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Selecting barrel coils for an induction coil gun 

 

Matching coils and capacitors in an induction gun is a delightful engineering problem.  It's a classic case 

of whack-a-mole.  Try to fix one thing and two others get further out of alignment.  A simulation program 

like the one I described in the earlier paper titled Using FEMM to design an induction coil gun is helpful, 

but can mesmerize the user into trying to optimize by guessing.  In this paper, I am going to try to work 

out some of the basic principles in the hope that they can eliminate some of the guesswork. 

 

To put some bounds on the scope of the problem, I am going to focus my attention in the following ways: 

1. I am going to assume that each barrel coil circuit has only one capacitor. 

2. I am going to assume that these capacitors are the type used in defibrillator machines, and 

therefore have capacitances in the  to  range.  These capacitors are polarized and 

cannot be charged up in the reverse direction. 

3. I am going to assume that each barrel coil circuit is controlled by an SCR, and that the SCR will 

terminate conduction of current if and when it turns negative. 

4. I am going to assume that the goal is to deliver kinetic energy to the armature in a single pulse. 

 

Each of these assumptions does have an alternative, which may well give better performance.  Even so, I 

will rely on these assumptions in this paper. 

 

The onset of oscillation in an isolated barrel coil circuit 

 

In this section, I will consider a single barrel coil, with nothing else present, not even the armature.  The 

circuit is an - -  circuit like the following. 

 

 

 

 

 

 

 

 

 

The differential equation which describes the circuit can be written in terms of the instantaneous current  

as follows: 

 

 

 

It is customary to define time constants for the -  combination  and for the -  

combination  and to re-write the d.e. as: 

 

 

 

The characteristic equation can be written down by inspection as: 

 

  

 
 

 



~ 2 ~ 

 

 

 

This is a simple quadratic equation whose two roots can also be written down by inspection: 

 

 

 

The behaviour of the current depends on the nature of the radical.  If the radical is imaginary, the current 

will be an oscillating trigonometric function with a decaying amplitude.  If the radical is real, the current's 

waveform will be the sum of two exponential terms, one with a rising amplitude and the second with a 

falling amplitude.  The breakpoint between these two types of behaviour occurs when the radical is zero, 

namely: 

 

 

 

The fourth assumption above requires that the capacitor deliver its energy in a single pulse.  We do not 

want an oscillating solution.  We want the radical to have a real value, so that: 

 

 

 

For a given value of capacitance, we want a small value of inductance and, surprisingly, a large value of 

resistance.  Those choices make it more likely that the inequality in Equation  will be satisfied. 

 

Let's do a reality check.  In the earlier paper, barrel coil #1 consisted of eight layers of AWG #16 

enameled copper wire wound on a 2½ inch tube with 18 turns per layer.  The resistance and self-

inductance of the coil were found to be  and , respectively.  Also included in the 

circuit was an SCR whose on-resistance was assumed to be , so the total series resistance in the 

circuit was .  The capacitor in the circuit was .  The inequality in Equation  

was not satisfied. 

 

 

 

In fact, it was unsatisfied by about three orders of magnitude.  It is no surprise, therefore, that the currents 

we saw in the earlier paper were highly oscillatory. 
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One cure would be to use a bigger capacitor.  The biggest capacitor we are allowed (by assumption #2) is 

.  Using it moves us in the right direction, but not far enough. 

 

Another cure would be use more resistance.  That is true, but it would be a misguided cure.  It would be 

perverse to willfully add resistance in order to drive the response into a single pulse.  Burning off more 

energy as heat simply to avoid oscillations cannot be the right thing to do. 

 

There is another cure: adding more layers to the coil.  Adding more layers will increase both the 

inductance and the resistance.  The resistance will increase at a faster rate than the inductance.  Each 

additional layer adds less inductance than the previous layer since the degree of coupling is less, but it 

adds more resistance since the circumference is larger.  Furthermore, the resistance term is squared in 

Equation , so we get more bang for our buck by taking this route. 

 

Tentative conclusions:  

1. Use  capacitors rather than  capacitors. 

2. Wind more layers on the barrel coils. 

 

Taking into account the effect of an armature fixed in position 

 

In the previous section, the armature was completely ignored.  In this section, I will bring the armature 

into the model.  However, I will prevent it from moving.  That means the mutual inductance  between 

the barrel coil and the armature will be constant.  The appropriate schematic, with a couple of new 

symbols defined, is this. 

 

 

 

 

 

 

 

 

 

We can take over results directly from the earlier paper.  The two circuit equations are: 

 

 

 

Because the self-inductances and the mutual inductance are constant, they pass through the derivatives as 

constant.  When we apply the product rule, we get: 

 

 

 

Taking the derivative of the first equation gives: 
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If we also take the derivative of the second equation and then substitute for the second derivative of  in 

the first equation, we get: 

 

 

 

The solution will not be oscillatory if the coefficient of the second derivative term vanishes.  If that is the 

case, then the governing differential equations become: 

 

 

 

This is such an important assumption that I will emphasize it as follows: 

 

 

 

In this non-oscillatory case, let's assume that the solutions for  and  have the following general 

exponential forms, where the coefficients and exponents may be complex.  

 

 

 

When we substitute these proposed solutions into the differential equations, we get: 

 

 

 

We can divide both equations through by  which, being an exponential term, will never be exactly 

zero.  We get: 

 

 

 

Take a look at the first equation in Equation .  The first term is constant; the second term varies as 

time varies.  The second equation has a similar structure.  Now, if the forms of solution proposed in 

Equation  are really valid solutions, then they must satisfy the differential equations at all times.  
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Obviously, this can only happen if the time-dependent terms are somehow neutralized.  There are only a 

couple of ways to neutralize them.   

 

One way is to require that the coefficients of the time-dependent terms be zero and, separately, that one or 

more of the coefficients in the constant terms be zero.  That way everything would zero itself out, as 

Equation  requires.  Unfortunately, that does not work here.  To suit the first equation, we would 

have to set .  To suit the second equation, we would have to set .  That makes the solution 

identically equal to zero, which is of no help. 

 

Let's try something else.  Perhaps we can find a way to make the exponential terms behave as constants, 

in which case we may be able to work something out with the constant terms to keep the whole equal to 

zero.  There is a possibility.  If we set the exponent , then the exponent is zero for all values of 

time .  That means the exponential term is always equal to one, and Equation  reduces to: 

 

 

 

We have two equations, but only one unknown .  Well, that's not quite true.  The coefficients  and  

are not yet known, either.  Suppose we solve the second equation for , in terms of , and substitute that 

into the first equation.  We get: 

 

 

 

Let's not forget the the governing assumption in Equation , that .  We can then re-arrange 

Equation  as: 

 

 

 

Now, I am going to talk about time constants.  I've already defined time constants  and 

 for the barrel coil circuit (with subscripts added to identify the specific components now 

that there are two coils and two resistors).  At this point, I am going to introduce a time constant for the 

armature circuit.  The armature circuit does not have a capacitor.  It therefore has only one time constant, 

of the -  variety.  I am going to use the symbol  to represent that time constant.  We can 

now re-state Equation  entirely in terms of time constants: 
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There will be two roots for exponent . 

 

 

 

In principle, we cannot allow the argument of the square root to be negative.  If it is negative, then the 

exponent  will contain an imaginary component, which represents oscillation and contradicts the 

governing assumption that the solution not be oscillatory.  We can write the positivity requirement as 

follows: 

 

 

 

This is the condition that ensures no oscillations.  Things one can do to encourage this condition are: 

1. Reduce the time constant of the barrel coil's -  pair.  Reducing  will tend to increase the 

left hand side.  Since , reducing the time constant can be achieved by reducing the 

resistance or reducing the capacitance, or both.  Note that both of these changes are exactly 

opposite to the tentative conclusions reached in the previous section. 

2. Reduce the armature's time constant or the barrel coil's -  time constant, or both.  This will 

reduce the value of the right-hand side. 

 

The condition  is impossible 

 

The non-oscillatory condition  in Equation  is physically impossible.  The real question 

for us is: can we get close enough to this ideal to even pursue the goal of single-pulse energy delivery. 

 

A coupling coefficient  is defined for the interaction of two coils, such that: 

 

 

 

The non-oscillatory condition therefore boils down to .  Ideal transformers, with absolutely no 

leakage, have .  From the point-of-view of the primary circuit, an ideal transformer "disappears" as 

a discrete component and can be replaced by a scaled version of the "load" in the secondary circuit.  The 

secondary circuit in our case is the armature.  Its "load" is the armature resistance.  If , this load will 

be seen by the primary circuit as a pure resistance. 

 

Two air-cored coils, one inside the other, will never interact with .  There will always be some 

leakage and that leakage will cause there to be some degree of oscillation in the primary (barrel coil)  

circuit.  Let me use the values from the earlier paper to illustrate how far away from the ideal we are. 

 

The armature in the earlier paper consisted of two layers of AWG #10 enameled copper wire, with nine 

turns per layer, and an outside diameter chosen so the armature would just fit inside the barrel tube.  The 
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resistance and self-inductance of the armature were found to be  and , 

respectively.   

 

I have prepared a simple LTSpice model (shown here) to simulate the result of assuming that . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This schematic has the same component values that were used in the simulation in the previous paper, 

except for the mutual inductance.  Power is powered by a  capacitor initially charged up to .  

The coupling coefficient is set to one, so that .  The following graph shows what happens 

with this perfect coupling.  It shows the currents flowing through the barrel coil (in black) and the 

armature (in red).  It also shows the voltage drop over the capacitor (in green). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The armature current is a nice single pulse.  The barrel coil current is nice, too.  It declines steadily from 

 to zero, with no overshoot.  Not so nice is the voltage over the capacitor.  The capacitor discharges 

very quickly, and then continues to charge up in the reverse direction, reaching twice the reverse voltage 

that it had originally.  This capacitor would have blown itself up after a few microseconds.  But, let's put 

that issue aside for now. 

 

If the barrel coil and armature were perfectly coupled, their mutual inductance would be 

.  During the simulation in the earlier paper, the mutual inductance 
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never got that high.  For much of the simulation, the mutual inductance was closer to .  (The mutual 

inductance was not constant because the armature was moving.)  This corresponds to a coupling 

coefficient   Re-running the LTSpice simulation of the above circuit with 

 gives the following waveforms. 

 

Not only is the energy not delivered in a single pulse, but the voltage to which the capacitor is subjected is 

simply outrageous. 

 

Revisiting the parameters of the barrel coil circuit 

 

It is possible that the source of the problem has more to do with the barrel coil than the armature.  It could 

be that the barrel coil was so badly chosen that it was unrealistic to expect that the armature could cope 

with it.  Let's start over, and see if it is possible to design a barrel coil which has less of a tendency to 

oscillate.  The restrictions I am going to impose are: 

1. The coil's length must be as close to one inch as possible, to match the length of the armature. 

2. The coil's inner diameter must be 2½ inches, as before, to suit the tube size. 

3. The circuit will still be controlled by an SCR with an on-resistance of . 

4. The capacitor will remain at . 

 

The only things we can vary are the number of layers of wire in the winding and the size of wire used.  I 

am going to prepare a Lua script to loop through some combinations of layers and wire sizes.  The figure 

of merit I will use to compare the outcomes is the ratio of time constants.  Equation  above was the 

condition which determines when the barrel coil, in isolation, will or will not oscillate.  Equation  can 

be re-stated in terms of time constants as follows.  The magic ratio is .  If the inductive time constant 

is less than one quarter of the capacitive time constant, the barrel coil by itself will not oscillate. 

 

 

 

I have attached as Appendix "A" a copy of the Lua script I used to prepare the data for the following two 

graphs.  The graphs show the time constant ratio on the left-hand side of Equation  with respect to 
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the number of layers in the winding (along the horizontal), with different curves for different wire gauges.  

There were too many wire gauges to show all in one graph, so I used two.  I have put a black dot on the 

spot which characterizes barrel coil #1 from the earlier paper, with eight layers of AWG #16 wire. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Barrel coil #1 used in the earlier paper has a time constant ratio of about  – it is no surprise to us now 

that the circuit oscillated.   

 

It is clear from the graph that the size of the wire (the different curves) has a much bigger impact on the 

ratio of time constants than does the number of layers (along the horizontal).  In fact, for smaller wire 

diameters, the ratio of time constants looks to be almost independent of the number of layers.  It is also 

obvious that the time constant ratios for the wire sizes shown in the graph above are far above the desired 

limit.  In order to get anywhere close to a time constant ratio of , smaller diameter wire must be used.  

The graph is continued below for smaller wire sizes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Equation  is not the only determinant of oscillatory behaviour, so the  value is not the end of the 

story, but it does look as if we are going to be stuck using wire gauges AWG #26 or higher. 

 

Value in earlier paper 

Value in following simulation 
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There are other issues we cannot ignore.  The ratio of the time constants is certainly important, but so too 

are the time constants themselves.  A time constant is a measure of how quickly a circuit responds.  The 

following graph shows the value of the -  time constant  for the four most suitable wire gauges.  

The horizontal axis is, once again, the number of layers.  The vertical axis, along which the time constants 

are measured, is labeled in seconds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The issue which is going to make this graph important is the speed of the armature.  Since the armature 

will be starting up from rest when it is under the influence of barrel coil #1, it will spend more time in and 

near barrel coil #1 than any of the other barrel coils further down the barrel.  As the armature picks up 

speed, it will spend less and less time under the influence of each successive barrel coil. 

 

The armature will probably remain under the influence of barrel coil #1 for no more than about three 

milliseconds, or  seconds.  (If it spends more time, it is not going very fast!)  In fact, if we are 

successful in designing the gun, the armature will spend only a few dozen microseconds under the 

influence of later coils.  This requirement is going to put an upper limit on how many layers we can put in 

the barrel coils. 

 

First numerical example 

 

At this point, I am going to re-group, and run another time simulation using a new barrel coil.  I will 

choose the properties of the barrel coil using the conclusions from the foregoing analysis.  I will use ten 

layers of AWG #28 wire.  The red dot in the previous two graphs marks this choice.  For this 

configuration, the ratio of time constants and the -  time constant are: 

 

 

 

Notice that I did not take the ratio of time constants all the way down to .  I stopped at  to leave a 

bit of oscillation so that the effects of other things can be observed later.  The circuit resistance and self-

inductance of barrel coil #1 which produce these time constants are: 

 

 

Value in following simulation 
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Both the resistance and self-inductance are much higher than they were in the earlier paper, where they 

were  and , respectively.   

 

For this time simulation, I will leave everything else unchanged, including the armature (two layers of 

AWG #10 wire), the capacitance ( ), its starting volatage ( ) and the armature's starting 

location (protruding one-half inch through the muzzle end of barrel coil #1).  I have made two 

administrative changes as well: (i) barrel coil #2 is disabled in this simulation, which therefore shows the 

effects of barrel coil #1 only, and (ii) the SCR in barrel coil #1's circuit is disabled, so the current can 

become negative if it wants to.  The following graphs show the results.  The first graph shows the current 

in barrel coil #1 (in black) and the current in the armature (in red).  It looks like the oscillation has been 

reduced to a single cycle, but not quite a single positive pulse.  The current through barrel coil #1 does 

wander slightly into negative territory, but not nearly so much as before.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The next graph shows the voltage drop over the capacitor (in black) and the force exerted on the armature 

(in blue).  The voltage, too, is much better than before, but still not good enough to prevent the capacitor's 

destruction.  Note that there is a period, from about two to three milliseconds, when the force on the 

armature is negative, slowing it down. 
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Second numerical example 

 

One of the conclusions we reached above is that a bigger capacitor is better.  This second numerical 

example is a repeat of the first numerical example, with the capacitance increased from  to .  

In order to make the change more realistic, I have reduced the initial voltage from  to 

.  This ensures that both examples start out with the same amount of stored energy – 

.  This change in capacitance will not change the -  time constant from the first example, but 

it will increase the -  time constant by a factor of about four.  Taken together, the change will reduce 

the time constant ratio by a factor of about four, from  to about one-half.  The new values are: 

 

 

 

The following two graphs show the results for this example, in the same format as the first one. 
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Because the time constant ratio is still greater than , we would expect to see, and do see, a bit of 

oscillation remaining.  Both the barrel coil's current and the capacitor's voltage make only minor 

excursions into negative territory. 

 

Terminating this line of analysis 

 

I have decided to end this line of analysis.  In this paper, I have been trying to choose the values of the  

components in a barrel coil circuit in such a way that the response is not oscillatory.  The basic problem is 

the tendency of energy to cycle back and forth between the capacitor and the inductor. 

 

It occurs to me that there is another way to stop current from carrying energy back to the capacitor.  

Diodes permit current to flow only one way.  A diode placed in series with the capacitor would not be 

enough, since it would not prevent the capacitor from charging up in the reverse direction during the first 

half-cycle of operation.  But a diode placed in parallel across the capacitor could bypass current around 

the capacitor and prevent it from reverse-charging 

 

I am going to examine this in the next paper. 

 

   

 

 

 

 

Jim Hawley 

© June 2015 

 

If you found this description helpful, please let me know.  If you spot any errors or omissions, please send 

an e-mail.  Thank you. 
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Appendix "A" 

 

Listing of Lua script to calculate time constant ratios 

 
-- Important variables related to the simulation process 
MaxMeshSize = 0.01  -- Maximum FEMM triangle size 
MaxResidual = 1E-8  -- Maximum FEMM residual for convergence test 
 
-- Definition of Groups 
-- Group(9) is the air 
-- Group(1) is barrel coil #1 
 
-- ALL DIMENSIONS ARE IN INCHES UNLESS A SUFFIX STATES OTHERWISE 
 
-- Specify target length for the coil.  The number of turns will be calculated. 
BCoilTargetLength = 1 
 
-- Specify the z-location of the negative end of the coil. 
BCoilNegEndZ = 0 
 
-- Specify the inner and outer diameters of the barrel tube 
TubeOuterDiam = 2.5 
TubeOuterRad = TubeOuterDiam / 2 
 
-- Specify the capacitance 
Capacitance = 0.000032 
  
-- Specify the dimensions of the bounding air spheres 
AirLocalRad = 8 
AirExtDiam = 1 
 
--/////////////////////////////////////////////////////////////////////////////////// 
--// Open a text file for output and write a short header 
--/////////////////////////////////////////////////////////////////////////////////// 
handle = openfile("./Barrel_coil_parameters.txt","a") 
write(handle,"\nBarrel coil parameters:\n") 
write(handle,"  FEMM maximum mesh size = ",MaxMeshSize,"\n") 
write(handle,"  FEMM maximum residual = ",MaxResidual,"\n") 
write(handle,"  Capacitance = ",Capacitance,"\n") 
 
--/////////////////////////////////////////////////////////////////////////////////// 
--// This is the main loop through the ranges of parameters 
--/////////////////////////////////////////////////////////////////////////////////// 
for AWGGauge = 12,32 do 
    for NumLayers = 2,30,2 do 
   
        newdocument(0)      -- New magnetics problem 
        mi_probdef(0,'inches','axi',MaxResidual,0,30) -- Axisymmetric, in inches 
        mi_grid_snap('off')     -- Do not snap to a grid 
 
        -- Set the parameters of the enameled copper wire used to wind the coil 
        if (AWGGauge == 1) then  
            WireExtDiamMM = 7.496 
            WireBareDiamMM = 7.348 
        end 
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        if (AWGGauge == 2) then 
            WireExtDiamMM = 6.690 
            WireBareDiamMM = 6.543 
        end 
        if (AWGGauge == 3) then 
            WireExtDiamMM = 5.971 
            WireBareDiamMM = 5.827 
        end 
        if (AWGGauge == 4) then 
            WireExtDiamMM = 5.330 
            WireBareDiamMM = 5.189 
        end 
        if (AWGGauge == 5) then 
            WireExtDiamMM = 4.757 
            WireBareDiamMM = 4.620 
        end 
        if (AWGGauge == 6) then 
            WireExtDiamMM = 4.246 
            WireBareDiamMM = 4.115 
        end 
        if (AWGGauge == 7) then 
            WireExtDiamMM = 3.790 
            WireBareDiamMM = 3.665 
        end 
        if (AWGGauge == 8) then 
            WireExtDiamMM = 3.383 
            WireBareDiamMM = 3.264 
        end 
        if (AWGGauge == 9) then 
            WireExtDiamMM = 3.023 
            WireBareDiamMM = 2.906 
        end 
        if (AWGGauge == 10) then 
            WireExtDiamMM = 2.703 
            WireBareDiamMM = 2.588 
        end   
        if (AWGGauge == 11) then 
            WireExtDiamMM = 2.418 
            WireBareDiamMM = 2.304 
        end 
        if (AWGGauge == 12) then 
            WireExtDiamMM = 2.163 
            WireBareDiamMM = 2.052 
        end 
        if (AWGGauge == 13) then 
            WireExtDiamMM = 1.934 
            WireBareDiamMM = 1.829 
        end 
        if (AWGGauge == 14) then 
            WireExtDiamMM = 1.732 
            WireBareDiamMM = 1.628 
        end 
        if (AWGGauge == 15) then 
            WireExtDiamMM = 1.549 
            WireBareDiamMM = 1.450 
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        end 
        if (AWGGauge == 16) then 
            WireExtDiamMM = 1.384 
            WireBareDiamMM = 1.290 
        end 
        if (AWGGauge == 17) then 
            WireExtDiamMM = 1.240 
            WireBareDiamMM = 1.151 
        end 
        if (AWGGauge == 18) then 
            WireExtDiamMM = 1.110 
            WireBareDiamMM = 1.024 
        end 
        if (AWGGauge == 19) then 
            WireExtDiamMM = 0.993 
            WireBareDiamMM = 0.912 
        end 
        if (AWGGauge == 20) then 
            WireExtDiamMM = 0.892 
            WireBareDiamMM = 0.813 
        end 
        if (AWGGauge == 21) then 
            WireExtDiamMM = 0.800 
            WireBareDiamMM = 0.724 
        end 
        if (AWGGauge == 22) then 
            WireExtDiamMM = 0.714 
            WireBareDiamMM = 0.643 
        end 
        if (AWGGauge == 23) then 
            WireExtDiamMM = 0.643 
            WireBareDiamMM = 0.574 
        end 
        if (AWGGauge == 24) then 
            WireExtDiamMM = 0.577 
            WireBareDiamMM = 0.511 
        end 
        if (AWGGauge == 25) then 
            WireExtDiamMM = 0.516 
            WireBareDiamMM = 0.455 
        end 
        if (AWGGauge == 26) then 
            WireExtDiamMM = 0.462 
            WireBareDiamMM = 0.404 
        end 
        if (AWGGauge == 27) then 
            WireExtDiamMM = 0.419 
            WireBareDiamMM = 0.361 
        end 
        if (AWGGauge == 28) then 
            WireExtDiamMM = 0.373 
            WireBareDiamMM = 0.320 
        end 
        if (AWGGauge == 29) then 
            WireExtDiamMM = 0.338 
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            WireBareDiamMM = 0.287 
        end 
        if (AWGGauge == 30) then 
            WireExtDiamMM = 0.307 
            WireBareDiamMM = 0.254 
        end 
        if (AWGGauge == 31) then 
            WireExtDiamMM = 0.275 
            WireBareDiamMM = 0.226 
        end 
        if (AWGGauge == 32) then 
            WireExtDiamMM = 0.247 
            WireBareDiamMM = 0.203 
        end 
        BCoilWireExtDiamMM = WireExtDiamMM 
        BCoilWireBareDiamMM = WireBareDiamMM 
        BCoilWireExtDiam = BCoilWireExtDiamMM / 25.4  
        BCoilWireBareDiam = BCoilWireBareDiamMM / 25.4 
 
        -- Calculate the length of the coil.  This is the integral number of 
        -- turns of the wire used which best approximates the target length.  
        BCoilNumTurns = floor(0.5 + (BCoilTargetLength / BCoilWireExtDiam)) 
        BCoilActualLength = BCoilNumTurns * BCoilWireExtDiam 
 
        -- Define all nodes for the surrounding air, in Group(9) 
        mi_addnode(0,AirLocalRad)    -- Top of local sphere 
        mi_addnode(0,-AirLocalRad)    -- Bottom of local sphere 
        mi_addnode(0,AirLocalRad + AirExtDiam)  -- Top of external sphere 
        mi_clearselected() 
        mi_selectnode(0,AirLocalRad) 
        mi_selectnode(0,-AirLocalRad)  
        mi_selectnode(0,AirLocalRad + AirExtDiam) 
        mi_setnodeprop('',9) 
 
        -- Clarify the (r,z) co-ordinates of the four corners of the windings of 
        -- the barrel coil.  It is wound directly on the tube's outer surface. 
        BCoilInnerRad = TubeOuterRad 
        BCoilOuterRad = BCoilInnerRad + (NumLayers * BCoilWireExtDiam) 
        BCoilPosEndZ = BCoilNegEndZ + BCoilActualLength 
 
        -- Define all nodes for the barrel coil. 
        mi_addnode(BCoilInnerRad,BCoilPosEndZ)  -- Top inside corner 
        mi_addnode(BCoilOuterRad,BCoilPosEndZ)  -- Top outside corner 
        mi_addnode(BCoilOuterRad,BCoilNegEndZ)  -- Bottom outside corner 
        mi_addnode(BCoilInnerRad,BCoilNegEndZ)  -- Bottom inside corner 
        mi_clearselected() 
        mi_selectnode(BCoilInnerRad,BCoilPosEndZ) 
        mi_selectnode(BCoilOuterRad,BCoilPosEndZ) 
        mi_selectnode(BCoilOuterRad,BCoilNegEndZ)  
        mi_selectnode(BCoilInnerRad,BCoilNegEndZ)  
        mi_setnodeprop('',1) 
 
        -- Define all line segments for the surrounding air, in Group(9) 
        -- There are two line segments: 
        -- 1. From the bottom of the local sphere to the top of the local sphere 
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        -- 2. The diameter line across the external sphere 
        mi_addsegment(0,-AirLocalRad,0,AirLocalRad) 
        mi_addsegment(0,AirLocalRad,0,AirLocalRad+AirExtDiam) 
        mi_clearselected() 
        mi_selectsegment(0,AirLocalRad-0.1) 
        mi_selectsegment(0,AirLocalRad+0.1) 
        mi_setsegmentprop('',0,1,0,9) 
 
        -- Define a periodic boundary condition 
        mi_addboundprop('PeriodicBC',0,0,0,0,0,0,0,0,4) 
 
        -- Define all arcs for the surrounding air, in Group(0) 
        -- There are two arcs: 
        -- 1. Enclosing the local sphere 
        -- 2. Enclosing the external sphere 
        mi_addarc(0,-AirLocalRad,0,AirLocalRad,180,1) 
        mi_addarc(0,AirLocalRad,0,AirLocalRad+AirExtDiam,180,1) 
        mi_clearselected() 
        mi_selectarcsegment(AirLocalRad,0) 
        mi_selectarcsegment(AirExtDiam/2,AirLocalRad+(AirExtDiam/2)) 
        mi_setarcsegmentprop(1,'PeriodicBC',0,9) 
 
        -- Define all line segments for the barrel coil 
        mi_addsegment(BCoilInnerRad,BCoilPosEndZ,BCoilOuterRad,BCoilPosEndZ) 
        mi_addsegment(BCoilOuterRad,BCoilPosEndZ,BCoilOuterRad,BCoilNegEndZ)  
        mi_addsegment(BCoilOuterRad,BCoilNegEndZ,BCoilInnerRad,BCoilNegEndZ) 
        mi_addsegment(BCoilInnerRad,BCoilNegEndZ,BCoilInnerRad,BCoilPosEndZ) 
        mi_clearselected() 
        mi_selectsegment(BCoilInnerRad+0.001,BCoilPosEndZ) 
        mi_selectsegment(BCoilOuterRad,BCoilPosEndZ-0.001)  
        mi_selectsegment(BCoilOuterRad-0.001,BCoilNegEndZ) 
        mi_selectsegment(BCoilInnerRad,BCoilNegEndZ+0.001) 
        mi_setsegmentprop('',0,1,0,I) 
 
        -- Define a block label for the air, in Group(9) 
        CentroidRLocal = 0.25 
        CentroidZLocal = AirLocalRad - 0.25 
        mi_addblocklabel(CentroidRLocal,CentroidZLocal) 
        CentroidRExt = 0.25 
        CentroidZExt = AirLocalRad + (AirExtDiam/2) 
        mi_addblocklabel(CentroidRExt,CentroidZExt) 
        mi_clearselected() 
        mi_selectlabel(CentroidRLocal,CentroidZLocal) 
        mi_selectlabel(CentroidRExt,CentroidZExt) 
        mi_getmaterial('Air') 
        mi_setblockprop('Air',0,0,0,0,9,0) 
 
        -- Describe the external region as a Kelvin transformation 
        mi_defineouterspace(AirLocalRad+(AirExtDiam/2),AirExtDiam/2,AirLocalRad) 
 
        -- Define new materials for the enameled copper wire being used 
        -- Relative permeability in r-direction = 1 
        -- Relative permeability in z-direction = 1 
        -- Permanent magnet coercivity = 0 
        -- Applied source current density = 0 
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        -- Electrical conductivity = 58 MS/m for copper wire 
        -- Lamination thickness = 0 
        -- Hysteresis lag angle = 0 
        -- Lamination fill fraction = 1  
        -- Lamination type = 3 (This code identifies magnet wire) 
        -- Hysteresis lag angle in the x-direction = 0 
        -- Hysteresis lag angle in the y-direction = 0 
        -- Number of strands in wire = 1 
        -- Diameter of wire (in millimeters) has already been specified above 
        mi_addmaterial("BCoilWire",1,1,0,0,58,0,0,1,3,0,0,1,BCoilWireExtDiamMM) 
 
        -- Define block labels for the barrel coil. 
        Current = 100 
        CentroidR = (BCoilInnerRad + BCoilOuterRad) / 2 
        CentroidZ = (BCoilPosEndZ + BCoilNegEndZ) / 2 
        mi_addcircprop("BCoil",Current,1) 
        mi_addblocklabel(CentroidR,CentroidZ) 
        mi_clearselected() 
        mi_selectlabel(CentroidR,CentroidZ) 
        TotalNumTurns = NumLayers * BCoilNumTurns 
        mi_setblockprop("BCoilWire",0,MaxMeshSize,"BCoil",0,1,TotalNumTurns) 
 
        --/////////////////////////////////////////////////////////////////////////// 
        --// Now that the geometry has been specified, we can save the construction 
        --// in a temporary file which will be a sister file to this Lua script. 
        --// Then, we can get ready to do some analysis. 
        --/////////////////////////////////////////////////////////////////////////// 
        mi_saveas("./temp.fem")  -- Save the geometry 
        main_maximize()   -- Maximize the main FEMM window 
        mi_zoomnatural()   -- Zoom the display for the best fit  
        showconsole()   -- Show the Lua output window 
        clearconsole()   -- Clear the Lua output window 
        mi_seteditmode("group")  -- Make edits such as translation by Group 
 
        --/////////////////////////////////////////////////////////////////////////// 
        --// Analyze the barrel coil 
        --/////////////////////////////////////////////////////////////////////////// 
        mi_analyze() 
        mi_loadsolution() 
        -- val1=current, val2=voltage and val3=flux 
        val1,val2,val3 = mo_getcircuitproperties("BCoil") 
        BCoilRfemm = val2 / val1  -- Ohmic resistance 
        BCoilLfemm = val3 / val1  -- Self-inductance 
  
        --/////////////////////////////////////////////////////////////////////////// 
        --// Calculate the time constants 
        --/////////////////////////////////////////////////////////////////////////// 
        BCoilRtotal = BCoilRfemm + 0.02 
        TC_RL = BCoilLfemm / BCoilRtotal 
        TC_RC = BCoilRtotal * Capacitance 
        TC_Ratio = TC_RL / TC_RC 
  
        -- Display the interim results in the Lua window 
        print("NumLayers=",NumLayers, "  AWG=",AWGGauge) 
        print("TC_Ratio=",TC_Ratio) 
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        -- Write the results to the file 
        write(handle,"AWGGauge=,",AWGGauge,",") 
        write(handle,"NumLayers=,",NumLayers,",") 
        write(handle,"Rotal=,",BCoilRtotal,",") 
        write(handle,"L(uH)=,",BCoilLfemm*1000000,",") 
        write(handle,"TC_RL(s)=,",TC_RL,",") 
        write(handle,"TC_RC(s)=,",TC_RC,",") 
        write(handle,"TC_Ratio=,",TC_Ratio,"\n") 
 
        mo_close() 
        mi_close() 
    end 
end 
 
-- Close out the Lua program 
closefile(handle) 
messagebox("All done.") 


