The input data is stored in the registers digit1 (the left-most digit)

; through digit3. The number of digits which are relevant is stored in register

; NumDigits. It is assumed that NumDigits is in the range 0 through 3. The digits

; themselves are stored with the values used by the LCD instructions. Therefore, the

; high-order nibble of each digit* needs to be zeroed out.

; Assumes: 1. The binary value is stored in register w

; Returns: 1. Field is in char1 (most-significant), char2 and char3

; 2. Leading zeroes are blanked out

; 3. The characters are in LCD-format

 movwf tempCBTCF

 movlw 0x30

 movwf char1

 movwf char2

 movwf char3

CBTCF100s

 movlw 0x64 ; 0x64 = d'100'

 subwf tempCBTCF,w ; tempCBTCF - d'100' --> w

 btfss status,carry

 goto CBTCF10s

 movwf tempCBTCF

 incf char1,f

 goto CBTCF100s

CBTCF10s

 movlw 0x0A ; 0x0A = d'10'

 subwf tempCBTCF,w ; tempCBTCF - d'10' --> w

 btfss status,carry

 goto CBTCF1s

 movwf tempCBTCF

 incf char2,f

 goto CBTCF10s

CBTCF1s

 movf tempCBTCF,w

 addwf char3,f

 movlw 0x30

 xorwf char1,w

 btfss status,zero

 return

 movlw 0x20

 movwf char1

 movlw 0x30

 xorwf char2,w

 btfss status,zero

 return

 movlw 0x20

 movwf char2

 return

;

CalcAndDoWaitToCall

; There are two cases.

; Case A:

; If MaxWaitToCall is two or more, then it represents the maximum wait time in

; minutes before making the next call. MinWaitToCall is the minimum wait time

; in minutes before making the next call. The difference between these two

; numbers was calculated right after the data input ended, and the difference

; is stored in DeltaWaitToCall. DeltaWaitToCall is multiplied by a random

; number between 0 and 1, and the product added to MinWaitToCall, to get the

~ 82 ~

; actual number of minutes to wait before calling again.

; Case B:

; If MaxWaitToCall is equal to zero or one, then it is ignored and MinWaitToCall

; represents the maximum wait time in seconds before making the next call. The

; minimum wait time in seconds is assumed to be one second. MinWaitToCall is

; multiplied by a random number between 0 and 1, and the product added to

; one, to get the actual number of seconds to wait before calling again.

 movf MaxWaitToCall,w

 andlw 0xFE ; 0xFE = b'11111110'. The result ...

 ; ... is zero if MaxWaitToCall=0 or 1

 btfsc status,zero ; skip if MaxWaitToCall >= 2

 goto CADWTC2 ; goto if MaxWaitToCall=0 or 1

call Random ; here if the wait is measured in minutes

 movf DeltaWaitToCall,w

 call Multiply

 addwf MinWaitToCall,w ; add the minimum wait time

 movwf tempCADWTC

CADWTC1

 call del1min ; wait one minute

 decfsz tempCADWTC,f

 goto CADWTC1 ; repeat tempCADWTC times

 return

CADWTC2

 call Random ; here if the wait is measured in seconds

 movf MinWaitToCall,w

 call Multiply

 addlw 0x01 ; add the minimum wait time

 movwf tempCADWTC

CADWTC3

 call del500ms ; wait one second

 call del500ms

 decfsz tempCADWTC,f ; repeat tempCADWTC times

 goto CADWTC3

 return

;

CalcAndDoWaitOnBusy

 call Random

 movf DeltaWaitOnBusy,w

 call Multiply

 addwf MinWaitOnBusy,w

 movwf tempCADWOB

CADWOB1

 call del500ms

 call del500ms

 decfsz tempCADWOB,f

 goto CADWOB1

 return

;

Random

; This subroutine returns an 8-bit random number in register random.

; The algorithm is a type of Linear-Feedback Shift Register.

 rlf random,w

 rlf random,w

 btfsc random,4

 xorlw 0x01

 btfsc random,5

 xorlw 0x01

~ 83 ~

 btfsc random,3

 xorlw 0x01

 movwf random

 return

;

Multiply

; This subroutine multiplies register random by register w and returns

; the result in register w. Register random is not changed. Note that

; register random is treated as a fraction between zero and one. Therefore,

; there will not be an overflow of the total. This subroutine returns only

; the high byte of the 16-bit product.

 movwf tempM1H ; tempM1H is multiplicand, high byte

 clrf tempM1L ; tempM1L is multiplicand, low byte

 movf random,w

 movwf tempM2 ; tempM2 is multiplier

 clrf tempM3H ; tempM3H is product, high byte

 clrf tempM3L ; tempM3L is product, low byte

 movlw 0x07

 movwf tempM4 ; tempM4 is a 7-loop counter

M1

 bcf status,carry

 rrf tempM1H,f ; divide multiplicand by 2, 4, 8 ...

 rrf tempM1L,f

 rlf tempM2,f ; check next multiplier MSB

 btfss status,carry

 goto M2

 ; If carry=1, add shifted multiplicand to product

 ; If carry=0, leave product alone

 movf tempM1L,w ; add the two low ...

 addwf tempM3L,f ; ... bytes together

 btfsc status,carry

 incf tempM3H,f ; if carry, then increment high byte

 movf tempM1H,w ; add the two high ...

 addwf tempM3H,f ; ... bytes together

M2

 decfsz tempM4,f

 goto M1 ; loop 7 times

 movf tempM3H,w ; return only high byte of product

 return

;

del1min

; This subroutine is an uninterrupted delay of approximately one minute

 movlw 0x78 ; 0x78 = d'120'

 movwf count4

del1min1

 call del500ms ; call del500ms 120 times

 decfsz count4,f

 goto del1min1

 return

;

del10sec

; This subroutine is an uninterrupted delay of approximately ten seconds

 movlw 0x14 ; 0x14 = d'20'

 movwf count4

del10sec1

 call del500ms ; call del500ms 20 times

 decfsz count4,f

~ 84 ~

 goto del10sec1

 return

;

del3sec

; This subroutine is an uninterrupted delay of approximately three seconds

 movlw 0x06 ; 0x06 = d'6'

 movwf count4

del3sec1

 call del500ms ; call del500ms six times

 decfsz count4,f

 goto del3sec1

 return

;

del500ms

; This subroutine is an uninterrupted delay of 503.082 milli-seconds

 movlw 0x32 ; 1 cycle (Note that 0x32 = d’50’.)
 movwf count3 ; 1

del500ms1

 call del10ms ; 50 x 25,151 = 1,257,550

 decfsz count3,f ; (49 x 1) + (1 x 2) = 51

 goto del500ms1 ; 49 x 2 = 98

 return ; 2

; ; CALL adds 2 = 1,257,705 cycles

; ; 1,257,705 x 400ns = 503,082,000ns

;

del100ms

; This subroutine is an uninterrupted delay of 100.618 milli-seconds

 movlw 0x0A ; 1 cycle (Note that 0x0A = d’10’.)
 movwf count3 ; 1

del100ms1

 call del10ms ; 10 x 25,151 = 251,510

 decfsz count3,f ; (9 x 1) + (1 x 2) = 11

 goto del100ms1 ; 9 x 2 = 18

 return ; 2

; ; CALL adds 2 =- 251,545 cycles

; ; 251,545 x 400ns = 100,618,000ns

;

del10ms

; This subroutine is an uninterrupted delay of 10.0604 milli-seconds

 movlw 0x63 ; 1 cycle (Note that 0x63 = d’99’.)
 movwf count2 ; 1

del10ms1

 call del100us ; 99 x 251 = 24,849

 decfsz count2,f ; (98 x 1) + (1 x 2) = 100

 goto del10ms1 ; 98 x 2 = 196

 return ; 2

; ; CALL adds 2 = 25,151 cycles

; ; 25,151 x 400ns = 10,060,400ns

;

del1ms

; This subroutine is an uninterrupted delay of 1.018 milli-seconds

 movlw 0x0A ; 1 cycle (Note that 0x0A = d’10’.)
 movwf count2 ; 1

del1ms1

 call del100us ; 10 x 251 = 2,510

 decfsz count2,f ; (9 x 1) + (1 x 2) = 11

~ 85 ~

 goto del1ms1 ; 9 x 2 = 18

 return ; 2

; ; CALL adds 2 = 2,545 cycles

; ; 2,545 x 400ns = 1,018,000ns

;

del100us

; This subroutine is an uninterrupted delay of 100.4 micro-seconds

 movlw 0x52 ; 1 cycle (Note that 0x52 = d’82’.)
 movwf count1 ; 1

del100us1

 decfsz count1,f ; (81 x 1) + (1 x 2) = 83

 goto del100us1 ; 81 x 2 = 162

 return ; 2

; ; CALL adds 2 = 251 cycles

; ; 251 x 400ns = 100,400ns

;

; **

; Block I - Routines used for debugging

;

; Uncomment DisplayRawCPData() to use for debugging

;DisplayRawCPData

; ; Most useful if called immediately after a call to ReadCallProgress.

; ; This subroutine displays the setting of two bits on the LCD. The

; ; two bits are RetValues<RV_440Hz> and RetValues<RV_480Hz>, in that

; ; order from left to right. The display is "HH", "HL", "LH" or "LL"

; ; to signify High or Low bits. This subroutine returns 100us after

; ; writing the characters to the LCD.

; call ClearLCDDisplay

; movlw 0x20 ; Leading blank leaves room for

; call WriteOneDataByteToLCD ; cursor after next ClearLCDDisplay

; movlw 0x48 ; H

; btfss RetValues,RV_440Hz

; movlw 0x4C ; L

; call WriteOneDataByteToLCD

; movlw 0x48 ; H

; btfss RetValues,RV_480Hz

; movlw 0x4C ; L

; call WriteOneDataByteToLCD

; call del100us

; return

;

; Uncomment subroutine DisplayCPCodes() to use for debugging

;DisplayCPCodes

; ; Most useful if called immediately after a call to ReadCallProgress.

; ; This subroutine displays "DT", "RG", "BS" or "SL" depending on

; ; which CP code subroutine ReadCallProgress has determined. These are

; ; acronyms for dial tone, ringing, busy signal and silence,

; ; respectively. This subroutine returns 100us after writing the

; ; characters to the LCD.

; call ClearLCDDisplay

; movlw 0x20 ; Leading blank leaves room for

; call WriteOneDataByteToLCD ; cursor after next ClearLCDDisplay

; btfsc RetValues,CP_dial

; goto DCPC1

; movlw 0x44 ; D

; call WriteOneDataByteToLCD

; movlw 0x4C ; L

~ 86 ~

; call WriteOneDataByteToLCD

; call del100us

; return

;DCPC1

; btfsc RetValues,CP_ring

; goto DCPC2

; movlw 0x52 ; R

; call WriteOneDataByteToLCD

; movlw 0x47 ; G

; call WriteOneDataByteToLCD

; call del100us

; return

;DCPC2

; btfsc RetValues,CP_busy

; goto DCPC3

; movlw 0x42 ; B

; call WriteOneDataByteToLCD

; movlw 0x53 ; S

; call WriteOneDataByteToLCD

; call del100us

; return

;DCPC3

; movlw 0x53 ; S

; call WriteOneDataByteToLCD

; movlw 0x4C ; L

; call WriteOneDataByteToLCD

; call del100us

; return

;

; **

; Block J - ASCII look-up tables

; Subroutines:-

; DisplayMessageL() - accesses the lower table MSGtableL

; DisplayMessageU() - accesses the upper table MSGtableU

;

; ***** Messages in the lower table, which starts at org 0x0680 *****

; Message1 = "Telephone number:" start=0=0x00, length=17

; Message2 = "Test dial? (1=Yes):" start=17=0x11, length=19

; Message3 = "Turn on speaker" start=36=0x24, length=15

; Message4 = "Mins between calls," start=51=0x33, length=19

; Message5 = "max (0-255): " start=70=0x46, length=13

; Message6 = "min (1-max): " start=83=0x53, length=13

; Message7 = "Min minutes > Max" start=96=0x60, length=17

; Message8 = "Secs between calls," start=113=0x71, length=19

; Message9 = "max (1-255): " start=132=0x84, length=13

; Message10 = "Number of telephone" start=145=0x91, length=19

; Message11 = "calls (10-255): " start=164=0xA4, length=16

; Message12 = "Number of ring" start=180=0xB4, length=14

; Message13 = "pulses (3-10): " start=194=0xC2, length=15

; Message14 = "Number of busy" start=209=0xD1, length=14

; Free space at end of page start=223=0xDF, length=33

;

; ***** Messages in the upper table, which starts at org 0x0700 *****

; Message15 = "tries (5-50): " start=0=0x00, length=14

; Message16 = "Max sec between busy" start=14=0x0E, length=20

; Message17 = "Min sec between busy" start=34=0x22, length=20

; Message18 = "tries (1-max): " start=54=0x36, length=15

~ 87 ~

; Message19 = "Min seconds > Max" start=69=0x45, length=17

; Message20 = "Max seconds to hold" start=86=0x56, length=19

; Message21 = "callee (2-240): " start=105=0x69, length=16

; Message22 = "Line in use" start=124=0x7C, length=11

; Message23 = "No dial tone" start=135=0x87, length=12

; Message24 = "Dialling ..." start=147=0x93, length=12

; Message25 = "Busy ..." start=159=0x9F, length=8

; Message26 = "Dialling try #" start=167=0xA7, length=14

; Message27 = "Ringing ..." start=181=0xB5, length=11

; Message28 = "All finished" start=192=0xC0, length=12

; Message29 = "Progress Good:" start=204=0xCC, length=15

; Message30 = "Busy: Rang:" start=219=0xDB, length=15

; Message31 = "Tel system error" start=234=0xEA, length=16

; Free space at end of page start=250=0xFA, length=6

; **

;

DisplayMessageL

 ; This subroutine writes a message to the LCD. It does not clear the

 ; display, or the parts of the display before and after the message.

 ; The starting index in the MSGtable is stored in register MSGstart.

 ; The number of characters in the message is stored in register

 ; MSGlength. The message is written to the LCD starting at the current

 ; cursor location. Both input registers are changed during execution.

 movlw HIGH MSGtableL ; ensure that the high byte ...

 movwf PCLATH ; ... of PCL will point to MSGtableL

 movf MSGstart,w ; w <- index in MSGtableL

 call MSGtableL ; w <- byte from MSGtableL

 call WriteOneDataByteToLCD

 incf MSGstart,f ; increment to next byte in table

 decf MSGlength,f

 btfss status,zero

 goto DisplayMessageL ; MSGlength is not zero, keep going

 return

;

DisplayMessageU

 ; This subroutine processes messages from the upper table.

 movlw HIGH MSGtableU ; ensure that the high byte ...

 movwf PCLATH ; ... of PCL will point to MSGtableU

 movf MSGstart,w ; w <- index in MSGtableU

 call MSGtableU ; w <- byte from MSGtableU

 call WriteOneDataByteToLCD

 incf MSGstart,f ; increment to next byte in table

 decf MSGlength,f

 btfss status,zero

 goto DisplayMessageU ; MSGlength is not zero, keep going

 return

;

 org 0x0600 ; leaves 33 unused words at the end of the page

MSGtableL

 addwf PCL,f ; w + PCL -> PCL

 retlw 0x54 ; T 0 - Message1 start

 retlw 0x65 ; e 1

 retlw 0x6C ; l 2

 retlw 0x65 ; e 3

 retlw 0x70 ; p 4

 retlw 0x68 ; h 5

 retlw 0x6F ; o 6

~ 88 ~

 retlw 0x6E ; n 7

 retlw 0x65 ; e 8

 retlw 0x20 ; blank 9

 retlw 0x6E ; n 10

 retlw 0x75 ; u 11

 retlw 0x6D ; m 12

 retlw 0x62 ; b 13

 retlw 0x65 ; e 14

 retlw 0x72 ; r 15

 retlw 0x3A ; : 16 - Message1 end

 retlw 0x54 ; T 17 - Message2 start

 retlw 0x65 ; e 18

 retlw 0x73 ; s 19

 retlw 0x74 ; t 20

 retlw 0x20 ; blank 21

 retlw 0x64 ; d 22

 retlw 0x69 ; i 23

 retlw 0x61 ; a 24

 retlw 0x6C ; l 25

 retlw 0x3F ; ? 26

 retlw 0x20 ; blank 27

 retlw 0x28 ; (28

 retlw 0x31 ; 1 29

 retlw 0x3D ; = 30

 retlw 0x59 ; Y 31

 retlw 0x65 ; e 32

 retlw 0x73 ; s 33

 retlw 0x29 ;) 34

 retlw 0x3A ; : 35 - Message2 end

 retlw 0x54 ; T 36 - Message3 start

 retlw 0x75 ; u 37

 retlw 0x72 ; r 38

 retlw 0x6E ; n 39

 retlw 0x20 ; blank 40

 retlw 0x6F ; o 41

 retlw 0x6E ; n 42

 retlw 0x20 ; blank 43

 retlw 0x73 ; s 44

 retlw 0x70 ; p 45

 retlw 0x65 ; e 46

 retlw 0x61 ; a 47

 retlw 0x6B ; k 48

 retlw 0x65 ; e 49

 retlw 0x72 ; r 50 - Message3 end

 retlw 0x4D ; M 51 - Message4 start

 retlw 0x69 ; i 52

 retlw 0x6E ; n 53

 retlw 0x73 ; s 54

 retlw 0x20 ; blank 55

 retlw 0x62 ; b 56

 retlw 0x65 ; e 57

 retlw 0x74 ; t 58

 retlw 0x77 ; w 59

 retlw 0x65 ; e 60

 retlw 0x65 ; e 61

 retlw 0x6E ; n 62

 retlw 0x20 ; blank 63

~ 89 ~

 retlw 0x63 ; c 64

 retlw 0x61 ; a 65

 retlw 0x6C ; l 66

 retlw 0x6C ; l 67

 retlw 0x73 ; s 68

 retlw 0x2C ; , 69 - Message4 end

 retlw 0x6D ; m 70 - Message5 start

 retlw 0x61 ; a 71

 retlw 0x78 ; x 72

 retlw 0x20 ; blank 73

 retlw 0x28 ; (74

 retlw 0x30 ; 0 75

 retlw 0x2D ; - 76

 retlw 0x32 ; 2 77

 retlw 0x35 ; 5 78

 retlw 0x35 ; 5 79

 retlw 0x29 ;) 80

 retlw 0x3A ; : 81

 retlw 0x20 ; blank 82 - Message5 end

 retlw 0x6D ; m 83 - Message6 start

 retlw 0x69 ; i 84

 retlw 0x6E ; n 85

 retlw 0x20 ; blank 86

 retlw 0x28 ; (87

 retlw 0x31 ; 1 88

 retlw 0x2D ; - 89

 retlw 0x6D ; m 90

 retlw 0x61 ; a 91

 retlw 0x78 ; x 92

 retlw 0x29 ;) 93

 retlw 0x3A ; : 94

 retlw 0x20 ; blank 95 - Message6 end

 retlw 0x4D ; M 96 - Message7 start

 retlw 0x69 ; i 97

 retlw 0x6E ; n 98

 retlw 0x20 ; blank 99

 retlw 0x6D ; m 100

 retlw 0x69 ; i 101

 retlw 0x6E ; n 102

 retlw 0x75 ; u 103

 retlw 0x74 ; t 104

 retlw 0x65 ; e 105

 retlw 0x73 ; s 106

 retlw 0x20 ; blank 107

 retlw 0x3E ; > 108

 retlw 0x20 ; blank 109

 retlw 0x4D ; M 110

 retlw 0x61 ; a 111

 retlw 0x78 ; x 112 - Message7 end

 retlw 0x53 ; S 113 - Message8 start

 retlw 0x65 ; e 114

 retlw 0x63 ; c 115

 retlw 0x73 ; s 116

 retlw 0x20 ; blank 117

 retlw 0x62 ; b 118

 retlw 0x65 ; e 119

 retlw 0x74 ; t 120

~ 90 ~

 retlw 0x77 ; w 121

 retlw 0x65 ; e 122

 retlw 0x65 ; e 123

 retlw 0x6E ; n 124

 retlw 0x20 ; blank 125

 retlw 0x63 ; c 126

 retlw 0x61 ; a 127

 retlw 0x6C ; l 128

 retlw 0x6C ; l 129

 retlw 0x73 ; s 130

 retlw 0x2C ; , 131 - Message8 end

 retlw 0x6D ; m 132 - Message9 start

 retlw 0x61 ; a 133

 retlw 0x78 ; x 134

 retlw 0x20 ; blank 135

 retlw 0x28 ; (136

 retlw 0x31 ; 1 137

 retlw 0x2D ; - 138

 retlw 0x32 ; 2 139

 retlw 0x35 ; 5 140

 retlw 0x35 ; 5 141

 retlw 0x29 ;) 142

 retlw 0x3A ; : 143

 retlw 0x20 ; blank 144 - Message9 end

 retlw 0x4E ; N 145 - Message10 start

 retlw 0x75 ; u 146

 retlw 0x6D ; m 147

 retlw 0x62 ; b 148

 retlw 0x65 ; e 149

 retlw 0x72 ; r 150

 retlw 0x20 ; blank 151

 retlw 0x6F ; o 152

 retlw 0x66 ; f 153

 retlw 0x20 ; blank 154

 retlw 0x74 ; t 155

 retlw 0x65 ; e 156

 retlw 0x6C ; l 157

 retlw 0x65 ; e 158

 retlw 0x70 ; p 159

 retlw 0x68 ; h 160

 retlw 0x6F ; o 161

 retlw 0x6E ; n 162

 retlw 0x65 ; e 163 - Message10 end

 retlw 0x63 ; c 164 - Message11 start

 retlw 0x61 ; a 165

 retlw 0x6C ; l 166

 retlw 0x6C ; l 167

 retlw 0x73 ; s 168

 retlw 0x20 ; blank 169

 retlw 0x28 ; (170

 retlw 0x31 ; 1 171

 retlw 0x30 ; 0 172

 retlw 0x2D ; - 173

 retlw 0x32 ; 2 174

 retlw 0x35 ; 5 175

 retlw 0x35 ; 5 176

 retlw 0x29 ;) 177

~ 91 ~

 retlw 0x3A ; : 178

 retlw 0x20 ; blank 179 - Message11 end

 retlw 0x4E ; N 180 - Message12 start

 retlw 0x75 ; u 181

 retlw 0x6D ; m 182

 retlw 0x62 ; b 183

 retlw 0x65 ; e 184

 retlw 0x72 ; r 185

 retlw 0x20 ; blank 186

 retlw 0x6F ; o 187

 retlw 0x66 ; f 188

 retlw 0x20 ; blank 189

 retlw 0x72 ; r 190

 retlw 0x69 ; i 191

 retlw 0x6E ; n 192

 retlw 0x67 ; g 193 - Message12 end

 retlw 0x70 ; p 194 - Message13 start

 retlw 0x75 ; u 195

 retlw 0x6C ; l 196

 retlw 0x73 ; s 197

 retlw 0x65 ; e 198

 retlw 0x73 ; s 199

 retlw 0x20 ; blank 200

 retlw 0x28 ; (201

 retlw 0x33 ; 3 202

 retlw 0x2D ; - 203

 retlw 0x31 ; 1 204

 retlw 0x30 ; 0 205

 retlw 0x29 ;) 206

 retlw 0x3A ; : 207

 retlw 0x20 ; blank 208 - Message13 end

 retlw 0x4E ; N 209 - Message14 start

 retlw 0x75 ; u 210

 retlw 0x6D ; m 211

 retlw 0x62 ; b 212

 retlw 0x65 ; e 213

 retlw 0x72 ; r 214

 retlw 0x20 ; blank 215

 retlw 0x6F ; o 216

 retlw 0x66 ; f 217

 retlw 0x20 ; blank 218

 retlw 0x62 ; b 219

 retlw 0x75 ; u 220

 retlw 0x73 ; s 221

 retlw 0x79 ; y 222 - Message14 end

;

 org 0x0700 ; leaves 6 unused words at the end of the page

MSGtableU

 addwf PCL,f ; w + PCL -> PCL

 retlw 0x74 ; t 0 - Message15 start

 retlw 0x72 ; r 1

 retlw 0x69 ; i 2

 retlw 0x65 ; e 3

 retlw 0x73 ; s 4

 retlw 0x20 ; blank 5

 retlw 0x28 ; (6

 retlw 0x35 ; 5 7

~ 92 ~

 retlw 0x2D ; - 8

 retlw 0x35 ; 5 9

 retlw 0x30 ; 0 10

 retlw 0x29 ;) 11

 retlw 0x3A ; : 12

 retlw 0x20 ; blank 13 - Message15 end

 retlw 0x4D ; M 14 - Message16 start

 retlw 0x61 ; a 15

 retlw 0x78 ; x 16

 retlw 0x20 ; blank 17

 retlw 0x73 ; s 18

 retlw 0x65 ; e 19

 retlw 0x63 ; c 20

 retlw 0x20 ; blank 21

 retlw 0x62 ; b 22

 retlw 0x65 ; e 23

 retlw 0x74 ; t 24

 retlw 0x77 ; w 25

 retlw 0x65 ; e 26

 retlw 0x65 ; e 27

 retlw 0x6E ; n 28

 retlw 0x20 ; blank 29

 retlw 0x62 ; b 30

 retlw 0x75 ; u 31

 retlw 0x73 ; s 32

 retlw 0x79 ; y 33 - Message16 end

 retlw 0x4D ; M 34 - Message17 start

 retlw 0x69 ; i 35

 retlw 0x6E ; n 36

 retlw 0x20 ; blank 37

 retlw 0x73 ; s 38

 retlw 0x65 ; e 39

 retlw 0x63 ; c 40

 retlw 0x20 ; blank 41

 retlw 0x62 ; b 42

 retlw 0x65 ; e 43

 retlw 0x74 ; t 44

 retlw 0x77 ; w 45

 retlw 0x65 ; e 46

 retlw 0x65 ; e 47

 retlw 0x6E ; n 48

 retlw 0x20 ; blank 49

 retlw 0x62 ; b 50

 retlw 0x75 ; u 51

 retlw 0x73 ; s 52

 retlw 0x79 ; y 53 - Message17 end

 retlw 0x74 ; t 54 - Message18 start

 retlw 0x72 ; r 55

 retlw 0x69 ; i 56

 retlw 0x65 ; e 57

 retlw 0x73 ; s 58

 retlw 0x20 ; blank 59

 retlw 0x28 ; (60

 retlw 0x31 ; 1 61

 retlw 0x2D ; - 62

 retlw 0x6D ; m 63

 retlw 0x61 ; a 64

~ 93 ~

 retlw 0x78 ; x 65

 retlw 0x29 ;) 66

 retlw 0x3A ; : 67

 retlw 0x20 ; blank 68 - Message18 end

 retlw 0x4D ; M 69 - Message19 start

 retlw 0x69 ; i 70

 retlw 0x6E ; n 71

 retlw 0x20 ; blank 72

 retlw 0x73 ; s 73

 retlw 0x65 ; e 74

 retlw 0x63 ; c 75

 retlw 0x6F ; o 76

 retlw 0x6E ; n 77

 retlw 0x64 ; d 78

 retlw 0x73 ; s 79

 retlw 0x20 ; blank 80

 retlw 0x3E ; > 81

 retlw 0x20 ; blank 82

 retlw 0x4D ; M 83

 retlw 0x61 ; a 84

 retlw 0x78 ; x 85 - Message19 end

 retlw 0x4D ; M 86 - Message20 start

 retlw 0x61 ; a 87

 retlw 0x78 ; x 88

 retlw 0x20 ; blank 89

 retlw 0x73 ; s 90

 retlw 0x65 ; e 91

 retlw 0x63 ; c 92

 retlw 0x6F ; o 93

 retlw 0x6E ; n 94

 retlw 0x64 ; d 95

 retlw 0x73 ; s 96

 retlw 0x20 ; blank 97

 retlw 0x74 ; t 98

 retlw 0x6F ; o 99

 retlw 0x20 ; blank 100

 retlw 0x68 ; h 101

 retlw 0x6F ; o 102

 retlw 0x6C ; l 103

 retlw 0x64 ; d 104 - Message20 end

 retlw 0x63 ; c 105 - Message21 start

 retlw 0x61 ; a 106

 retlw 0x6C ; l 107

 retlw 0x6C ; l 108

 retlw 0x65 ; e 109

 retlw 0x65 ; e 110

 retlw 0x20 ; blank 111

 retlw 0x28 ; (112

 retlw 0x32 ; 2 113

 retlw 0x2D ; - 114

 retlw 0x32 ; 2 115

 retlw 0x34 ; 4 116

 retlw 0x30 ; 0 117

 retlw 0x29 ;) 118

 retlw 0x3A ; : 119

 retlw 0x20 ; blank 120 - Message21 end

 nop ; spare location 121

~ 94 ~

 nop ; spare location 122

 nop ; spare location 123

 retlw 0x4C ; L 124 - Message22 start

 retlw 0x69 ; i 125

 retlw 0x6E ; n 126

 retlw 0x65 ; e 127

 retlw 0x20 ; blank 128

 retlw 0x69 ; i 129

 retlw 0x6E ; n 130

 retlw 0x20 ; blank 131

 retlw 0x75 ; u 132

 retlw 0x73 ; s 133

 retlw 0x65 ; e 134 - Message22 end

 retlw 0x4E ; N 135 - Message23 start

 retlw 0x6F ; o 136

 retlw 0x20 ; blank 137

 retlw 0x64 ; d 138

 retlw 0x69 ; i 139

 retlw 0x61 ; a 140

 retlw 0x6C ; l 141

 retlw 0x20 ; blank 142

 retlw 0x74 ; t 143

 retlw 0x6F ; o 144

 retlw 0x6E ; n 145

 retlw 0x65 ; e 146 - Message23 end

 retlw 0x44 ; D 147 - Message24 start

 retlw 0x69 ; i 148

 retlw 0x61 ; a 149

 retlw 0x6C ; l 150

 retlw 0x6C ; l 151

 retlw 0x69 ; i 152

 retlw 0x6E ; n 153

 retlw 0x67 ; g 154

 retlw 0x20 ; blank 155

 retlw 0x2E ; . 156

 retlw 0x2E ; . 157

 retlw 0x2E ; . 158 - Message24 end

 retlw 0x42 ; B 159 - Message25 start

 retlw 0x75 ; u 160

 retlw 0x73 ; s 161

 retlw 0x79 ; y 162

 retlw 0x20 ; blank 163

 retlw 0x2E ; . 164

 retlw 0x2E ; . 165

 retlw 0x2E ; . 166 - Message25 end

 retlw 0x44 ; D 167 - Message26 start

 retlw 0x69 ; i 168

 retlw 0x61 ; a 169

 retlw 0x6C ; l 170

 retlw 0x6C ; l 171

 retlw 0x69 ; i 172

 retlw 0x6E ; n 173

 retlw 0x67 ; g 174

 retlw 0x20 ; blank 175

 retlw 0x74 ; t 176

 retlw 0x72 ; r 177

 retlw 0x79 ; y 178

~ 95 ~

 retlw 0x20 ; blank 179

 retlw 0x23 ; # 180 - Message26 end

 retlw 0x52 ; R 181 - Message27 start

 retlw 0x69 ; i 182

 retlw 0x6E ; n 183

 retlw 0x67 ; g 184

 retlw 0x69 ; i 185

 retlw 0x6E ; n 186

 retlw 0x67 ; g 187

 retlw 0x20 ; blank 188

 retlw 0x2E ; . 189

 retlw 0x2E ; . 190

 retlw 0x2E ; . 191 - Message27 end

 retlw 0x41 ; A 192 - Message28 start

 retlw 0x6C ; l 193

 retlw 0x6C ; l 194

 retlw 0x20 ; blank 195

 retlw 0x66 ; f 196

 retlw 0x69 ; i 197

 retlw 0x6E ; n 198

 retlw 0x69 ; i 199

 retlw 0x73 ; s 200

 retlw 0x68 ; h 201

 retlw 0x65 ; e 202

 retlw 0x64 ; d 203 - Message28 end

 retlw 0x50 ; P 204 - Message29 start

 retlw 0x72 ; r 205

 retlw 0x6F ; o 206

 retlw 0x67 ; g 207

 retlw 0x72 ; r 208

 retlw 0x65 ; e 209

 retlw 0x73 ; s 210

 retlw 0x73 ; s 211

 retlw 0x20 ; blank 212

 retlw 0x20 ; blank 213

 retlw 0x47 ; G 214

 retlw 0x6F ; o 215

 retlw 0x6F ; o 216

 retlw 0x64 ; d 217

 retlw 0x3A ; : 218 - Message29 end

 retlw 0x42 ; B 219 - Message30 start

 retlw 0x75 ; u 220

 retlw 0x73 ; s 221

 retlw 0x79 ; y 222

 retlw 0x3A ; : 223

 retlw 0x20 ; blank 224

 retlw 0x20 ; blank 225

 retlw 0x20 ; blank 226

 retlw 0x20 ; blank 227

 retlw 0x20 ; blank 228

 retlw 0x52 ; R 229

 retlw 0x61 ; a 230

 retlw 0x6E ; n 231

 retlw 0x67 ; g 232

 retlw 0x3A ; : 233 - Message30 end

 retlw 0x54 ; T 234 - Message31 start

 retlw 0x65 ; e 235

~ 96 ~

 retlw 0x6C ; l 236

 retlw 0x20 ; blank 237

 retlw 0x73 ; s 238

 retlw 0x79 ; y 239

 retlw 0x73 ; s 240

 retlw 0x74 ; t 241

 retlw 0x65 ; e 242

 retlw 0x6D ; m 243

 retlw 0x20 ; blank 244

 retlw 0x65 ; e 245

 retlw 0x72 ; r 246

 retlw 0x72 ; r 247

 retlw 0x6F ; o 248

 retlw 0x72 ; r 249 - Message31 end

 END ; end assembly

