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Using FEMM to design an induction coil gun 

 

In this paper, I will look into induction-based coil guns.  An induction-based coil gun should not be 

confused with a reluctance-based coil gun.  In a reluctance gun, the field coils not only provide the 

magnetic field which accelerates the projectile, they also generate the magnetic field inside the projectile 

itself.  It is not an easy task to set things up so the field coils can perform this double duty efficiently.  In 

an induction coil gun, the projectile carries a current and generates its own magnetic field. 

 

The following figure shows the essential components.  The projectile is a cylindrical air-core solenoid.  

By convention, it is called the armature .  The figure shows three field coils (also air-core solenoids) 

wound around the barrel.  I will generally call the field coils "barrel coils" and have labeled them in the 

figure as ,  and .  I have also given each coil its own driving capacitor.  They are labeled ,  

and .  The coils will be powered up sequentially as the armature travels down the barrel.     

 

  

 

 

 

 

 

 

 

 

 

 

Let's begin by looking at a simplified case involving only one barrel coil.  I will set time  as the 

instant when the switch controlling the barrel coil's circuit is closed.  I will assume that its capacitor is 

initially charged up to some voltage  and that both circuits are initially at rest.  The following schematic 

diagram shows the two circuits, one for the barrel coil and one for the armature. 

 

 

 

 

 

 

 

 

 

 

 

The components in the barrel coil's circuit all have subscript " " to denote that they constitute barrel coil 

#1.  The components in the armature's coil bear subscript .  I will use the convention that currents 

flowing into the dotted end of an inductor produce positive magnetic flux on the dotted ends of coupled 

coils.  Here, the mutual inductance between the barrel coil and the armature is .  There are two separate 

circuits.  The sum of the voltage drops around each circuit must be zero.  The two circuit equations are: 
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Let's overcome the integral in the first equation by making reference to the charge  stored in capacitor 

 at any instant in time.  The very definition of the current flowing through the barrel coil's circuit is 

that: 

 

 

 

where the minus sign reflects the fact that positive current flows when the charge in the capacitor is 

decreasing.  We can substitute this definition into both circuit equations to get: 

 

 

 

Note that the starting voltage  drops out.   is the instantaneous charge stored in the capacitor.  It takes 

into account both the starting voltage and the history of the current since the starting time.  Apply the 

product rule to expand the derivatives in these equations.  I will assume that the self-inductances  and 

 are constant in time so their derivatives vanish.  But the mutual inductance  is not constant. 

 

 

 

Two independent variables appear in these two equations: (i) the charge  in the capacitor and (ii) the 

current  in the armature circuit.  Rather than just combine the equations directly, I am going to write 

them in matrix format.  One way to get there is to first re-arrange the two equations as follows. 

 

 

 

In matrix form, then: 

 

 

 

If we could somehow invert the leading matrix of inductances, the solution could be written down as: 

 

 

 

In fact, the inverse of this  inductance matrix can be written down by inspection, as follows: 
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When we extend the physical configuration to include more barrel coils, we will find the matrix format a 

very convenient way to keep track of things.  It will be useful to expand the vector on the right-hand side 

of Equation  to separate out the rate-of-change of the mutual inductance. 

 

 

 

If we knew , or knew how to get it, then Equation  would be an ideal basis for numerical 

integration.  At the start of every time step, all of the values on the right-hand side of the equation would 

be known.  The charge  and its derivative , and the armature current , would all have been 

calculated at the end of the previous time step.  During the previous time step, we would also have 

calculated how far the armature moved.  We could now relocate it to its new location and use FEMM to 

calculate the new mutual inductance . 

 

All that prevents us from doing that is the rate-of-change of the mutual inductance .  If the 

armature was prevented from moving, then the mutual inductance would not change with time and this 

derivative would be identically equal to zero.  That the mutual inductance changes with time is due solely 

to the fact that the armature does move.  In fact, the independent variable which governs the change of the 

mutual inductance is not time per se, but rather the location of the armature. 

 

In our FEMM model, the location of the armature is represented by variable .  This is the location of a 

reference point on the armature (say, its leading edge) along the longitudinal axis of the barrel coil(s).  We 

can express the rate-of-change of the mutual inductance directly in terms of its location as follows: 

 

 

 

Since  depends on only one independent variable (location variable ), only one partial derivative is 

needed.  Furthermore, the rate-of-change of the location variable is simply the derivative which represents 

the speed of the armature. 

 

The partial derivative  is a parameter which depends solely on the geometry of the problem.  

Assuming there is no ferro-magnetic material in the vicinity, the mutual inductance will not depend on the 

magnitude of the currents, the armature's speed, or anything else that we have included in this physical 

model (we have not included temperature).  In fact, the mutual inductance and its spatial derivative are 

values that could be pre-computed before the numerical integration procedure even begins.  If we used 

FEMM to calculate  with the armature located at a large number of possible locations along its 

route, we could interpolate within the table to find the value which obtains at any particular point during 

the simulation.  Or, if we are prepared to wait, we can let FEMM determine the derivative at the start of 

every time step.  Whichever way we choose to find , it can be found.  Since we will also have 

calculated the armature's speed at the end of the previous time step, we can use as our basic equation the 

following form of Equation . 
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With the right-hand side fully quantified, we can multiply through to calculate the two derivatives 

 and  on the left-hand side.  We will make the duration of the time steps  short 

enough that these derivatives can be assumed to remain constant throughout the time step.  If so, then 

three simple linear integrations can be used to integrate through to the end of the time step, namely: 

 

 

 

What if there are multiple barrel coils? 

 

To see what happens, let's assume there are three barrel coils, all conducting current at the same time.  (If 

the circuit of any particular barrel coil is not closed, that coil plays no role in what is going on.)  Each 

barrel coil will have its own circuit in the schematic, which circuit will look exactly the same as the 

circuit for barrel coil #1.  I will identify the components of circuit #  by using subscript .  The armature's 

circuit will remain unchanged.  To avoid possible pitfalls, I want to take care with the conventions, so I 

will draw  the complete schematic.   
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There are several issues which need to be clarified before we write down the circuit equations. 

 

One is the number of mutual inductances (should it be "inducti"?).  There are four coils, and there will be 

an interaction between each pair of coils, including interactions between the barrel coils themselves.  I 

will define the mutual inductance between the armature and barrel coil #  as  and the mutual 

inductance between barrel coils #  and #  as .  The interaction between any particular pair of coils 

affects each coil in the same way, so . 

 

Another issue relates to the timing of the individual circuits.  They may all be conducting at this moment, 

but that does not mean they all began conducting at the same time.  In fact, we will "fire" the barrel coils 

individually only when the armature nears them.  The moment at which the switch controlling a particular 

circuit is closed has a significant impact on the acceleration that coil will impart to the armature.  What 

the different start times mean to the circuit equations is that the integrals which keep track of the charge 

which has flown out of a particular capacitor do not all have the same starting times. 

 

Another issue is the way we add up the total amount of magnetic flux linking each coil.  This is where the 

conventions regarding phase dots and current directions come into play.  Look back at the schematic for 

the case with only one barrel coil and, in particular, the direction which was assigned to positive currents.  

The current  was assumed to be algebraically positive when it flows into the dotted end of barrel coil #1.  

The armature's current  was assumed to be algebraically positive when it flows into the dotted end of its 

coil.  The directions assumed for algebraically positive currents in the two new circuits are the same, 

being positive when current flows into the dotted ends. 

 

Because of this consistency, we can add up the amounts of flux linking each coil using a direct extension 

of what we did in the two-coil case.  No minus signs are needed.  We can say that the total amount of flux 

linking each of the four coils is: 

 

 

 

Each coil gets a flux contribution through its own self-inductance and a further contribution from each 

other coil through their mutual inductance.  Things will be more readable if we write this in matrix 

format.  Taking account of the symmetries , we get: 

 

 

 

This is a convenient place to describe the time-derivative of the fluxes.  Applying the product rule matrix-

wide gives: 
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Taking the derivative operation inside the matrix and vector, and noting that: (i) the self-inductances are 

constant with respect to time and (ii) the barrel coil-to-barrel coil mutual inductances are also constant 

with respect to time (since the barrel coils will not move with respect to one another), we get: 

 

 

 

The presence of multiple barrel coils does not change the fact that the mutual inductances depend on only 

one independent variable, being the -location of the armature.  The time-derivative of each mutual 

inductance can be expressed as the product of the spatial partial derivative and the speed of the armature. 

If  is the instanraneous speed of the armature, this can be written as: 

 

 

 

Next, just like we did in the two-coil case, we are going to relate the current flowing in each barrel coil's 

circuit to the absolute electrical charge, in Coulombs, stored in the associated capacitor. 

 

 

 

The rate-of-change of the fluxes can be expressed in terms of these charges, with the result that: 
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Having thus taken care of a couple of preliminaries, let's now turn to the circuit equations.  There are four 

separate circuits and there will be a separate circuit equation for each one.  Each of the circuits is a series 

circuit with either two or three components.  The circuit equation for each circuit is a statement that the 

voltage drops over the components in the circuit, taken in sequence around the loop, must add up to zero.  

The circuit equation for the armature is just like Equation  above, the only difference being a more 

complicated expression for the total flux linking the armature coil.  The armature's circuit equation is: 

 

 

 

The circuit equations for the three barrel coils are just like the one for barrel coil #1 alone, in Equation 

, the only difference being that they too have more complicated expressions for their flux linkages.  

Their circuit equations are: 

 

 

 

Since there is now more than one capacitor, and since each capacitor might have a different starting 

voltage , I have added subscripts to relate the starting voltages to their respective circuits.  Next, by 

replacing the occurrences of currents ,  and  with their charge-equivalent derivatives, the circuit 

equations can be written as: 

 

 

 

I have tried to be precise in describing the time frames.  Each of these three equations only applies after 

its switch has been closed.  For all times before the switch closures, the stored charges are directly related 

to the capacitors' initial voltages, thus: 

 

 

 

The circuit equations can be re-arranged into the following forms: 
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which can be stated in matrix form as follows: 

 

 

 

Equations  and  can be combined to give the set of differential equations which describes the 

whole system. 

 

 

 

I am going to collect terms which have the same dependence on the independent variables.  But, I am 

going to do one other thing as well.  I am going to replace the charge-derivatives with their equivalent 

currents.  That will put matters back into terms of current, and make the result a little easier to use.  We 

get: 
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The way ahead is to recognize that, at the start of any time step, all of the variables on the right-hand side 

of Equation  will be known.  So will all the inductances which appear on the left-hand side.  

Gathering up all the constants on the right-hand side into vector , Equation  has the form: 

 

 

 

where everything is numeric (at the start of the time step) except for the four unknown currents.  In 

principle, we can invert the inductance matrix and multiply through to write the solution as: 

 

 

 

This will give us the derivatives we need to integrate through the time step in the same manner as above.  

As an example, for barrel coil #1 (note the negative signs in the expression for charge ), we would use: 
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The heat burned off by the resistors 

 

In order to validate the procedure, I am going to keep track of the various stores of energy as the armature 

travels along the barrel.  One of the more troublesome types of energy to look after is the heat energy 

burned off by the resistors in the circuits.   

 

The instantaneous power consumed by resistance  in the first barrel coil's circuit is .  The power 

consumed by this resistor during the course of a whole time step is obtained by integrating the 

instantaneous power by a small differential in time  and and then adding up (by integrating) the small 

energy differentials.  Equation  is the calculation of current  at the end of a time step, in terms of 

the conditions at the start of the time step.  Because the current is assumed to change linearly during the 

time step (since  is assumed to be constant during the time step), the instantaneous current at any 

arbitrary time  during the time step can be written in an analogous way: 

 

 

 

where time  in this instance is the time elapsed from the start of the time step.  Then, the instantaneous 

power being consumed by resistance  at time  can be expressed as: 

 

 

 

When  is integrated over one complete time step, the result is the energy consumed by resistance 

 during the whole time step.  It is: 

 

 

 

In a similar way, the power consumed by any other resistance  during the time step is: 

 

 

 

The energy stored in the magnetic fields 

 

Another of the troublesome energies to keep track of is the energy stored in the magnetic fields.  For a 

single fixed coil with self-inductance , the energy stored in its magnetic field when the instantaneous 

current is  is well-known;.  It is , with no ifs ands or buts.  In our case, though, we have mutual 

inductance, which changes with time.  What is the instantaneous energy stored in the magnetic field of 

this more complicated configuration?  To find the answer, I will apply the principle of superposition.  
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This means that I will notionally create the instantaneous configuration through a series of steps, in each 

of which the additional energy stored can be calculated quite easily. 

 

Let's examine the case when there are three barrel coils, in which the instantaneous currents are ,  and 

.  (There is no good reason for my using capital letters for instantaneous currents, but I will do so 

anyway.)  I am going to assume they are algebraically positive, meaning that the currents are flowing into 

the dotted ends of their respective coils in the schematic.  The instantaneous current in the armature 

circuit at this moment is .  I will also assume that it is algebraically positive as well, meaning that  is 

flowing into the dotted end of the armature coil. 

 

Let's create this configuration in a series of steps.  At the start, assume that all currents are zero, so there 

is no stored magnetic energy at all.  In the first step, we will increase the current in the circuit of barrel 

coil #1 from  to .  Since there is no current flowing in any of the other circuits, they can be 

treated as if they simply do not exist.  That means that the voltage drop over the coil in barrel circuit #1 is 

determined by its self-inductance alone.  There is not any mutual inductance during this first step.  We 

can write the instantaneous voltage drop over barrel coil #1 as: 

 

 

 

since the only flux linkage is the quantity .  The instantaneous power being consumed by this voltage 

drop is, as usual, the product of the voltage and the current, namely: 

 

 

 

I am going to take advantage of the fact that the self-inductance of barrel coil #1 is constant with respect 

to time, so it can be brought outside the derivative.  At the same time, I am going to restate the differential 

, which is a mathematical identity.  Then, Equation  for the instantaneous power usage 

can be written as: 

 

 

 

The energy consumed by barrel coil #1 during a very short period of time  can be written as .  This 

assumes that the interval of time  is so short that the power level  can be assumed to be constant 

during the interval.  Remember that, for constant power, the work done, or energy invested, is simply the 

product of the power level multiplied by the period of time during which it acts.  If we let  be the 

amount of work, or energy, invested in barrel coil #1 during time interval , then: 

 

 

 

In the case of an inductor like barrel coil #1, the work which is done is invested in building up a magnetic 

field.  The cumulative work which is done, equal to the energy invested in the magnetic field, from some 

time  when current  to some later time  when the current is  is the sum (or 

integral) of the little increments  which were added to the field's energy during that time.  We can 

write the cumulative energy stored during this first step as: 
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Now that barrel coil #1 is powered up, let's bring barrel coil #2 on line.  In this second step, the only thing 

that will change is the current flowing through barrel coil #2.  There still will not be any current flowing 

through the armature or barrel coil #3.  Significantly, though, there will be a constant current of  

flowing through barrel coil #1.  It was there at the end of the first step, and we will keep it there. 

 

As the current in barrel coil #2 ramps up, the instantaneous voltage drop which develops will be: 

 

 

 

Even though there is a mutual coupling between barrel coil #2 and barrel coil #1, the current flowing 

through barrel coil #1 is constant and will not induce any voltage drop over barrel coil #2.  The reverse is 

not true.  Through their mutual inductance, the changing current in barrel coil #2 will generate an 

instantaneous voltage drop over barrel coil #1, in the amount of: 

 

 

 

So, in this second step, there are two voltage drops through which current flows.  That means there are 

two uses of power.  The two voltage-times-current products are the following: 

 

 

 

Just to be clear about the power being used in barrel coil #1.  Its voltage drop may well be generated by 

the goings-on in barrel coil #2, but the flow of current is nevertheless the constant current .  The self-

inductance of barrel coil #2  is a constant.  Because these are two stationary barrel coils, their mutual 

inductance  is also constant.  We can add up Equations  and  and say that the total power 

being consumed during this second step is: 

 

 

 

We will consider the small bits of work done, or energy stored, in little  intervals of time and then add 

them up during the period while current  climbs from zero to .  The energy stored during this second 

step is: 
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Note that the integral over time can be expressed as an integral over current values (as they rise), and that 

the value of the integral does not depend on how current  makes its way from zero to .  The change 

could be fast, it could be slow, it could be a saw tooth, it may exceed  somewhere along the way.  When 

the current gets to , the energy stored during this step #2 is given by Equation .  When we add in 

the energy from Equation , we have the energy stored in this pair of barrel coils at the end of step #2. 

 

The third step is to bring barrel coil #3 up to speed.  Constant currents  and  will flow through the first 

two barrel coils, respectively, while current  in the new coil is raised from zero to .  The rising current 

 will generate a self-induced voltage across barrel coil #3 and, through mutual interaction, across the 

other two barrel coils as well.  The three instantaneous voltage drops are the following. 

 

 

 

Different currents flow through the three coils, so the contributions each makes to the total power 

consumption during this step are: 

 

 

 

As before, we can rely on the fact that the mutual inductances between barrel coils are constant, and can 

therefore be extracted from within the derivatives.  We add the energy contributions  to calculate the 

energy consumed (from the power supplies as voltage-times-current) and stored in the magnetic field. 
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In the fourth step , we are going bring the current flowing through the armature up to .  Once we have 

completed this fourth step, the configuration will be exactly the one we have been aiming for, with 

different currents flowing in all four coils.  During this last step, we will assume that constant currents , 

 and  keep flowing through the barrel coils, while current  in the armature climbs from zero to .  

This rising current  will generate a self-induced voltage across the armature, and mutually-induced 

voltages across the three barrel coils.  The four instantaneous voltage drops are: 

 

 

 

Different currents flow through all four coils.  As always, we can calculate the instantaneous power 

consumptions as the voltage-times-current products: 

 

 

 

As before, we can add up the  contributions to the stored magnetic energy.  The integral is: 

 

 

 

But, things are a little different this time around.  The self-inductance of the armature  is a constant, but 

the three mutual inductances are not.  They have their own dependence on time and cannot simply be 

removed from the derivatives as constants.  The first term in the curly brackets, for the self-inductance, 

can be integrated to give the sum , which has exactly the same form as the self-induced energy of 

the barrel coils.  But, the mutual inductance terms have to be handled differently.  As an example, let's 

expand the derivative of the middle mutual inductance term using the product rule. 

 

 

 

As we did before, we can express the time-derivative of the mutual inductance as the product of its spatial 

derivative and the speed of the armature, to get: 
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We can integrate the first half in closed form, but not the second half.  We get: 

 

 

 

I just want to point one thing out.  It's important to understanding why we were able to carry out the first 

integral.  The mutual inductance  is not constant; it changes.  But  is constant with respect to 

current.  Change in its value are not caused by changes in current but, rather, by changes in location.  

Since the mutual inductance does not depend on current, it can be considered to be constant for the 

purpose of integrating over current, as is done in the first integral.  For the first integral (only), the mutual 

inductance can be taken outside as a constant coefficient. 

 

Not so in the second integral. Since the fundamental dependence of the mutual inductance is on the axial 

location variable , I have taken the liberty of re-stating the integral from one over variable time  to one 

over variable distance . 

 

When one applies this treatment of the middle mutual inductance term to its counterparts, the expression 

in Equation  for the energy consumed during the fourth step can be re-written as follows: 

 

 

 

Before I do something about the last term, I want to regroup.  I want to add up the energies which were 

consumed in all four steps.  That will give us the total energy consumed as the magnetic fields which link 

the four coils were constructed.  The total is: 
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The first line in Equation  is a self-inductance energy term of form , with one such term for 

each individual coil. 

 

The second line in Equation  is a mutual inductance energy term of form , with one such 

term for each different pair of coils
1
. 

 

And, now we come to the last line in Equation .  Here's how we deal with it. 

 

Equation  is the sum of the energy that was consumed during the process of bringing the coils to a 

given configuration.  The process we used to derive all of this was based on the product of voltage drop 

and current, which measures the instantaneous power which the power supplies are delivering to the coils.  

In our universe, energy does not disappear.  If energy was supplied to these coils, they must have done 

something with it.  I said casually in the discussion above that such-and-such an energy was stored in 

such-and-such a magnetic field.  And, that is so.  Coils are used precisely because of their ability to take 

electrical energy and convert it into a magnetic field, which holds energy.  The first two lines of Equation 

 are the amounts of energy which are stored in the magnetic field.  Of course, there is only one 

magnetic field which links all four coils, but it is the sum of contributions which arise from ten different 

interactions
2
. 

 

The last line in Equation  is merely a different type of energy.  It is the kinetic energy of the 

armature.  The armature is the only component in the system which is able to move.  All of the location-

dependent effects in this system are rooted in the movement of the armature. 

 

I am not going to have to carry out the integration of the last line in Equation  in the numerical 

procedure, although one could.  It would not be too difficult.  We have already made arrangements to 

calculate the spatial partial derivatives of the mutual inductance (see the discussion at the bottom of page 

3 above), so it would be only a matter of a few multiplications.  Instead, I am going to kill two birds, or 

perhaps even three, with one stone. 

 

In the numerical integration, we are going to use FEMM to calculate the force acting on the armature at 

the start of every time step.  If the time steps are kept short enough, it will be a good assumption that this 

level of force remains constant during the time step.  Using the simple integration results for dynamics 

driven by constant force, we will be able to calculate the speed and position of the armature at the end of 

the time step.  The kinetic energy of the armature can be written as: 

 

 
 

We will calculate the energy stored in the "self-inductance magnetic fields" using the first line of 

Equation .  Similarly, we will calculate the energy stored in the "mutual inductance magnetic fields" 

using the second line of Equation .  Separately, of course, we will keep track of the voltage drops 

over the capacitors, and the electrostatic energy stored inside them.  And, we will keep track of the energy 

burned off as heat. 

                                                           
1
   The order in which I chose to power up the coils was completely arbitrary.  If one reverses the order in 

which two particular coils are powered up, the subscripts which show up in the mutual inductances would 

be reversed.  This is one of many reasons why mutual inductance is symmetric, so that . 
2
   It is worth remembering that each turn in each coil generates its own magnetic field.  It's for our human 

convenience that we group similar turns together into things called coils, which have self-inductances 

assigned to them.  One could do a similar energy analysis on a system-wide turn-by-turn basis, and thus 

end up with thousands of interactions. 
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If the sum of all these energies remains constant during the course of the simulation, we will have good 

confirmation that our circuit analysis is correct, that our energy analysis is correct, and that we are using 

FEMM in an appropriate way. 

 

The FEMM code for a five-coil gun 

 

I have listed in Appendix "A" the code I used to simulate a five-coil inductance gun.  The program is a 

Lua script which controls the operation of FEMM.  The program builds a physical model of the 

configuration and then proceeds to numerically integrate the circuit equations and the dynamic equations 

for the armature.  The following two figures depict the physical model.  
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The figure on the left shows the arrangement of the armature and five barrel coils at the start of a run, 

when there is no current flowing through any of the coils.  The barrel coils are wound directly on the 

outer surface of the barrel, which is a tube with an outside diameter of 2½ inches.  The wall thickness of 

the tube is one-thirty-secondth of an inch.  The diameter of the armature must clear the inside of the tube.  

As is usual in FEMM geometry, the axial -direction points vertically upwards.  During a simulation, the 

armature travels towards the top. 

 

As a starting point, I have set the nominal length of all coils to one inch.  The actual length of a particular 

coil will be slightly different, since it is equal to an integral number of complete turns of whatever AWG 

gauge of enameled copper wire is used to wind that coil.  For the most part, I set the number of layers in 

each winding arbitrarily.  The exception is the armature.  I chose to make the armature using two layers.  

That way, the armature circuit can be closed physically by soldering the two free ends of the wire across 

one lip of the armature, rather than having to run a wire up the length of the coil. 

 

The figure on the right shows the magnetic field lines not long after the start of a simulation.  A couple of 

things are noteworthy. 

1. When the current starts to ramp up in barrel coil #1, a current in the opposite direction will be 

induced in the armature.  Look back at the schematic diagram.  When barrel current  is positive 

and increasing, the armature current  will be algebraically negative.  

2. Since the current flows in opposite directions in the armature and barrel coil #1, their magnetic 

fields will have opposite orientations, and the force they exert on each other will be repulsive.    

3. Since the force between the armature and barrel coil #1 is repulsive, the starting location of the 

armature must be on the down-barrel end (or positive  end) of the first coil, so that it is repelled 

further down the barrel. 

4. It does not matter which way the current flows in barrel coil #1.  The current induced in the 

armature will be in the opposite direction and the force will be repulsive. 

 

There are a couple of features in the Lua script I should mention. 

1. I make heavy use of vectors.  In Lua, a vector named  is declared using the statement .  

A particular element in that vector is then referenced using square brackets, like this: . 

2. Lua permits zero-based indexing of elements in a vector.  I have taken advantage of that to use 

index zero for the armature and indices 1 through 5 for the five barrel coils.  For example, the 

armature's name is set using . 

3. I defined two functions at the start of the script.  One is a matrix inversion of the matrix equation 

, where the inductance matrix  and the constant vector  are populated before calling 

the function.  I used Euler's method to invert.  The matrix is first reduced to upper-triangular form 

by adding and subtracting rows.  Then, starting with the last row and working upwards, each row 

is solved for an additional unknown in the  vector.  

4. I used the second function defined at the outset of the Lua script for debugging purposes.  It 

simply writes a copy of the matrix equation to a text file, where it can be inspected for accuracy. 

5. If all five barrel coils are operating, the matrix equation will consist of six line equations, each 

contributing one row.  When the script prepares the matrix equation, it does not include barrel 

coils which are not operating.  Because of the physical nature of self-inductance, none of the 

elements on the main diagonal of matrix  will be zero.  Furthermore, because of the nature of 

mutual inductance, none of the off-diagonal elements will be zero, either.  It is for this reason that 

I did not include any error checking in the inversion function.   
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6. At the start of every time step, after the armature has been moved to its new location, FEMM 

calculates new values for the mutual inductances and new value for the force exerted on the 

armature.  FEMM also estimates the spatial derivatives of the mutual inductances  

between the armature and barrel coils .  To do this, FEMM moves the armature to 

a slightly different axial location and recalculates the mutual inductances.  The spatial derivative 

is estimated using the ratio of differences .  In the code, this distance  is represented 

by the variable .  I shall have more to say about . 

7. The code re-calculates the total system energy at the start of every time step, and the 

error/difference between this energy and the total system energy at the start of the simulation. 

8. All results are written into a text file.  The text file will be created in the same directory as the 

Lua script.  The output is written as csv (comma-separated values) so it can easily be imported 

into an Excel spreadsheet. 

 

Results of a test simulation 

 

In this section, I will describe the results of a test simulation.  It is not my intention in this paper to do any 

"optimization" of coil parameters, capacitor values and so on.  My primary purpose is to ensure that 

energy is conserved.  There is no point doing a lot of work with details only to find later a fundamental 

flaw in the methodology.   

 

The test simulation used only the first two barrel coils.  The principal parameters were: 

1. The armature is two layers of AWG #10 wire with nine turns in each layer. 

2. Barrel coil #1 is eight layers of AWG #16 wire with 18 turns in each layer. 

3. Barrel coil #2 is five layers of AWG #16 wire with 18 turns in each layer. 

4.  capacitors power both barrel coil circuits.  They are initially charged to . 

5. At the start of the simulation, the armature is placed with its leading edge one-half inch past the 

positive end of barrel coil #1.  The circuit for barrel coil #2 is closed when the armature's leading 

edge is one-inch inch past the positive end of barrel coil #2. 

 

The following graph shows the speed of the armature for about four and one-half milliseconds. 
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The big acceleration which starts at around 3¼ milliseconds is caused when barrel coil #2 comes on line.  

The many bumps in the speed curve represent acceleration peaks which, in accordance with Newton's 

Laws, result from peaks in the force.  Whatever is going on is certainly not a smooth and uniform process.  

That is clear in the following graph, which shows the current flowing in the armature (black), the currents 

flowing in barrel coils #1 and #2 (blue and green, respectively) and the force exerted on the armature 

(red). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The inductances and capacitances are such that the circuits' responses are very oscillatory. The energy 

sloshes between the capacitors and the coils several times.  In barrel coil #1's circuit, the period of these 

oscillations is about 1¼ milliseconds.  Since barrel coil #2 has fewer layers, and therefore less inductance, 

its oscillation period is less, approximately three-quarters of a millisecond.  Fortunately, the interaction 

between the armature and the barrel coils is such that the induced currents are in opposition so the force is 

almost always favourable for accelerating the armature down the barrel. 

 

The following graph shows the voltages on the two capacitors. 
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The voltage waveforms are decaying sinusoids.  But, the degree of oscillation is so great that the energy 

in the capacitors' electrostatic fields is not being transferred into armature kinetic energy as quickly and 

efficiently as one might wish.  A lot more attention must be given to the component values to improve the 

energy transfer.  This will be the subject of subsequent papers. 

 

Another possible problem is apparent from the foregoing graph of the voltage drops over the capacitors.  

Because of the oscillation, the capacitors do far more than simply discharge.  They recharge in the 

opposite direction, almost up to the original starting voltage.  For most polarized capacitors, this kind of 

reverse charge would be fatal.  This, too, will have to be examined in more detail. 

 

Conservation of energy during the simulation 

 

In this section, I will discuss the topic which I think is the most important one at this early stage of the 

analysis.  When the circuits start up from rest, as they will do when the gun is fired, the only energy in the 

system is contained in the two capacitors.  I have said that the capacitors are  and that they are 

initially charged up to .  Each capacitor contains energy of: 

 

 

 

and the total energy in the system is . 

 

Let's compare that to the kinetic energy of the armature at the end of the simulation.  From the speed 

graph above, we can see that the armature reaches a final speed of about .  I have 

assumed the armature has a mass of , which is about half a pound.  Its kinetic energy is: 

 

 
 

One can think of the "efficiency" of this gun as the percentage of the original electrostatic energy which is 

converted into kinetic energy.  Here, the efficiency is . 

 

The following is a graph of the various "pools" of energy during the first millisecond of the simulation 

period. 
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The blue curve is the total energy – it remains constant at .  The total energy is the sum of the 

armature's kinetic energy ( ), the magnetic energy stored by means of the coils' self-inductances ( ), the 

magnetic energy stored by means of the mutual inductances among the three coils ( ), the cumulative 

heat burned off by the resistances ( ) and the electrostatic energy stored in the capacitors ( ).  The graph 

adds up these pools of energy in "layers", so that each curve is the sum of the energy in all the pools 

below.  A couple of these energies are easy to understand. 

 

The black curve at the bottom is the kinetic energy of the armature.  Roughly speaking, it increases 

quadratically with respect to time. 

 

The energy burned off as heat is the space between the red curve and the green curve above it.  This use 

of energy also grows monotonically with time, but not at a quadratic rate. 

 

Mutual inductance (in this case) actually looks like a negative energy.  Let me explain.  The purple curve 

is the sum of the armature's kinetic energy and the magnetic energy stored in the magnetic fields 

generated by the three coils' self-inductances.  Adding the effect of mutual inductance reduces the total 

energy, causing the red curve to lie below the purple curve.  When two coils interact like they do in the 

coil gun, with the barrel coil driving the current in the armature, the effect of mutual inductance is to 

reduce the total amount of stored magnetic energy.  The reduction in stored energy caused by the mutual 

inductance will never be greater than the total stored energy due to self-inductance.  The mutual 

inductance reduces the total magnetic energy, but the reduction will never be great enough to cause 

"negative" magnetic energy in total. 

 

The oscillations in the magnetic curves  and  arise as the system's energy sloshes between its electric 

form, when stored in the capacitors, and its magnetic form, when stored in the magnetic field.  Note, agin, 

that this is only the first one millisecond of the simulation.  Since barrel coil #2 is not activated until later 

in the simulation, the  of energy stored in its capacitor is unchanged through the duration of the 

graph. 

 

The blue curve in the graph above is the system's total energy.  On the scale of the graph, it looks 

perfectly constant.  If one looks in greater detail, it is not exactly constant.  The following graph shows 

the error which arises during this one millisecond time period for several different sizes of time step. 
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The "errors" plotted in this graph are the differences between the system energy calculated at the start of 

each time step, and the total energy at the start of the simulation.  A perfect numerical simulation would 

have zero error.  The blue curve gets pretty close to that ideal.  The blue curve is the error when the time 

step is set to one-tenth of one microsecond, or 100 nanoseconds.  The energy error is a fraction of a Joule.  

The approximations relied on to justify integrating numerically get less realistic as longer and longer time 

steps are used.  For example, the assumption that the derivative of the current remains constant during the 

whole of each time step gets less accurate as the time steps get longer.  A time step of one millisecond 

gives rise to an energy error of about four Joules.   

 

A low energy error is an excellent goal, but shorter time steps require more computer time to carry out.  

For preliminary coil selection, a  time step would probably suffice.  The amount of error that is 

acceptable depends on how much kinetic energy is imparted to the armature. 

 

Although the length of the time step is arguably the most important simulation parameter, it is not the 

only one.  Another is the  distance, which is the incremental displacement given to the armature's 

location for the purpose of estimating the spatial derivatives .  The following graph shows the 

effect on the energy error of using different  increments.  (Incidently, all the runs made to prepare 

the previous graph, in which different time steps were compared, used a  increment of 0.02 inches.)  

All of the runs made to prepare the following graph, in which  increments are compared, used a 

time step of . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The energy error does not behave quite as one might expect.  One might think that reducing the  

distance would give a better estimate of the spatial derivatives , but that is not so.  Making the 

 distance too small is actually counter-productive.  The reason is this.  In order to carry out its own 

analysis, FEMM discretizes the universe into little triangles.  These little triangles (in two dimensions) 

represent small bits of volume.  For practical reasons, they cannot be made infinitely small.  The default 

triangles used by FEMM have side lengths of 0.01 inches.  If the armature is moved by a distance which 

is too small compared with the triangulation, FEMM's ability to resolve the change is reduced. 
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Based on what I have seen, the  distance should be set to 0.02 or 0.03 inches.  Making the  

distance bigger than this introduces a different problem – the difference-based approximation of the slope 

of the mutual inductance curves begins to fail. 

____________________________________ 

 

I have attached as Appendix "A" a copy of the Lua script used for these simulations.   

 

 

Jim Hawley 

© May 2015 

 

If you found this description helpful, please let me know.  If you spot any errors or omissions, please send 

an e-mail.  Thank you. 
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Appendix "A" 

 

The Lua script 

 
--///////////////////////////////////////////////////////////////////////////// 
--// Matrix inversion function 
--// Warning: Does not check for singularities 
--// Warning: The function overwrites A[][] and B[] 
--// Local argument N is the total number of coils, including the armature 
--// Global variables A[][] and B[] must be populated before a call 
--// Global variable X[] holds the solution 
A = {}    -- Inductance matrix, maximum size N=10 
for I= 1,10 do 
    A[I] = {} 
end 
B = {}  -- Vector of constants 
X = {}  -- Solution vector 
for I= 1,10 do 
    X[I] = 0 
end 
function INVERT(N) 
    -- Part #1: Reduce the leading element in row #1 to one 
    temp = A[1][1] 
    for Icol = 1,N do 
        A[1][Icol] = A[1][Icol] / temp 
    end 
    B[1] = B[1] / temp 
    -- Part #2: On a row-by-row basis, reduce the matrix to upper-triangular 
    for Irow = 2,N do 
        for Icol = 1,(Irow-1) do 
            temp = A[Irow][Icol] 
                for Irun = 1,N do 
                    A[Irow][Irun] = A[Irow][Irun] - (temp*A[Icol][Irun]) 
         end 
            B[Irow] = B[Irow] - (temp*B[Icol]) 
        end 
        temp = A[Irow][Irow] 
        for Irun = Irow,N do 
            A[Irow][Irun] = A[Irow][Irun] / temp 
        end 
        B[Irow] = B[Irow] / temp 
    end 
    -- Part #3: Set the value of the last variable 
    X[N] = B[N] 
    -- Part #4: Use Euler elimination to work back up the equations 
    for Itemp = 1,N-1 do 
        Irow = N - Itemp 
        X[Irow] = 0 
        for Icol = (Irow+1),N do 
            X[Irow] = X[Irow] + (A[Irow][Icol]*X[Icol]) 
        end 
        X[Irow] = B[Irow] - X[Irow] 
    end 
    return 
end 
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--// End of matrix inversion function 
--///////////////////////////////////////////////////////////////////////////// 
 
--///////////////////////////////////////////////////////////////////////////// 
--// Save-matrix-equation-to-file function, for debugging purposes only 
function WRITEMATRIXEQUATION(MO) 
    for Ir = 1,MO do 
        for Ic = 1,MO do 
            write(handle,"A[",Ir,"][",Ic,"]=",A[Ir][Ic],"   ") 
        end 
 write(handle,"X[",Ir,"]=",X[Ir],"   ") 
        write(handle,"B[",Ir,"]=",B[Ir],"\n") 
    end 
    write(handle,"\n") 
end 
--// End of save-maxtix-equation-to-file function 
--////////////////////////////////////////////////////////////////////////////// 
 
-- Initial location and speed of the armature 
ArmPosEndZ_0 = -1.25 -- Location of armature's leading edge, inches 
Speed_0 = 0   -- Armature's initial speed, meters per second 
Mass = 0.25   -- Armature's mass, kilograms 
 
-- Other important variables related to the simulation process 
MaxMeshSize = 0.01  -- Maximum FEMM triangle size 
MaxResidual = 1E-8  -- Maximum FEMM residual for convergence test 
deltaT = 0.000001  -- Duration of one time step, in seconds 
SaveInterval = 5  -- Number of time steps between save events  
SaveCounter = 0  -- Counter of time steps between save events 
MaxNumTimeSteps = 100000 -- Maximum number of time steps permitted 
 
-- Definition of Groups 
-- Group(9) is the air 
-- Group(0) is the armature 
-- Group(1) is barrel coil #1 
-- Group(2) is barrel coil #2 
-- Group(3) is barrel coil #3 
-- Group(4) is barrel coil #4 
-- Group(5) is barrel coil #5 
 
-- ALL DIMENSIONS ARE IN INCHES UNLESS A SUFFIX STATES OTHERWISE 
 
-- Define string names for all coils 
CoilName = {} 
CoilName[0] = "Arm" 
CoilName[1] = "Bcoil1" 
CoilName[2] = "Bcoil2" 
CoilName[3] = "Bcoil3" 
CoilName[4] = "Bcoil4" 
CoilName[5] = "BCoil5" 
 
-- Specify wire gauges for all coils 
CoilAWG = {} 
CoilAWG[0] = 10 
CoilAWG[1] = 16 
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CoilAWG[2] = 16 
CoilAWG[3] = 16 
CoilAWG[4] = 16 
CoilAWG[5] = 16 
 
-- Define vectors for the diameters of the wires used to wind all coils 
CoilWireExtDiamMM = {} 
CoilWireBareDiamMM = {} 
CoilWireExtDiam = {} 
CoilWireBareDiam = {} 
 
-- Specify lengths for all coils.  The numbers of turns will be calculated. 
CoilLength = {} 
CoilLength[0] = 1 
CoilLength[1] = 1 
CoilLength[2] = 1 
CoilLength[3] = 1 
CoilLength[4] = 1 
CoilLength[5] = 1 
 
-- Define vectors for the numbers of turns which make up the lengths 
CoilNumTurns = {} 
 
-- Specify the number of layers in all coils 
CoilNumLayers = {} 
CoilNumLayers[0] = 2 
CoilNumLayers[1] = 8 
CoilNumLayers[2] = 5 
CoilNumLayers[3] = 2 
CoilNumLayers[4] = 1 
CoilNumLayers[5] = 1 
 
-- Specify the z-locations of the negative ends of all coils 
CoilNegEndZ = {} 
CoilNegEndZ[0] = ArmPosEndZ_0 - CoilLength[1] 
CoilNegEndZ[1] = -2.75 
CoilNegEndZ[2] = -1 
CoilNegEndZ[3] = 0.75 
CoilNegEndZ[4] = 2.5 
CoilNegEndZ[5] = 4.25 
 
-- Define a vector for the z-locations of the positive ends of all coils 
CoilPosEndZ = {} 
 
-- Specify the inner and outer diameters of the barrel tube 
TubeOuterDiam = 2.5 
TubeInnerDiam = TubeOuterDiam - (1/16) 
TubeOuterRad = TubeOuterDiam / 2 
TubeInnerRad = TubeInnerDiam / 2 
  
-- Define vectors to hold the resistances and self-inductances of all coils. 
-- CoilRfemm is the resistance calculated by FEMM, but there will be other 
-- resistance in each coil circuit. 
CoilRfemm = {} 
CoilLfemm = {} 
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-- Define an array to hold the instantaneous mutual inductances 
CoilMfemm = {} 
for I = 0,5 do 
    CoilMfemm[I] = {} 
end 
 
-- Specify the dimensions of the bounding air spheres 
AirLocalRad = 8 
AirExtDiam = 1 
 
--////////////////////////////////////////////////////////////////////////////// 
--// Enough parameters have been defined to allow us to describe the 
--// physical geometry to FEMM. 
--////////////////////////////////////////////////////////////////////////////// 
newdocument(0)     -- New magnetics problem 
mi_probdef(0,'inches','axi',MaxResidual,0,30) -- Axisymmetric, in inches 
mi_grid_snap('off')     -- Do not snap to a grid 
 
-- Set the parameters of the enamelled copper wire used to wind each coil 
for I = 0,5 do 
    AWGGauge = CoilAWG[I]  
    if (AWGGauge == 1) then  
        WireExtDiamMM = 7.496 
        WireBareDiamMM = 7.348 
    end 
    if (AWGGauge == 2) then 
        WireExtDiamMM = 6.690 
        WireBareDiamMM = 6.543 
    end 
    if (AWGGauge == 3) then 
        WireExtDiamMM = 5.971 
        WireBareDiamMM = 5.827 
    end 
    if (AWGGauge == 4) then 
        WireExtDiamMM = 5.330 
        WireBareDiamMM = 5.189 
    end 
    if (AWGGauge == 5) then 
        WireExtDiamMM = 4.757 
        WireBareDiamMM = 4.620 
    end 
    if (AWGGauge == 6) then 
        WireExtDiamMM = 4.246 
        WireBareDiamMM = 4.115 
    end 
    if (AWGGauge == 7) then 
        WireExtDiamMM = 3.790 
        WireBareDiamMM = 3.665 
    end 
    if (AWGGauge == 8) then 
        WireExtDiamMM = 3.383 
        WireBareDiamMM = 3.264 
    end 
    if (AWGGauge == 9) then 
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        WireExtDiamMM = 3.023 
        WireBareDiamMM = 2.906 
    end 
    if (AWGGauge == 10) then 
        WireExtDiamMM = 2.703 
        WireBareDiamMM = 2.588 
    end   
    if (AWGGauge == 11) then 
        WireExtDiamMM = 2.418 
        WireBareDiamMM = 2.304 
    end 
    if (AWGGauge == 12) then 
        WireExtDiamMM = 2.163 
        WireBareDiamMM = 2.052 
    end 
    if (AWGGauge == 13) then 
        WireExtDiamMM = 1.934 
        WireBareDiamMM = 1.829 
    end 
    if (AWGGauge == 14) then 
        WireExtDiamMM = 1.732 
        WireBareDiamMM = 1.628 
    end 
    if (AWGGauge == 15) then 
        WireExtDiamMM = 1.549 
        WireBareDiamMM = 1.450 
    end 
    if (AWGGauge == 16) then 
        WireExtDiamMM = 1.384 
        WireBareDiamMM = 1.290 
    end 
    if (AWGGauge == 17) then 
        WireExtDiamMM = 1.240 
        WireBareDiamMM = 1.151 
    end 
    if (AWGGauge == 18) then 
        WireExtDiamMM = 1.110 
        WireBareDiamMM = 1.024 
    end 
    if (AWGGauge == 19) then 
        WireExtDiamMM = 0.993 
        WireBareDiamMM = 0.912 
    end 
    if (AWGGauge == 20) then 
        WireExtDiamMM = 0.892 
        WireBareDiamMM = 0.813 
    end 
    if (AWGGauge == 21) then 
        WireExtDiamMM = 0.800 
        WireBareDiamMM = 0.724 
    end 
    if (AWGGauge == 22) then 
        WireExtDiamMM = 0.714 
        WireBareDiamMM = 0.643 
    end 
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    if (AWGGauge == 23) then 
        WireExtDiamMM = 0.643 
        WireBareDiamMM = 0.574 
    end 
    if (AWGGauge == 24) then 
        WireExtDiamMM = 0.577 
        WireBareDiamMM = 0.511 
    end 
    if (AWGGauge == 25) then 
        WireExtDiamMM = 0.516 
        WireBareDiamMM = 0.455 
    end 
    if (AWGGauge == 26) then 
        WireExtDiamMM = 0.462 
        WireBareDiamMM = 0.404 
    end 
    if (AWGGauge == 27) then 
        WireExtDiamMM = 0.419 
        WireBareDiamMM = 0.361 
    end 
    if (AWGGauge == 28) then 
        WireExtDiamMM = 0.373 
        WireBareDiamMM = 0.320 
    end 
    if (AWGGauge == 29) then 
        WireExtDiamMM = 0.338 
        WireBareDiamMM = 0.287 
    end 
    if (AWGGauge == 30) then 
        WireExtDiamMM = 0.307 
        WireBareDiamMM = 0.254 
    end 
    if (AWGGauge == 31) then 
        WireExtDiamMM = 0.275 
        WireBareDiamMM = 0.226 
    end 
    if (AWGGauge == 32) then 
        WireExtDiamMM = 0.247 
        WireBareDiamMM = 0.203 
    end 
    CoilWireExtDiamMM[I] = WireExtDiamMM 
    CoilWireBareDiamMM[I] = WireBareDiamMM 
    CoilWireExtDiam[I] = CoilWireExtDiamMM[I] / 25.4  
    CoilWireBareDiam[I] = CoilWireBareDiamMM[I] / 25.4 
end 
 
-- Calculate the length of all coils.  This will be equal to the integral 
-- number of turns of the wire used which best approximates the target length.  
-- Note that the target lengths in vector CoilLength[] are replaced by the 
-- computed lengths. 
for I = 0,5 do 
    TargetLength = CoilLength[I] 
    WireDiam = CoilWireExtDiam[I] 
    CoilNumTurns[I] = floor(0.5 + (TargetLength/WireDiam)) 
    CoilLength[I] = CoilNumTurns[I] * WireDiam 
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end 
 
-- Define all nodes for the surrounding air, in Group(9) 
mi_addnode(0,AirLocalRad)    -- Top of local sphere 
mi_addnode(0,-AirLocalRad)    -- Bottom of local sphere 
mi_addnode(0,AirLocalRad + AirExtDiam)  -- Top of external sphere 
mi_clearselected() 
mi_selectnode(0,AirLocalRad) 
mi_selectnode(0,-AirLocalRad)  
mi_selectnode(0,AirLocalRad + AirExtDiam) 
mi_setnodeprop('',9) 
 
-- Clarify the (r,z) co-ordinates of the four corners of the windings of 
-- all coils.  The armature needs to be handled separately from the others 
-- because its outer diameter is limited by the tube size.  The other coils 
-- are assumed to be wound directly on the tube's outer surface. 
CoilInnerRad = {} 
CoilOuterRad = {} 
-- For the armature 
TotalTubeClearance = 1/16 
CoilOuterRad[0] = TubeInnerRad - (0.5*TotalTubeClearance)  
CoilInnerRad[0] = CoilOuterRad[0] - (CoilNumLayers[0]*CoilWireExtDiam[0]) 
CoilPosEndZ[0] = CoilNegEndZ[0] + CoilLength[0]  
-- For the other coils 
for I = 1,5 do 
    CoilInnerRad[I] = TubeOuterRad 
    CoilOuterRad[I] = CoilInnerRad[I] + (CoilNumLayers[I]*CoilWireExtDiam[I]) 
    CoilPosEndZ[I] = CoilNegEndZ[I] + CoilLength[I] 
end 
 
-- Define all nodes for all coils.  Note that the Group number = index I. 
for I = 0,5 do 
    mi_addnode(CoilInnerRad[I],CoilPosEndZ[I]) -- Top inside corner 
    mi_addnode(CoilOuterRad[I],CoilPosEndZ[I]) -- Top outside corner 
    mi_addnode(CoilOuterRad[I],CoilNegEndZ[I]) -- Bottom outside corner 
    mi_addnode(CoilInnerRad[I],CoilNegEndZ[I]) -- Bottom inside corner 
    mi_clearselected() 
    mi_selectnode(CoilInnerRad[I],CoilPosEndZ[I]) 
    mi_selectnode(CoilOuterRad[I],CoilPosEndZ[I]) 
    mi_selectnode(CoilOuterRad[I],CoilNegEndZ[I])  
    mi_selectnode(CoilInnerRad[I],CoilNegEndZ[I])  
    mi_setnodeprop('',I) 
end 
 
-- Define all line segments for the surrounding air, in Group(9) 
-- There are two line segments: 
-- 1. From the bottom of the local sphere to the top of the local sphere 
-- 2. The diameter line across the external sphere 
mi_addsegment(0,-AirLocalRad,0,AirLocalRad) 
mi_addsegment(0,AirLocalRad,0,AirLocalRad+AirExtDiam) 
mi_clearselected() 
mi_selectsegment(0,AirLocalRad-0.1) 
mi_selectsegment(0,AirLocalRad+0.1) 
mi_setsegmentprop('',0,1,0,9) 
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-- Define a periodic boundary condition 
mi_addboundprop('PeriodicBC',0,0,0,0,0,0,0,0,4) 
 
-- Define all arcs for the surrounding air, in Group(0) 
-- There are two arcs: 
-- 1. Enclosing the local sphere 
-- 2. Enclosing the external sphere 
mi_addarc(0,-AirLocalRad,0,AirLocalRad,180,1) 
mi_addarc(0,AirLocalRad,0,AirLocalRad+AirExtDiam,180,1) 
mi_clearselected() 
mi_selectarcsegment(AirLocalRad,0) 
mi_selectarcsegment(AirExtDiam/2,AirLocalRad+(AirExtDiam/2)) 
mi_setarcsegmentprop(1,'PeriodicBC',0,9) 
 
-- Define all line segments for all coils 
for I= 0,5 do 
    mi_addsegment(CoilInnerRad[I],CoilPosEndZ[I], 
        CoilOuterRad[I],CoilPosEndZ[I]) 
    mi_addsegment(CoilOuterRad[I],CoilPosEndZ[I], 
        CoilOuterRad[I],CoilNegEndZ[I])  
    mi_addsegment(CoilOuterRad[I],CoilNegEndZ[I], 
        CoilInnerRad[I],CoilNegEndZ[I]) 
    mi_addsegment(CoilInnerRad[I],CoilNegEndZ[I], 
        CoilInnerRad[I],CoilPosEndZ[I]) 
    mi_clearselected() 
    mi_selectsegment(CoilInnerRad[I]+0.001,CoilPosEndZ[I]) 
    mi_selectsegment(CoilOuterRad[I],CoilPosEndZ[I]-0.001)  
    mi_selectsegment(CoilOuterRad[I]-0.001,CoilNegEndZ[I]) 
    mi_selectsegment(CoilInnerRad[I],CoilNegEndZ[I]+0.001) 
    mi_setsegmentprop('',0,1,0,I) 
end 
 
-- Define a block label for the air, in Group(9) 
CentroidRLocal = 0.25 
CentroidZLocal = AirLocalRad - 0.25 
mi_addblocklabel(CentroidRLocal,CentroidZLocal) 
CentroidRExt = 0.25 
CentroidZExt = AirLocalRad + (AirExtDiam/2) 
mi_addblocklabel(CentroidRExt,CentroidZExt) 
mi_clearselected() 
mi_selectlabel(CentroidRLocal,CentroidZLocal) 
mi_selectlabel(CentroidRExt,CentroidZExt) 
mi_getmaterial('Air') 
mi_setblockprop('Air',0,0,0,0,9,0) 
 
-- Describe the external region as a Kelvin transformation 
mi_defineouterspace(AirLocalRad+(AirExtDiam/2),AirExtDiam/2,AirLocalRad) 
 
-- Define names for the materials of the wires being used 
CoilMaterial = {} 
for I= 0,5 do 
    CoilMaterial[I] = CoilName[I] .. "Wire" 
end 
 
-- Define new materials for the enamalled copper wire being used 
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-- Relative permeability in r-direction = 1 
-- Relative permeability in z-direction = 1 
-- Permanent magnet coercivity = 0 
-- Applied source current density = 0 
-- Electrical conductivity = 58 MS/m for copper wire 
-- Lamination thickness = 0 
-- Hysteresis lag angle = 0 
-- Lamination fill fraction = 1  
-- Lamination type = 3 (This code identifies magnet wire) 
-- Hysteresis lag angle in the x-direction = 0 
-- Hysteresis lag angle in the y-direction = 0 
-- Number of strands in wire = 1 
-- Diameter of wire (in millimeters) has already been specified above. 
-- For the wire-wound coils 
for I= 0,5 do 
    mi_addmaterial(CoilMaterial[I],1,1,0,0,58, 
        0,0,1,3,0,0,1,CoilWireExtDiamMM[I]) 
end 
 
-- Define block labels for all coils.  Set the current to 1A for 
-- initialization purposes only. 
Current = 1 
for I= 0,5 do 
    CentroidR = (CoilInnerRad[I] + CoilOuterRad[I]) / 2 
    CentroidZ = (CoilPosEndZ[I] + CoilNegEndZ[I]) / 2 
    mi_addcircprop(CoilName[I],Current,1) 
    mi_addblocklabel(CentroidR,CentroidZ) 
    mi_clearselected() 
    mi_selectlabel(CentroidR,CentroidZ) 
    TotalNumTurns = CoilNumLayers[I] * CoilNumTurns[I] 
    mi_setblockprop(CoilMaterial[I],0,MaxMeshSize,CoilName[I],0,I,TotalNumTurns) 
end 
 
--////////////////////////////////////////////////////////////////////////////// 
--// Now that the geometry has been specified, we can save the construction 
--// in a temporary file which will be a sister file to this Lua script. 
--// Then, we can get ready to do some analysis. 
--////////////////////////////////////////////////////////////////////////////// 
mi_saveas("./temp.fem")  -- Save the geometry 
main_maximize()   -- Maximize the main FEMM window 
mi_zoomnatural()   -- Zoom the display for the best fit  
showconsole()    -- Show the Lua output window 
clearconsole()   -- Clear the Lua output window 
mi_seteditmode("group")  -- Make edits such as translation by Group 
 
--////////////////////////////////////////////////////////////////////////////// 
--// Analyze the coils independently 
--// We will power up each coil separately to calculate its Ohmic resistance 
--// and self-inductance.  While we are at it, we will calculate the mutual 
--// inductance between this coil and all the other coils.  We will do this 
--// for all coils, even though there will be (or should be) redundancy 
--// between corresponding pairs and even though not all coils may be 
--// included in the simulation. 
--/////////////////////////////////////////////////////////////////////////////// 
for I= 0,5 do 
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    -- Zero out all currents, for all coils, including the powered coil 
    for J= 0,5 do 
        mi_modifycircprop(CoilName[J],1,0)  
    end 
    -- Set the current in the powered coil to 100A 
    mi_modifycircprop(CoilName[I],1,100) 
    -- Analyze the problem 
    mi_analyze() 
    mi_loadsolution() 
    -- For the powered coil, val1=current, val2=voltage and val3=flux 
    val1,val2,val3 = mo_getcircuitproperties(CoilName[I]) 
    CoilRfemm[I] = val2 / val1  -- Ohmic resistance 
    CoilLfemm[I] = val3 / val1  -- Self-inductance 
    -- For each other coil, val4=current, val5=voltage and val6=flux 
    for J= 0,5 do 
        if (J ~= I) then 
            val4,val5,val6 = mo_getcircuitproperties(CoilName[J]) 
            CoilMfemm[I][J] = val6 / val1 
        end 
    end 
end 
 
-- Display the interim results in the Lua window 
for I= 0,5 do 
    print(CoilName[I]) 
    print("R=",CoilRfemm[I])   
    print("L(uH)=",CoilLfemm[I]*1000000) 
    for J= 0,5 do 
        if (J ~= I) then 
            print("CoilM(uH) ",I," to ",J," = ",CoilMfemm[I][J]*1000000) 
        end 
    end 
end 
 
--////////////////////////////////////////////////////////////////////////////// 
--// There are a large number of variables which are best suited for 
--// representation as vectors.  Some of these are fixed parameters, some 
--// are initial conditions and some are temporary variables which will be 
--// needed during the simulation.  I will try to list these new vectors 
--// in that order. 
--////////////////////////////////////////////////////////////////////////////// 
 
-- Additional resistance in each coil circuit.  No harm is done if we 
-- define some extra resistance even for coils which are not used during 
-- a particular run. 
CoilRextra = {} 
CoilRextra[0] = 0.0001 -- Solder joint of two layers in armature 
CoilRextra[1] = 0.02 -- SCR 
CoilRextra[2] = 0.02     -- SCR 
CoilRextra[3] = 0.02     -- SCR 
CoilRextra[4] = 0.02     -- SCR 
CoilRextra[5] = 0.02     -- SCR 
 
-- Total resistance of each coil circuit.  The total resistance is the Ohmic 
-- resistance computed by FEMM plus the extra resistance just defined. 
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CoilR = {} 
for I= 0,5 do 
    CoilR[I] = CoilRfemm[I] + CoilRextra[I] 
end 
 
-- Capacitance in each coil circuit.  There will never be any capacitance in 
-- the armature circuit, but no harm is done if we define a zero-value 
-- capacitance anyway. 
Cap = {} 
Cap[0] = 0 
Cap[1] = 0.000032 
Cap[2] = 0.000032 
Cap[3] = 0.000032 
Cap[4] = 0.000032 
Cap[5] = 0.000032 
 
-- These "offsets" control the times at which the switches (SCRs) are closed 
-- for each coil circuit.  The offests are distances measured along the z- 
-- axis.  The switch which controls Coil #I will close when the leading edge 
-- of the armature reaches StartOffset[I].  Since the armature circuit is 
-- always closed, its StartOffset[0] is irrelevant, and is set to a big 
-- negative distance just so its usage is consistent with the others.  The 
-- offset for barrel coils #2 and later is set by deault to one-half inch 
-- past the positive end of the coil.  Since the armature has a length of 
-- about one inch, this will start these later coils when the armature is 
-- just about centered on the downstream lip of the coil.  The offset for 
-- the first barrel can be used in two different ways, depending on the 
-- setting of the CoilConnect[1] variable, which see.  If CoilConnect[1] is 
-- set to one, then the switch for barrel coil #1 will be closed at time t=0 
-- when the simulation starts.  If that is the case, the starting ofset is 
-- simply not relevant.  On the other hand, i CoilConnect[1] is set to zero, 
-- then barrel coil #1 will start up on the same condition as the others, 
-- when the leading edge of the armature reaches the given z-value.  That  
-- only makes sense, however, if the armature has some positive speed at the 
-- start, which will carry it forward to the trigger point. 
StartOffset = {} 
StartOffset[0] = -1000   -- Armature circuit is always closed 
StartOffset[1] = CoilPosEndZ[1] + 0.5 -- Start barrel coil #1 here 
StartOffset[2] = CoilPosEndZ[2] + 0.5 -- Start barrel coil #2 here 
StartOffset[3] = CoilPosEndZ[3] + 0.5 -- Start barrel coil #3 here 
StartOffset[4] = CoilPosEndZ[4] + 0.5 -- Start barrel coil #4 here 
StartOffset[5] = CoilPosEndZ[5] + 0.5 -- Start barrel coil #5 here 
 
-- Declare which coil circuits are closed, i.e., "connected", at the start of 
-- the simulation.  These must not conflict with the distances in the  
-- StartOffset[] vector since these variables are used as Boolean flags to 
-- tell the procedure which coils are in operation at the start of any 
-- particular time step.  The default settings assume the gun starts up from 
-- rest, with the switch for barrel coil #1 closed at the commencement of the 
-- simulation. 
 
CoilConnect = {} 
CoilConnect[0] = 1 
CoilConnect[1] = 1 
CoilConnect[2] = 0 



~ 36 ~ 

 

CoilConnect[3] = 0 
CoilConnect[4] = 0 
CoilConnect[5] = 0 
 
-- Initial voltages on the capacitors.  Only non-zero capacitors should be given 
-- non-zero initial voltages. 
Vcap_0 = {} 
Vcap_0[0] = 0 
Vcap_0[1] = 5000 
Vcap_0[2] = 5000 
Vcap_0[3] = 0 
Vcap_0[4] = 0 
Vcap_0[5] = 0 
 
-- Instantaneous voltage drops over capacitors.  The following line only 
-- declares the vector.  We do not need to insert specific values at this 
-- time. 
Vcap = {} 
 
-- Initial electrical charge stored in the capacitors 
Q_0 = {} 
for I= 1,5 do 
    Q_0[I] = Cap[I] * Vcap_0[I] 
end 
 
-- Instantaneous electrical charge stored in the capacitors 
Q_start = {} 
Q_end = {} 
 
-- Initial currents flowing in the coils.  These will be zero for all coils if 
-- the simulation starts up from rest.  However, we can use a non-zero initial 
-- current to "start" the armature without having to go through a complete 
-- start-up cycle. 
I_0 = {} 
I_0[0] = 0 
I_0[1] = 0 
I_0[2] = 0 
I_0[3] = 0 
I_0[4] = 0 
I_0[5] = 0 
 
-- Instantaneous currents flowing through the coils.  The following lines only 
-- declare the vectors.  We do not need to insert specific values at this time. 
I_start = {} 
I_end = {} 
 
-- Instantaneous first derivatives of the currents flowing through the coils. 
-- The following line only declares the vectors.  The numerical integration 
-- procedure assumes these derivatives remain constant throughout each time 
-- step, so they are given the subscricpt "constant". 
dIdt_const = {} 
 
-- Spatial derivative of the mutual inductances.  Since this is only relevant 
-- when one of each pair of coils is the armature, we can get away with using 
-- a vector instead of an array. 
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dMdz = {} 
 
-- Energy burned off as heat by Ohmic resistance during one time step.  This 
-- is recorded for each separate coil circuit at the end of each time step. 
deltaER = {} 
 
-- Instantaneous stores of energy -- kinetic, electrostatic, self-inductive,  
-- mutual inductive and cumulative Ohmic heat.  These are the values at the 
-- START of each time step. 
EK = 0 
ECTotal = 0 
ELTotal = 0 
EMTotal = 0 
ERTotal = 0 
ETotal = 0 
EError = 0 
 
-- Initial stores of energy.  These will be calculated at the start of the 
-- first iteration in the simulation. 
EK_0 = 0 
ECTotal_0 = 0 
ELTotal_0 = 0 
EMTotal_0 = 0 
ERTotal_0 = 0 
ETotal_0 = 0 
 
-- Define certain other scalar parameters and variables (for completeness only) 
-- Force_const  -- Force on armature, constant during time step 
-- Speed_start  -- Speed of armature at start of time step 
-- ArmPosEndZ_start  -- Location of armature's positive end at start of ts 
-- Distance_start  -- Cumulative distance travelled at start of time step 
 
--////////////////////////////////////////////////////////////////////////////// 
--// Initialize working variables for the simulation.  This involves setting 
--// the working variables to their proper values for time Time=0. 
--////////////////////////////////////////////////////////////////////////////// 
ArmPosEndZ_end = CoilPosEndZ[0] 
Speed_end = Speed_0 -- Speed of armature at end of time step 
Distance_end = 0 -- Cumulative distance travelled at end of time step 
for I= 0,5 do 
    Q_end[I] = Q_0[I] 
    I_end[I] = I_0[I] 
end 
 
--////////////////////////////////////////////////////////////////////////////// 
--// Open a text file for output and write a short header 
--////////////////////////////////////////////////////////////////////////////// 
handle = openfile("./Induction_Gun_Results.txt","a") 
write(handle,"\nFiring an induction gun with:\n") 
write(handle,"  TimeStep = ",deltaT*1000000," micro-seconds\n") 
write(handle,"  Armature starting conditions:\n") 
write(handle,"    Positive end location = ",ArmPosEndZ_0," inches\n") 
write(handle,"    Speed = ",Speed_0," m/s\n") 
write(handle,"    Current = ",I_0[0]," Amperes\n") 
write(handle,"  FEMM maximum mesh size = ",MaxMeshSize,"\n") 
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write(handle,"  FEMM maximum residual = ",MaxResidual,"\n") 
 
-- Write the self-inductances and the resistances 
for I= 0,5 do 
    write(handle,"NumLayers[",I,"] = ",CoilNumLayers[I],"\n") 
    write(handle,"NumTurns[",I,"] = ",CoilNumTurns[I],"\n") 
    write(handle,"CoilTrueLength[",I,"](inch) = ",CoilLength[I],"\n") 
    write(handle,"L[",I,"](uH) = ",CoilLfemm[I]*1000000,"\n") 
    write(handle,"R[",I,"](Ohms) = ",CoilR[I],"\n") 
end 
 
-- Write the mutual inductances (upper triangle only) 
for I= 0,4 do 
    for J= (I+1),5 do 
        write(handle,"M[",I,"][",J,"] = ",CoilMfemm[I][J],"\n") 
    end 
end 
 
-- Write the starting values for Time=0 in the same order that they will 
-- be written at the end of every time step.  This will be the first row 
-- in the listing of the simulation results.  Note that only the mutual 
-- inductances with respect to the armature are written.  Also note that 
-- zero results will be written for all coils, even if they do not take 
-- part in the simulation.  This keeps all columns aligned when coil 
-- circuits happen to start up or shut down during the simulation.  
write(handle,"Time(us)=,",0,",") 
for I= 0,5 do 
    write(handle,"I_0[",I,"](A)=,",I_0[I],",") 
end 
for I= 1,5 do 
    write(handle,"MA_start[",I,"](uH)=,",CoilMfemm[0][I]*1000000,",") 
end 
for I= 1,5 do 
    write(handle,"Q_0[",I,"](C)=,",Q_0[I],",") 
    write(handle,"Vcap_0[",I,"](V)=,",Vcap_0[I],",") 
end 
write(handle,"Force_const(N)=,",0,",") 
write(handle,"ArmPosEndZ_end(inch)=,",ArmPosEndZ_end,",") 
write(handle,"Distance_end(mm)=,",Distance_end,",") 
write(handle,"Speed_end(m/s)=,",Speed_end,",") 
write(handle,"EK(J)=,,") 
write(handle,"ECTotal(J)=,,") 
write(handle,"ELTotal(J)=,,") 
write(handle,"EMTotal(J)=,,") 
write(handle,"ERTotal(J)=,,") 
write(handle,"ETotal(J)=,,") 
write(handle,"EError(J)=,\n") 
SaveCounter = 0 
 
--////////////////////////////////////////////////////////////////////////////// 
--// This is the simulation's main loop through time 
--////////////////////////////////////////////////////////////////////////////// 
for TimeStep = 1,MaxNumTimeSteps do 
    Time = TimeStep * deltaT 
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    -- Step #1: Bring forward the values from the end of the previous time step 
    Speed_start = Speed_end 
    Distance_start = Distance_end 
    ArmPosEndZ_start = ArmPosEndZ_end 
    for I= 0,5 do 
        Q_start[I] = Q_end[I] 
        I_start[I] = I_end[I] 
    end 
     
    -- Step #2: Use FEMM to calculate the mutual inductances in the new location. 
    -- Note that the armature will already have been moved to its new location. 
    -- Set the current in the armature to 100A 
    mi_modifycircprop(CoilName[0],1,100) 
    -- Zero out the currents in all coils other than the armature 
    for J= 1,5 do 
        mi_modifycircprop(CoilName[J],1,0)  
    end 
    -- Analyze the problem 
    mi_analyze() 
    mi_loadsolution() 
    -- For the armature, val1=current, val2=voltage and val3=flux 
    val1,val2,val3 = mo_getcircuitproperties(CoilName[0]) 
    -- For each other coil, val4=current, val5=voltage and val6=flux 
    -- No harm is done if the mutual inductance is calculated for all coils, 
    -- whether they are in operation or not. 
    for I= 1,5 do 
        val4,val5,val6 = mo_getcircuitproperties(CoilName[I]) 
        CoilMfemm[0][I] = val6 / val1 
        CoilMfemm[I][0] = CoilMfemm[0][I] 
    end 
 
    -- Step #3: Move the armature to a slightly different location and 
    -- calculate the mutual inductances again.  Use the difference to 
    -- calculate the spatial derivative of the mutual inductances.  The 
    -- spatial derivatives will be in units of Henries per meter. 
    -- Step #3A: Translate the armature to its joggled location 
    Joggle = 0.02     -- Joggle distance in inches 
    mi_seteditmode("group") 
    mi_clearselected() 
    mi_selectgroup(0) 
    mi_movetranslate(0,Joggle) 
    -- Step #3B: Calculate the new mutual inductances.  Keep the same currents 
    -- as used in Step #2. 
    mi_analyze() 
    mi_loadsolution() 
    -- For the armature, val1=current, val2=voltage and val3=flux 
    val1,val2,val3 = mo_getcircuitproperties(CoilName[0]) 
    -- For each other coil, val4=current, val5=voltage and val6=flux 
    for I= 1,5 do 
        val4,val5,val6 = mo_getcircuitproperties(CoilName[I]) 
        NewMfemm = val6 / val1 
 dMdz[I] = (NewMfemm - CoilMfemm[0][I]) / (Joggle * 2.54 / 100) 
    end 
 
    -- Step #4: Use FEMM to calculate the force in the new configuration 
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    -- Step #4A: Move the armature back to its location before the joggle 
    mi_seteditmode("group") 
    mi_clearselected() 
    mi_selectgroup(0) 
    mi_movetranslate(0,-Joggle) 
    -- Step #4B: Re-set the currents to their values at start of time step 
    for I= 0,5 do 
        mi_modifycircprop(CoilName[I],1,I_start[I]) 
    end 
    -- Calculate the force on the armature,  which is Group(0) 
    mi_analyze() 
    mi_loadsolution() 
    mo_groupselectblock(0) 
    Force_const = mo_blockintegral(19) 
 
    -- Step #5: This is a convenient place to calculate the stored magnetic energy 
    -- at the START of the time step.  Only include coils in operation.  If this  
    -- happens to be the first time step, then make a note of the initial self- 
    -- inductive energy. 
    ELTotal = 0 
    for I= 0,5 do 
        if (CoilConnect[I] == 1) then 
            ELTotal = ELTotal + (0.5 * CoilLfemm[I] * I_start[I] * I_start[I]) 
        end 
    end 
    if (TimeStep == 1) then 
        ELTotal_0 = ELTotal 
    end 
 
    -- Step #6: Calculate the magnetic energy stored in the mutual inductances at 
    -- the START of the time step 
    EMTotal = 0 
    -- Deal with interactions with the armature first 
    for I= 1,5 do 
        if (CoilConnect[I] == 1) then 
            EMTotal = EMTotal + (CoilMfemm[0][I] * I_start[0] * I_start[I]) 
        end 
    end 
    -- Deal with all other interactions 
    for I= 1,4 do 
        if (CoilConnect[I] == 1) then 
            for J= (I+1),5 do 
                if (CoilConnect[J] == 1) then 
                    EMTotal = EMTotal + 
                        (CoilMfemm[I][J] * I_start[I] * I_start[J]) 
                end 
            end 
        end 
    end 
    if (TimeStep == 1) then 
        ELTotal_0 = ELTotal 
    end 
 
    -- Step #7: Calculate the armature's kinetic energy at the START of the time step 
    EK = 0.5 * Mass * Speed_start * Speed_start 
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    if (TimeStep == 1) then 
        EK_0 = EK 
    end 
 
    -- Step #8: Calculate the electrostatic energy stored in all capacitors at the 
    -- START of the time step. 
    ECTotal = 0 
    for I= 1,5 do 
        if (Cap[I] == 0) then 
            Vcap[I] = 0 
        else 
            Vcap[I] = Q_end[I] / Cap[I] 
            ECTotal = ECTotal + (0.5 * Cap[I] * Vcap[I] * Vcap[I]) 
        end 
    end 
    if (TimeStep == 1) then 
        ECTotal_0 = ECTotal 
    end 
 
    -- Step #9: Calculate the total heat energy by the START of the time step. 
    -- This is the awkward calculation because it uses the heat burned off during 
    -- the previous time step, which was stored at that time in the variable 
    -- deltaER[], with one vector element per coil circuit.  It is necessary to do 
    -- an energy balance at the start of each time step, or at the end.  Since the 
    -- magnetic energy is much easier to calculate at the start of each time step, 
    -- when the mutual inductances have just been re-calculated, that is the point 
    -- in time when we will do the energy balance calculation. 
    if (TimeStep == 1) then 
        for I= 0,5 do 
            deltaER[I] = 0 
        end 
        ERTotal = 0 
        ERTotal_0 = 0 
    else 
        for I= 0,5 do 
     if (CoilConnect[I] == 1) then 
                ERTotal = ERTotal + deltaER[I] 
            end 
        end 
    end 
 
    -- Step #10: Calculate the total system energy, and the energy error, at the 
    -- START of the time step. 
    ETotal = EK + ECTotal + ELTotal + EMTotal + ERTotal 
    if (TimeStep == 1) then 
        ETotal_0 = ETotal 
    end 
    EError = ETotal - ETotal_0 
  
    -- Step #11: Construct the inductance matrix A[][].  Only circuits which 
    -- are connected at this time are included in the matrix.  Note that all 
    -- elements are algebraically positive. 
    MatrixRow = 0 
    for I= 0,5 do 
        if (CoilConnect[I] == 1) then 
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            MatrixRow = MatrixRow + 1 
            MatrixColumn = 0 
            for J= 0,5 do 
  if (J == I) then 
      MatrixColumn = MatrixColumn + 1 
              A[MatrixRow][MatrixColumn] = CoilLfemm[I] 
  else 
                    if (CoilConnect[J] == 1) then 
          MatrixColumn = MatrixColumn + 1 
                        A[MatrixRow][MatrixColumn] = CoilMfemm[I][J] 
                    end 
                end 
            end 
        end 
    end 
    MatrixOrder = MatrixRow 
 
    -- Step #12: Load the constant vector B[].  Note that the armature's 
    -- circuit is a little different from the others. 
    -- Step #12A: Load B[0] for the armature 
    B[1] = -CoilR[0] * I_start[0] 
    for I= 1,5 do 
        if (CoilConnect[I] == 1) then 
            B[1] = B[1] - (Speed_start * dMdz[I] * I_start[I]) 
        end 
    end 
    -- Step #12B: Load B[] for the other coils 
    MatrixRow = 1 
    for I= 1,5 do 
        if (CoilConnect[I] == 1) then 
            MatrixRow = MatrixRow + 1 
            B[MatrixRow] =  
                (-Speed_start * dMdz[I] * I_start[0]) + 
                (-CoilR[I] * I_start[I]) + 
  (Q_start[I] / Cap[I]) 
        end 
    end 
    -- Step #12C: If desired for debugging purposes, uncomment the following 
    -- two lines to write the matrix equation to the output text file. 
    --write(handle,"Matrix equation before inversion\n") 
    --WRITEMATRIXEQUATION(MatrixOrder) 
     
    -- Step #13: Solve the matrix equation 
    INVERT(MatrixOrder) 
 
    -- Step #14: Transfer the solution to the appropriate "constant-slope" 
    -- variable 
    dIdt_const[0] = X[1] 
    SolutionIndex = 1 
    for I= 1,5 do 
        if (CoilConnect[I] == 1) then 
            SolutionIndex = SolutionIndex + 1 
            dIdt_const[I] = X[SolutionIndex] 
        end 
    end 
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    -- Step #15: Do the first-order integrations, but only for the circuits 
    -- which are in operation 
    for I= 0,5 do 
        if (CoilConnect[I] == 1) then 
            I_end[I] = I_start[I] + (dIdt_const[I] * deltaT) 
        else 
            -- No current will flow through unconnected coils 
            I_end[I] = 0 
        end 
    end 
    
    -- Step #16: Do the second-order integration, but only for those 
    -- circuits which have capacitors and are connected. 
    for I= 1,5 do 
        if (CoilConnect[I] == 1) then 
            Q_end[I] = Q_start[I] +  
                (-I_start[I] * deltaT) +  
                (-0.5 * dIdt_const[I] * deltaT * deltaT) 
        else 
            -- Hold over the charge on the other capacitors 
            Q_end[I] = Q_start[I] 
        end 
    end 
 
    -- Step #17: Calculate the armature's kinematics 
    Accel_const = Force_const / Mass 
    Speed_end = Speed_start  + (Accel_const * deltaT) 
    Distance_end = Distance_start + 
        (Speed_start * deltaT) + 
        (0.5 * Accel_const * deltaT * deltaT) 
 
    -- Step #18: Convert the change in distance (meters) to location (inches) 
    ArmPosEndZ_end = ArmPosEndZ_start +  
        ((Distance_end - Distance_start) * 100 / 2.54) 
 
    -- Step #19: Translate the armature to its new location 
    mi_seteditmode("group") 
    DesiredLELocation = ArmPosEndZ_end 
    RequiredTranslation = DesiredLELocation - ArmPosEndZ_start 
    mi_clearselected() 
    mi_selectgroup(0) 
    mi_movetranslate(0,RequiredTranslation) 
    CurrentLELocation = ArmPosEndZ_end 
 
    -- Step #20: Calculate the energy consumed by the resistors during this time 
    -- step, but only for circuits which are operating.  These values will be 
    -- held over until the start of the next time step, when the energy balances 
    -- are reconciled. 
    for I= 0,5 do 
        if (CoilConnect[I] == 1) then 
            deltaER[I] = CoilR[I] * deltaT * ( 
                (I_start[I] * I_start[I]) +  
                (I_start[I] * dIdt_const[I] * deltaT) + 
                (dIdt_const[I] * dIdt_const[I] * deltaT * deltaT / 3)) 
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        else 
     -- No current will flow through unconnected coils 
            deltaER[I] = 0 
        end 
    end 
 
    -- Step #21: Calculate the voltage drops over all capacitors.  If a particular 
    -- capacitance is zero, set its voltage drop to zero. 
    for I= 0,5 do 
        if (Cap[I] == 0) then 
            Vcap[I] = 0 
        else 
            Vcap[I] = Q_end[I] / Cap[I] 
 end 
    end 
     
    -- Step #22: Write the interim results to the output text file 
    SaveCounter = SaveCounter + 1 
    if (SaveCounter >= SaveInterval) then 
        SaveCounter = 0 
        write(handle,"Time(us)=,",Time * 1000000,",") 
        for I= 0,5 do 
            write(handle,"I_end[",I,"](A)=,",I_end[I],",") 
  end 
        for I= 1,5 do 
            write(handle,"MA_start[",I,"](uH)=,",CoilMfemm[0][I]*1000000,",") 
        end 
        for I= 1,5 do 
            write(handle,"Q_end[",I,"](C)=,",Q_end[I],",") 
            write(handle,"Vcap_end[",I,"](V)=,",Vcap[I],",") 
        end 
        write(handle,"Force_const(N)=,",Force_const,",") 
        write(handle,"ArmPosEndZ_end(inch)=,",ArmPosEndZ_end,",") 
        write(handle,"Distance_end(mm)=,",Distance_end,",") 
        write(handle,"Speed_end(m/s)=,",Speed_end,",") 
        write(handle,"KE_start(J)=,",EK,",") 
        write(handle,"ECTotal_start(J)=,",ECTotal,",") 
        write(handle,"ELTotal_start(J)=,",ELTotal,",") 
        write(handle,"EMTotal_start(J)=,",EMTotal,",") 
        write(handle,"ERTotal_start(J)=,",ERTotal,",") 
        write(handle,"ETotal_start(J)=,",ETotal,",") 
        write(handle,"EError_start(J)=,",EError,"\n") 
    end 
 
    -- Step #23: Terminate the simulation if the armature has passed through 
    -- the last barrel coil by at least two inches.  Obviously, this  
    -- termination condition can be adjusted to suit before beginning any 
    -- particular simulation. 
    TerminalLELocation = CoilPosEndZ[2] + 2 
    if (ArmPosEndZ_end >= TerminalLELocation) then 
        TimeStep = MaxNumTimeSteps + 1 
    end 
 
    -- Step #24: Turn on any coil circuit whose starting time has arrived. 
    -- Note that coil circuits which have completed their operation will 
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    -- have CoilConnect[] =-1.  Do not restart them. 
    for I= 1,5 do 
        if ((CoilConnect[I] == 0) and (ArmPosEndZ_end >= StartOffset[I])) then 
            CoilConnect[I] = 1 
            Q_end[I] = Q_0[I] 
            I_end[I] = 0 
        end 
    end     
   
    -- Step #25: Turn off any operating coil circuit controlled by an SCR 
    -- whose current flow has become negative.  Set CoilConnect[] = -1 to 
    -- avoid inadvertantly turning this coil back on. 
--    for I= 1,5 do 
--        if (CoilConnect[I] == 1) then 
--            if (I_end[I] < 0) then 
--                CoilConnect[I] = -1 
--            end 
--        end 
--    end 
 
    -- Step #26: Write a warning, and terminate the simulation, if the voltage 
    -- drop over any operating capacitor becomes negative. 
--    for I= 1,5 do 
--        if (CoilConnect[I] == 1) then 
--            if (Vcap[I] < 0) then 
--                write(handle,"ERROR -- Negative voltage on Cap ;",I,"\n") 
--                TimeStep = MaxNumTimeSteps + 1                
--            end 
--        end 
--    end  
 
    -- Step #27: Display a message to the user in the Lua window 
    print("Time(us)=",Time * 1000000) 
    print("IArm(A)=",I_end[0],"  Icoil#1(A)=",I_end[1]) 
    print("Force(N)=",Force_const) 
    print("ArmPosEndZ(inch)=",ArmPosEndZ_end) 
    print("Speed_end(m/s)=",Speed_end) 
 
end 
 
-- Close out the Lua program 
closefile(handle) 
mo_close() 
mi_close() 
messagebox("All done.") 


