
~ 1 ~

Placing bypass diodes across the capacitors

The following snippet of a schematic shows the modification I will examine in this paper. This is the

circuit for a single barrel coil, say, barrel coil #1. The SCR which completes the circuit is assumed to

close at time . The armature and other barrel coils are being ignored entirely. With one exception,

this is the same - - circuit I looked at in the previous paper, titled Selecting barrel coils for an

induction coil gun. The exception is the diode now wired across the capacitor.

As before, the circuit starts up from rest, powered by the initial voltage over the capacitor. Being

reverse biased, diode does not do anything during at first. The capacitor forces current through the

barrel coil, whose self-inductance is and whose Ohmic resistance constitutes almost all of the series

resistance in the circuit. The current is the aggregate motion of electrons escaping from the capacitor.

Depending on the relative values of , and , the circuit (without the diode) exhibits two types of

behaviour. In one type (the "non-oscillatory" response), the current rises exponentially up to some peak

value and then decays exponentially back down to zero. If that happens, diode never does anything at

all. The other type of response (called the "oscillatory" response), is a sinusoid, with a twist. The twist is

that the amplitude of the sinusoid first rises exponentially and then decays exponentially. Except when

the component values are pretty close to those of a non-oscillatory case, the sinusoidal nature of current

means that it will cycle back and forth between positive and negative values. This corresponds to energy

flowing from the capacitor to the inductor (when is positive) or flowing from the inductor back into the

capacitor (when is algebraically negative). There is nothing unusual about that. The capacitor stores

energy in an electrostatic field which is generated by electric charges stored on its internal plates. The

inductor stores energy in an magnetostatic field which is generated by electric current flowing through the

turns in the coil. Energy can be converted from one type to the other, and it is the flow of current from

one device to the other which carries the energy. Resistance uses up some of the energy as current

flows through it, in either direction. The resistor grabs some of the electrical energy from the passing

current, and converts it into another form of energy which is useless in this application: heat.

The addition of the diode completely changes the oscillatory response. It does two things. It prevents the

capacitor from discharging more than its original charge. And it prevents the capacitor from accepting

any current the inductor might wish to send back to it. Since there are now two pathways for the current,

it is necessary to identify two different currents, and , as is done here.

~ 2 ~

For the time being, I am going to assume that diode is "ideal". When it is reverse-biased, it completely

blocks the flow of current in the reverse direction (from top to bottom in the schematic). When it is

forward-biased, it offers no resistance to the flow of current in the forward direction. Real diodes are not

ideal, but the imperfection is small enough that it is not worth taking into account here. In the section

below extending the concept to multiple barrel coils, I will include a small voltage drop that captures most

of the non-ideality.

The current which flows through resistance and inductance is the sum . I am using

subscripts " " and " " for the currents flowing through the diode branch and the capacitor branch,

respectively, rather than " " and " ", for example, to ensure that there is never any confusion between

currents flowing in barrel coil #1 and barrel coil #2.

It happens, though, that currents and never flow together. Current flows through the diode, or

through the capacitor, but not both. It is either one branch or the other. That means that the circuit will

have two different modes of operation. I will call the two modes "reverse-biased" and "forward-biased",

distinguished by the voltage drop over the diode.

When the diode is reverse-biased, the capacitor has a non-zero positive voltage. In fact, it is the positive

voltage drop over the capacitor which keeps the diode reverse-biased. In this mode, no current flows

through the diode and the circuit equation is exactly the same as in the earlier paper.

When the diode is forward-biased, the voltage drop over the capacitor will be zero. The current prefers to

flow through the diode, which offers no resistance, than to flow "uphill" over the energy barrier which

stored charge in the capacitor would represent. (A real diode does not have zero resistance, of course, but

the resistance is small enough that the total voltage drop is only a volt or two.) Since there is no voltage

drop over the diode or the capacitor, the inductance and resistance are the only meaningful components.

The circuit equation reduces to

The two circuit equations apply over different periods of time, with Equation governing the

behaviour when the circuit first starts up. As was done in the earlier papers, a two-pronged attack can be

made on the first differential equation. First a variable substitution using the definition of current as

the negative rate-of-change of the charge stored in the capacitor. And then a differentiation. After a bit

of re-arrangement, it becomes:

I have taken the liberty of substituting the two time constants: and . The

characteristic equation and its two roots are:

~ 3 ~

If the argument of the square root is negative, the roots will be complex conjugates. Physically, the

current will include sinusoidal components. This is the case we are interested in. (If the argument of the

square root is positive, there will be two real roots, a single current pulse and no need for the diode.) In

the sinusoidal case, the roots of the characteristic equation can be used to write down the expression for

the charge stored in the capacitor as follows:

We can use the definition of current in terms of the charge to work out an expression for .

I am not going to bother doing the algebra. It is clear from Equation that the waveform of the current

has the same structure as the waveform of the charge, namely, a combination of sinusoids at a certain

frequency, multiplied by an exponential decay. If we were to re-arrange Equation we would come up

with the following expression, in which constant coefficients and would be complicated

combinations of and :

The reason I did not do the algebra to nail down the expressions for and is that I am going to evaluate

them directly from the circuit's initial conditions. We know the circuit starts up from rest, with at

time . Substituting into both sides of Equation tells us that:

~ 4 ~

That was easy enough. The second initial condition involves the first derivative of the current. Setting

 in Equation and differentiating, we get:

The second initial condition, which is also obtained from the conditions which exist at time , is

based on the observation that the voltage drop over the coil at that instant is equal to the voltage drop over

the capacitor. Since no current is flowing at time , there cannot be any voltage drop over the

resistor. However, we know the relationship which exists between the voltage drop over the coil and the

rate-of-change of the current through it. It is this:

and at time , this becomes:

We can substitute Equation for the derivative, and evaluate it at time , to get:

Note that we can divide by the square root only if it is not zero. If it was zero, we would have to do

something else. Subject to that limitation, the capacitor-driven current can be written as:

The important question is not: when does this current become zero? Rather, the important question is:

when will the voltage drop over the capacitor become zero? That marks the point when the diode

becomes forward-biased. When that happens, differential equation will stop being the one that

~ 5 ~

describes the circuit's behaviour. The other differential equation, Equation , will take over control at

that point. And, at that point, current will still be flowing; it will not be zero. In fact, the transition

point could very well happen when current is at or near its peak value.

Look at the schematic. When the voltage drop over the capacitor is zero, the voltage drop over the

resistor (which Ohm's Law tells us is) must be exactly equal and opposite to the voltage drop over

the inductor (which is equal to). Let's call this transition time the "stopping time" . We

already have expressions for and and can substitute them into the required equality. Using the

coefficient once again just for notational ease, the equality at the stopping time is:

Collecting terms and simplifying gives:

I have not taken the next logical step (yet), which is to divide both sides by the cosine term to yield a

tangent term on the left-hand side. I do not want to lose sight of the quadrant in which the argument (an

angle) lies. I also do not want to get fouled up by cases when the argument happens to be zero.

This whole section (the oscillatory response) is based on the assumption that , which

ensures that the argument of the trigonometric terms is strictly positive. Equation will hold true only

if the sine term on the left-hand side has the opposite algebraic sign as the cosine term on the right-hand

side. The argument must therefore be in either Quadrant 2 or Quadrant 4 of the complete circle. Subject

to more information becoming available, both alternatives are equally valid.

In fact, Equation generates lots more possible values for the stopping time. The trigonometric terms

are periodic, and each period generates two possibilities. If a certain value of the argument in Equation

 gives one stopping time, then that value of the argument, plus , will give another, and so on.

~ 6 ~

Fortunately, we can exclude all of these possibilities except for the smallest value of the stopping time.

The smallest value of stopping time is the one that will occur first in time. Once it occurs, the circuit

will transition into diode-control and the higher values of will simply not be relevant.

The way to proceed with Equation is to use the following identities for sine and cosine:

Substituting these into Equation gives:

This expression will pick out the lowest value of the stopping time.

Comparing the stopping time to the time of peak current.

I am going to use the symbol for the instant in time when the current peaks. At this juncture, it is not

clear whether the peak time will occur before or after the stopping time. To allow for either outcome, I

will mentally remove the diode. Equation is the derivative of the current. Since we now know the

value of coefficient , we could if we wanted substitute it into Equation . I won't do that; it is more

convenient for the algebra to leave it in place. The current will peak at the moment when its time-

derivative is zero. Evaluating Equation at this moment gives:

and, continuing:

~ 7 ~

The expressions for the stopping time and the peak time are very similar. They can be combined to

give:

The stopping time can occur before or after the peak time. The two times can also be equal, in which

case:

The behaviour of the circuit once the diode takes control

After the stopping time, the diode clamps the voltage drop over the capacitor to zero. The differential

equation which describes the circuit thereafter is Equation , which can be written using the - time

constant as:

This is a straight-forward exponential decay, with the solution:

The initial condition which we can use to compute the unknown coefficient is easy to state. The value

of the current at which the diode-driven phase of the response begins must be equal to the value of the

current at which the capacitor-driven phase ends. We can calculate using Equation the stopping

time at which the handover occurs. Substituting that stopping time into Equation will give use

the current flowing through the resistor and the inductor at the instant of transition. Substituting that

value for the current into Equation will allow us to solve for constant coefficient . The algebra to

do this is pretty messy, and I will not do it.

If we were integrating numerically, the transition is even easier to manage. We simply make a note of the

current at the end of the time step in which the capacitor's voltage goes negative. That becomes the

starting current for the exponential decay described by Equation .

~ 8 ~

Maximizing the transfer of energy from the capacitor to the inductor

In general, the current flowing through the coil will look something like this. Prior to the stopping time,

there will be some type of rising waveform. The current may or may not reach a peak before the stopping

time . After the stopping time, the current will decay to zero.

After the stopping time, the curve is an exponential decay, as the inductor "discharges" through the diode

and resistor combination. One can think of the stopping time as the moment when the capacitor has

finished transferring out its initial energy. Some will have burned off in the resistor as heat, but the rest is

now stored in the coil's magnetic field. In a sense, the capacitor "charges up" the inductor during the first

phase of the response.

It might make sense to set as a goal the task of maximizing the amount of energy which is transferred into

the inductor by the stopping time. Once the inductor has all the energy, or as much as it can get, it can

bleed it out as it accelerates the armature. Maximizing the energy the inductor gets is tantamount to

minimizing the amount that is burned off as heat. If the transfer of energy happens too fast, the current

will be higher than necessary and the resistor, which burns off energy at the rate , burns off too much.

If the tranfer happens too slowly, the current will be less but it will flow for longer than necessary.

Since we are ignoring the armature altogether, we know that the amount of magnetic energy that will be

stored in the inductor at the stopping time is equal to:

I am not happy that the inductance appears unaccompanied in the expression. We should be able to

remove the explicit dependence if we re-state the leading coefficient in terms of the initial energy stored

inside the capacitor. To do this, we are going to use the basic energy relationship for capacitors. The

capacitor's initial energy can be written as:

time

current

~ 9 ~

and Equation reduces to:

This is the fraction of the capacitor's initial energy which resides in the inductor's magnetic field

at the stopping time . We want to maximize this fraction. I am going to do so graphically rather than

analytically.

For this purpose, it is convenient to re-write Equation so that the stopping time is expressed as a

fraction of the - time constant, thus:

This way, the stopping time fraction depends on only a single dimensionless number, the ratio of the two

time constants, . The following graph shows Equation .

Generally speaking, we are going to want the stopping time to be a small fraction of the - time

constant . The current will decay with time constant and, if things are well-matched, the

armature will remain near the barrel coil for just a few of these time constants. We will want to

"charge up" the barrel coil in a fraction of that time, perhaps one-tenth or less. So, we are going to be

~ 10 ~

looking for in the range of to or thereabouts. From the graph, it looks like this ratio

 can be made as small as one wants, by picking an arbitrarily big time constant ratio. That's true.

With the stopping time ratio now determined, we can substitute it into Equation to find the

fraction of initial energy transferred into the inductor. Here is the corresponding graph of Equation .

From this graph, it looks like the energy transfer ratio can be made as large as one wants (up to one, or

100%), also by picking an arbitrarily big time constant ratio. That's also true.

First numerical example

I am going to pause here to work through a numerical example. I am going to begin with the

capacitor I used in the earlier papers. With the capacitance fixed at this value, I am going to use FEMM

to build (virtually) a few coils using the characteristics of standard enameled copper wire. FEMM can

calculate the Ohmic resistance and self-inductance of each coil. As before, I will assume that the Ohmic

resistance of the winding comprises most of the resistance around the circuit, and that the SCR which

controls when the circuit turns on adds an extra to the total resistance in the circuit. An implicit

assumption here is that the equivalent series resistance of the capacitor is negligible compared with that of

the winding.

The first of the following two graphs is a plot of the stopping time, in seconds. The horizontal axis is the

number of layers in the winding, which ranges from two to 30. There is a separate curve for each

different wire gauge. I have cut the top of the graph at stopping times of one millisecond, assuming that

we will be more interested in "charging up" the inductor in times shorter than that. Generally, wires with

a larger diameter (and smaller AWG gauge numbers) make the charging quicker. Fewer layers in the

winding also makes the charging quicker.

The second of the following two graphs is the energy transfer ratio for these same gauges and numbers of

layers. Note that the legend for the curve colors is now upside down – larger diameter wires exhibit better

energy transfer.

~ 11 ~

I am going to validate these conclusions by preparing a small LTSpice model. For this purpose, I am

going to use as an example a barrel coil with ten layers of AWG #10 wire. This configuration is marked

by a black dot in the two previous graphs. The FEMM analysis showed that this coil has an Ohmic

resistance of (so, a circuit resistance of) and a self-inductance of . The

following LTSpice schematic shows the circuit to be simulated.

I should say a couple of words about how the diode is represented. My library of LTSpice components

does not include an ideal diode. Nor do I want to get sidetracked selecting a real diode. Instead, I have

modeled the diode as a voltage-controlled switch. Switch will close when the voltage over its and

 terminals exceeds . Note that this threshold voltage drop is opposite in sense to the initial

~ 12 ~

voltage drop over the capacitor. In other words, the capacitor will have to have a small reverse voltage

() before the diode is goaded into its conduction mode. Since LTSpice does not permit switches

to have exactly zero resistance, I have set it to something very small, . The voltage

source represents the voltage drop over the diode once it does begin to conduct.

The simulation resulted in the following waveforms. The black curve is the current flowing through the

resistor and inductor. It has the expected shape. The red curve is the voltage drop over the capacitor,

which falls to zero and stays there. To be more precise, the voltage drop over the capacitor falls to

 and stays there.

There are a couple of more things that we can say from this graph. The stopping time is about

, just what we would expect from the position of the black dot in the top graph on page

11. We can also confirm the energy transfer ratio of this configuration. The current flowing at the

stopping time is about , so the energy contained in the inductor's magnetic field is about:

~ 13 ~

This is of the initially stored in the capacitor, just what we would expect

from the position of the black dot in the bottom graph on page 11.

What changes are needed to extend this concept to multiple barrel coils?

The earlier paper titled Using FEMM to design an inductance coil gun set out the basic analysis of a

multiple-coil induction coil gun. The Lua script attached to that paper simulated the firing of a five-coil

gun. Both the analysis and the Lua script were based on barrel coils which were simple - - circuits.

In this section, I want to highlight the changes which are necessary to accommodate bypass diodes in the

barrel coils' circuits.

In the earlier paper, the circuit equations were organized into matrix form, with one row in the matrix for

each coil in the gun, including the armature. A coil gun with five barrel coils (all operating), will have a

matrix with six rows. Each row corresponds to the circuit equation governing the operation of that row's

corresponding circuit. Each circuit also contributed one independent variable to the system.

The use of bypass diodes is restricted to barrel coils. The armature does not have a bypass diode. The

armature's circuit will operate in exactly the same way it did before. There will be no change to the

armature's circuit equation or to its row in the matrix equation.

Next, consider any barrel coil whose circuit is operating in the reverse-biased mode. The circuit equation

for that mode is the same as it was in the earlier paper. It follows that there will be no change to the row

in the matrix equation which corresponds to a barrel coil operating in its reverse-biased mode.

There will only be changes to the rows in the matrix equation which correspond to coil circuits in which

the diode is forward-biased and conducting. To see what happens, I am going to re-state here the matrix

equation as it stands if barrel coils #1, #2 and #3 are operating in their reverse-biased modes. The

following equation is Equation from the earlier paper. Recall that is the speed of the armature and

that is the partial derivative which measures the rate at which the mutual inductance between

the armature and barrel coil # changes with changes in the axial position of the armature.

Take barrel coil # as an example. The third row in the matrix equation is the circuit equation for this

coil. The third row by itself is:

~ 14 ~

The very last term is equal to the voltage drop over capacitor in the circuit of barrel coil # .

This equation is the multiple-coil counterpart of circuit equation above. (Recall that current is

equal by definition to .)

Equation will govern the behaviour of barrel coil # 's circuit from the time the circuit is closed,

during the time capacitor discharges, all the way down through the point when the charge and voltage

are zero , and then just a little bit more. When the voltage drop over the capacitor reaches

the threshold voltage of the diode (in the LTSpice schematic above), the diode will take over.

It will clamp the voltage drop to , where it will stay. Now, is representative of the

real diodes we will use, but just to keep all quantities in parametric form I will use the symbol for

the forward-biased voltage drop over the diode in barrel coil # 's circuit. will always be

algebraically positive.

Once the diode kicks in, the circuit equation will be:

The transition from Equation to Equation will occur at the instant in time (or during the time

step) when the charge stored in capacitor reaches the following negative value:

That moment in time (or time step) when the transition occurs is the stopping time, as described above.

The changes to the matrix equation can be summarized quite simply:

1. As long as , there is no change at all in how the third row is handled.

2. Once falls to , it will stay there. (The operation of the diode keeps it there.)

The Lua script which is listed in Appendix "A" below includes this modification for all five barrel coils.

Second numerical example

In this section, I want to do a time simulation using the new Lua script. I will only fire up barrel coil #1.

It goes without saying that I want an efficient transfer of energy from the capacitor to the inductor. But, I

want to impose another restriction as well.

Take a look at the waveforms of current and voltage in the middle of page 12. They are the result of an

LTSpice simulation for a barrel coil chosen pretty much at random. The coil current peaks at about

, which is good. What's not so good is the length of time it takes the current to decay

thereafter. Even after ten milliseconds, the current is still about . I am hoping the armature

will be long gone from barrel coil #1 ten milliseconds after firing.

Suppose we set a goal to have the current substantially reduced within three milliseconds. We want barrel

coil #1 to have completed its work within three milliseconds. Equation above is the shape of the

current's waveform after the diode begins to conduct. It is a straight-forward exponential decay with a

~ 15 ~

time constant of . One of the rules-of-thumb for exponential decay is that the decay is almost

complete after five time constants. To achieve this goal, the - time constant needs to be approximately

 seconds.

Suppose we set a second goal, that the stopping time should be one-tenth of the overall time during which

barrel coil #1 is "active". Then, the stopping time should be about seconds.

The ratio of the stopping time and the - time constant is then:

There is a unique value of time constant ratio which corresponds to this stopping time ratio. We can find

it by looking at the graph at the bottom of page 9. Or, we can find it analytically by solving Equation

. Doing the work analytically, we get:

With this time constant ratio, we can see from the energy transfer graph above (page 10) that just over

60% of the capacitor's initial energy will be transferred into the inductor by the stopping time.

Since the - time constant is seconds, Equation tells us that the - time constant must be

about seconds, or microseconds.

If we use a capacitor, then a - time constant requires a circuit resistance of

. With this resistance, a - time constant requires a self-

inductance of . The coil we need must have an Ohmic

resistance of (don't forget the SCR) and a self-inductance of . I have looked through the

output from the FEMM program which produced the data for the graphs on page 11, which print the

resistance and inductance, too, and do not see a suitable candidate. The following table sets out the

characteristics of the coils which are closest to the one required.

AWG gauge Number of layers

#21 6

#22 4

#23 4

#24 2

#25 2

#26 2

~ 16 ~

Up to this point, I have only tested even numbers of layers, and I have not considered (and will not

consider) partial layers in the winding. Nor do I intend to consider mixing wire sizes in a winding. To

see the additional possibilities, I re-ran the FEMM analysis for odd numbers of layers. The following

graph shows the range of possibilities which exists. This is a scatter graph, with a coil's inductance on the

vertical axis and the corresponding circuit resistance along the horizontal. This is the complete set of

possibilities, which is to say, that these (few) points are the only choices available for wire gauges from

AWG #18 to AWG #32 and between one and eight layers in the winding. All the other coils have

resistances or inductances outside of the ranges shown in the graph.

The square black dots correspond to coils wound using odd AWG gauges. I have elected to exclude those

points from further consideration (hard to buy, and therefore expensive). I am going to focus only on the

three possibilities which remain, which can be wound from the more common sizes AWG #22 and AWG

#24. For these three possibilities, I am going to reverse the earlier analysis and determine the time

constants to which they give rise.

AWG Layers

#22 4 1.313 1530 1170 0.0059 42.0 27.9 371

#24 2 1.199 572 477 0.0024 38.4 12.4 234

#24 3 1.804 1287 713 0.0035 57.7 12.4 350

It looks like the coil in the last row is closest to our goals. I have shaded the most important cells in

yellow. The parameter is five times the - time constant, and is the time during which this barrel

coil will be active: milliseconds. The stopping time is microseconds, not far off the

microseconds we were looking for.

Conclusion: We will wind the barrel coil using three turns of AWG #24 wire.

The Lua script listed in Appendix "A" ran the time simulation which produced the following results. The

first graph is a plot of the current flowing through barrel coil #1 and the armature. The waveforms have

the shapes we want, but they are too fast.

~ 17 ~

The current flowing through barrel coil #1 (in black) is a single pulse. The current through the armature

(in red) changes direction after about . The reversal of the direction of the current flowing through

the armature causes the force to reverse direction. The following graph shows this reversal. The

following graph also shows the voltage drop over the capacitor (in black), which is exactly what we want.

The capacitor's voltage goes to zero (more precisely, , but stops there.

Although the direction of the force reverses, its magnitude in the wrong direction is minor, and we could

probably ignore it.

What we cannot ignore is the speed of the decay. My calculations above were designed to produce an

exponential decay which would be "finished" after about three milliseconds. The decay we are seeing

here is finished in less than one millisecond.

~ 18 ~

Bear in mind that the calculations were based on a circuit model which excluded the armature entirely.

The armature represents a use of energy which is not accounted for in the formulae, and has the effect of

speeding up the decay.

In the next paper, I will bring the armature back into the model (at least partly) and, by accounting for its

use of energy, re-calibrate the parameters to slow the decay down to three milliseconds.

Before ending this paper, I want to show one more result of the time simulation. The following graph

shows the various components of energy during the simulation. The diode burns off heat as well – like all

physical components, its power consumption is voltage times current or, in this case, . The

following graph shows the "pools" of energy during the simulation. As before, is the kinetic energy of

the armature. (the blue curve) is that kinetic energy plus the cumulative energy burned off by the

resistances as heat. (the red curve) is that energy plus the cumulative energy burned off by

the diode as heat. The red curve is very slightly above the blue curve. There is not much difference

between the red curve and the blue curve because the diode does not burn off very much heat. The curve

 adds the magnetostatic energy stored in the self-inductance fields. The next layer,

, includes the magnetostatic energy stored in the mutual inductance fields. The final

layer, , also includes the electrostatic energy stored inside the capacitor. It remains

at throughout. (In this simulation, I used a time step of 0.2 microseconds. The error in the

energy reconciliation at the end of the run was less than .)

Jim Hawley

© June 2015

If you found this description helpful, please let me know. If you spot any errors or omissions, please send

an e-mail. Thank you.

~ 19 ~

Appendix "A"

Listing of revised Lua script for time simulations with bypass diodes

-- This Lua script is the base case for simulating multiple coils with
-- bypass diodes wired across all barrel coil capacitors.

--///
--// Matrix inversion function
--// Warning: Does not check for singularities
--// Warning: The function overwrites A[][] and B[]
--// Local argument N is the total number of coils, including the armature
--// Global variables A[][] and B[] must be populated before a call
--// Global variable X[] holds the solution
A = {} -- Inductance matrix, maximum size N=10
for I= 1,10 do
 A[I] = {}
end
B = {} -- Vector of constants
X = {} -- Solution vector
for I= 1,10 do
 X[I] = 0
end
function INVERT(N)
 -- Part #1: Reduce the leading element in row #1 to one
 temp = A[1][1]
 for Icol = 1,N do
 A[1][Icol] = A[1][Icol] / temp
 end
 B[1] = B[1] / temp
 -- Part #2: On a row-by-row basis, reduce the matrix to upper-triangular
 for Irow = 2,N do
 for Icol = 1,(Irow-1) do
 temp = A[Irow][Icol]
 for Irun = 1,N do
 A[Irow][Irun] = A[Irow][Irun] - (temp*A[Icol][Irun])
 end
 B[Irow] = B[Irow] - (temp*B[Icol])
 end
 temp = A[Irow][Irow]
 for Irun = Irow,N do
 A[Irow][Irun] = A[Irow][Irun] / temp
 end
 B[Irow] = B[Irow] / temp
 end
 -- Part #3: Set the value of the last variable
 X[N] = B[N]
 -- Part #4: Use Euler elimination to work back up the equations
 for Itemp = 1,N-1 do
 Irow = N - Itemp
 X[Irow] = 0
 for Icol = (Irow+1),N do
 X[Irow] = X[Irow] + (A[Irow][Icol]*X[Icol])
 end
 X[Irow] = B[Irow] - X[Irow]

~ 20 ~

 end
 return
end
--// End of matrix inversion function
--///

--///
--// Save-matrix-equation-to-file function, for debugging purposes only
function WRITEMATRIXEQUATION(MO)
 for Ir = 1,MO do
 for Ic = 1,MO do
 write(handle,"A[",Ir,"][",Ic,"]=",A[Ir][Ic]," ")
 end
 write(handle,"X[",Ir,"]=",X[Ir]," ")
 write(handle,"B[",Ir,"]=",B[Ir],"\n")
 end
 write(handle,"\n")
end
--// End of save-matrix-equation-to-file function
--//

-- Initial location and speed of the armature
ArmPosEndZ_0 = -1.25 -- Location of armature's leading edge, inches
Speed_0 = 0 -- Armature's initial speed, meters per second
Mass = 0.25 -- Armature's mass, kilograms

-- Other important variables related to the simulation process
MaxMeshSize = 0.01 -- Maximum FEMM triangle size
MaxResidual = 1E-8 -- Maximum FEMM residual for convergence test
deltaT = 0.0000002 -- Duration of one time step, in seconds
SaveInterval = 5 -- Number of time steps between save events
SaveCounter = 0 -- Counter of time steps between save events
MaxNumTimeSteps = 100000 -- Maximum number of time steps permitted

-- Definition of Groups
-- Group(9) is the air
-- Group(0) is the armature
-- Group(1) is barrel coil #1
-- Group(2) is barrel coil #2
-- Group(3) is barrel coil #3
-- Group(4) is barrel coil #4
-- Group(5) is barrel coil #5

-- ALL DIMENSIONS ARE IN INCHES UNLESS A SUFFIX STATES OTHERWISE

-- Define string names for all coils
CoilName = {}
CoilName[0] = "Arm"
CoilName[1] = "Bcoil1"
CoilName[2] = "Bcoil2"
CoilName[3] = "Bcoil3"
CoilName[4] = "Bcoil4"
CoilName[5] = "BCoil5"

-- Specify wire gauges for all coils

~ 21 ~

CoilAWG = {}
CoilAWG[0] = 10
CoilAWG[1] = 24
CoilAWG[2] = 16
CoilAWG[3] = 16
CoilAWG[4] = 16
CoilAWG[5] = 16

-- Define vectors for the diameters of the wires used to wind all coils
CoilWireExtDiamMM = {}
CoilWireBareDiamMM = {}
CoilWireExtDiam = {}
CoilWireBareDiam = {}

-- Specify lengths for all coils. The numbers of turns will be calculated.
CoilLength = {}
CoilLength[0] = 1
CoilLength[1] = 1
CoilLength[2] = 1
CoilLength[3] = 1
CoilLength[4] = 1
CoilLength[5] = 1

-- Define vectors for the numbers of turns which make up the lengths
CoilNumTurns = {}

-- Specify the number of layers in all coils
CoilNumLayers = {}
CoilNumLayers[0] = 2
CoilNumLayers[1] = 3
CoilNumLayers[2] = 5
CoilNumLayers[3] = 2
CoilNumLayers[4] = 1
CoilNumLayers[5] = 1

-- Specify the z-locations of the negative ends of all coils
CoilNegEndZ = {}
CoilNegEndZ[0] = ArmPosEndZ_0 - CoilLength[1]
CoilNegEndZ[1] = -2.75
CoilNegEndZ[2] = -1
CoilNegEndZ[3] = 0.75
CoilNegEndZ[4] = 2.5
CoilNegEndZ[5] = 4.25

-- Define a vector for the z-locations of the positive ends of all coils
CoilPosEndZ = {}

-- Specify the inner and outer diameters of the barrel tube
TubeOuterDiam = 2.5
TubeInnerDiam = TubeOuterDiam - (1/16)
TubeOuterRad = TubeOuterDiam / 2
TubeInnerRad = TubeInnerDiam / 2

-- Define vectors to hold the resistances and self-inductances of all coils.
-- CoilRfemm is the resistance calculated by FEMM, but there will be other

~ 22 ~

-- resistance in each coil circuit.
CoilRfemm = {}
CoilLfemm = {}

-- Define an array to hold the instantaneous mutual inductances
CoilMfemm = {}
for I = 0,5 do
 CoilMfemm[I] = {}
end

-- Specify the dimensions of the bounding air spheres
AirLocalRad = 8
AirExtDiam = 1

--//
--// Enough parameters have been defined to allow us to describe the
--// physical geometry to FEMM.
--//
newdocument(0) -- New magnetics problem
mi_probdef(0,'inches','axi',MaxResidual,0,30) -- Axisymmetric, in inches
mi_grid_snap('off') -- Do not snap to a grid

-- Set the parameters of the enameled copper wire used to wind each coil
for I = 0,5 do
 AWGGauge = CoilAWG[I]
 if (AWGGauge == 1) then
 WireExtDiamMM = 7.496
 WireBareDiamMM = 7.348
 end
 if (AWGGauge == 2) then
 WireExtDiamMM = 6.690
 WireBareDiamMM = 6.543
 end
 if (AWGGauge == 3) then
 WireExtDiamMM = 5.971
 WireBareDiamMM = 5.827
 end
 if (AWGGauge == 4) then
 WireExtDiamMM = 5.330
 WireBareDiamMM = 5.189
 end
 if (AWGGauge == 5) then
 WireExtDiamMM = 4.757
 WireBareDiamMM = 4.620
 end
 if (AWGGauge == 6) then
 WireExtDiamMM = 4.246
 WireBareDiamMM = 4.115
 end
 if (AWGGauge == 7) then
 WireExtDiamMM = 3.790
 WireBareDiamMM = 3.665
 end
 if (AWGGauge == 8) then
 WireExtDiamMM = 3.383

~ 23 ~

 WireBareDiamMM = 3.264
 end
 if (AWGGauge == 9) then
 WireExtDiamMM = 3.023
 WireBareDiamMM = 2.906
 end
 if (AWGGauge == 10) then
 WireExtDiamMM = 2.703
 WireBareDiamMM = 2.588
 end
 if (AWGGauge == 11) then
 WireExtDiamMM = 2.418
 WireBareDiamMM = 2.304
 end
 if (AWGGauge == 12) then
 WireExtDiamMM = 2.163
 WireBareDiamMM = 2.052
 end
 if (AWGGauge == 13) then
 WireExtDiamMM = 1.934
 WireBareDiamMM = 1.829
 end
 if (AWGGauge == 14) then
 WireExtDiamMM = 1.732
 WireBareDiamMM = 1.628
 end
 if (AWGGauge == 15) then
 WireExtDiamMM = 1.549
 WireBareDiamMM = 1.450
 end
 if (AWGGauge == 16) then
 WireExtDiamMM = 1.384
 WireBareDiamMM = 1.290
 end
 if (AWGGauge == 17) then
 WireExtDiamMM = 1.240
 WireBareDiamMM = 1.151
 end
 if (AWGGauge == 18) then
 WireExtDiamMM = 1.110
 WireBareDiamMM = 1.024
 end
 if (AWGGauge == 19) then
 WireExtDiamMM = 0.993
 WireBareDiamMM = 0.912
 end
 if (AWGGauge == 20) then
 WireExtDiamMM = 0.892
 WireBareDiamMM = 0.813
 end
 if (AWGGauge == 21) then
 WireExtDiamMM = 0.800
 WireBareDiamMM = 0.724
 end
 if (AWGGauge == 22) then

~ 24 ~

 WireExtDiamMM = 0.714
 WireBareDiamMM = 0.643
 end
 if (AWGGauge == 23) then
 WireExtDiamMM = 0.643
 WireBareDiamMM = 0.574
 end
 if (AWGGauge == 24) then
 WireExtDiamMM = 0.577
 WireBareDiamMM = 0.511
 end
 if (AWGGauge == 25) then
 WireExtDiamMM = 0.516
 WireBareDiamMM = 0.455
 end
 if (AWGGauge == 26) then
 WireExtDiamMM = 0.462
 WireBareDiamMM = 0.404
 end
 if (AWGGauge == 27) then
 WireExtDiamMM = 0.419
 WireBareDiamMM = 0.361
 end
 if (AWGGauge == 28) then
 WireExtDiamMM = 0.373
 WireBareDiamMM = 0.320
 end
 if (AWGGauge == 29) then
 WireExtDiamMM = 0.338
 WireBareDiamMM = 0.287
 end
 if (AWGGauge == 30) then
 WireExtDiamMM = 0.307
 WireBareDiamMM = 0.254
 end
 if (AWGGauge == 31) then
 WireExtDiamMM = 0.275
 WireBareDiamMM = 0.226
 end
 if (AWGGauge == 32) then
 WireExtDiamMM = 0.247
 WireBareDiamMM = 0.203
 end
 CoilWireExtDiamMM[I] = WireExtDiamMM
 CoilWireBareDiamMM[I] = WireBareDiamMM
 CoilWireExtDiam[I] = CoilWireExtDiamMM[I] / 25.4
 CoilWireBareDiam[I] = CoilWireBareDiamMM[I] / 25.4
end

-- Calculate the length of all coils. This will be equal to the integral
-- number of turns of the wire used which best approximates the target length.
-- Note that the target lengths in vector CoilLength[] are replaced by the
-- computed lengths.
for I = 0,5 do
 TargetLength = CoilLength[I]

~ 25 ~

 WireDiam = CoilWireExtDiam[I]
 CoilNumTurns[I] = floor(0.5 + (TargetLength/WireDiam))
 CoilLength[I] = CoilNumTurns[I] * WireDiam
end

-- Define all nodes for the surrounding air, in Group(9)
mi_addnode(0,AirLocalRad) -- Top of local sphere
mi_addnode(0,-AirLocalRad) -- Bottom of local sphere
mi_addnode(0,AirLocalRad + AirExtDiam) -- Top of external sphere
mi_clearselected()
mi_selectnode(0,AirLocalRad)
mi_selectnode(0,-AirLocalRad)
mi_selectnode(0,AirLocalRad + AirExtDiam)
mi_setnodeprop('',9)

-- Clarify the (r,z) co-ordinates of the four corners of the windings of
-- all coils. The armature needs to be handled separately from the others
-- because its outer diameter is limited by the tube size. The other coils
-- are assumed to be wound directly on the tube's outer surface.
CoilInnerRad = {}
CoilOuterRad = {}
-- For the armature
TotalTubeClearance = 1/16
CoilOuterRad[0] = TubeInnerRad - (0.5*TotalTubeClearance)
CoilInnerRad[0] = CoilOuterRad[0] - (CoilNumLayers[0]*CoilWireExtDiam[0])
CoilPosEndZ[0] = CoilNegEndZ[0] + CoilLength[0]
-- For the other coils
for I = 1,5 do
 CoilInnerRad[I] = TubeOuterRad
 CoilOuterRad[I] = CoilInnerRad[I] + (CoilNumLayers[I]*CoilWireExtDiam[I])
 CoilPosEndZ[I] = CoilNegEndZ[I] + CoilLength[I]
end

-- Define all nodes for all coils. Note that the Group number = index I.
for I = 0,5 do
 mi_addnode(CoilInnerRad[I],CoilPosEndZ[I]) -- Top inside corner
 mi_addnode(CoilOuterRad[I],CoilPosEndZ[I]) -- Top outside corner
 mi_addnode(CoilOuterRad[I],CoilNegEndZ[I]) -- Bottom outside corner
 mi_addnode(CoilInnerRad[I],CoilNegEndZ[I]) -- Bottom inside corner
 mi_clearselected()
 mi_selectnode(CoilInnerRad[I],CoilPosEndZ[I])
 mi_selectnode(CoilOuterRad[I],CoilPosEndZ[I])
 mi_selectnode(CoilOuterRad[I],CoilNegEndZ[I])
 mi_selectnode(CoilInnerRad[I],CoilNegEndZ[I])
 mi_setnodeprop('',I)
end

-- Define all line segments for the surrounding air, in Group(9)
-- There are two line segments:
-- 1. From the bottom of the local sphere to the top of the local sphere
-- 2. The diameter line across the external sphere
mi_addsegment(0,-AirLocalRad,0,AirLocalRad)
mi_addsegment(0,AirLocalRad,0,AirLocalRad+AirExtDiam)
mi_clearselected()
mi_selectsegment(0,AirLocalRad-0.1)

~ 26 ~

mi_selectsegment(0,AirLocalRad+0.1)
mi_setsegmentprop('',0,1,0,9)

-- Define a periodic boundary condition
mi_addboundprop('PeriodicBC',0,0,0,0,0,0,0,0,4)

-- Define all arcs for the surrounding air, in Group(0)
-- There are two arcs:
-- 1. Enclosing the local sphere
-- 2. Enclosing the external sphere
mi_addarc(0,-AirLocalRad,0,AirLocalRad,180,1)
mi_addarc(0,AirLocalRad,0,AirLocalRad+AirExtDiam,180,1)
mi_clearselected()
mi_selectarcsegment(AirLocalRad,0)
mi_selectarcsegment(AirExtDiam/2,AirLocalRad+(AirExtDiam/2))
mi_setarcsegmentprop(1,'PeriodicBC',0,9)

-- Define all line segments for all coils
for I= 0,5 do
 mi_addsegment(CoilInnerRad[I],CoilPosEndZ[I],
 CoilOuterRad[I],CoilPosEndZ[I])
 mi_addsegment(CoilOuterRad[I],CoilPosEndZ[I],
 CoilOuterRad[I],CoilNegEndZ[I])
 mi_addsegment(CoilOuterRad[I],CoilNegEndZ[I],
 CoilInnerRad[I],CoilNegEndZ[I])
 mi_addsegment(CoilInnerRad[I],CoilNegEndZ[I],
 CoilInnerRad[I],CoilPosEndZ[I])
 mi_clearselected()
 mi_selectsegment(CoilInnerRad[I]+0.001,CoilPosEndZ[I])
 mi_selectsegment(CoilOuterRad[I],CoilPosEndZ[I]-0.001)
 mi_selectsegment(CoilOuterRad[I]-0.001,CoilNegEndZ[I])
 mi_selectsegment(CoilInnerRad[I],CoilNegEndZ[I]+0.001)
 mi_setsegmentprop('',0,1,0,I)
end

-- Define a block label for the air, in Group(9)
CentroidRLocal = 0.25
CentroidZLocal = AirLocalRad - 0.25
mi_addblocklabel(CentroidRLocal,CentroidZLocal)
CentroidRExt = 0.25
CentroidZExt = AirLocalRad + (AirExtDiam/2)
mi_addblocklabel(CentroidRExt,CentroidZExt)
mi_clearselected()
mi_selectlabel(CentroidRLocal,CentroidZLocal)
mi_selectlabel(CentroidRExt,CentroidZExt)
mi_getmaterial('Air')
mi_setblockprop('Air',0,0,0,0,9,0)

-- Describe the external region as a Kelvin transformation
mi_defineouterspace(AirLocalRad+(AirExtDiam/2),AirExtDiam/2,AirLocalRad)

-- Define names for the materials of the wires being used
CoilMaterial = {}
for I= 0,5 do
 CoilMaterial[I] = CoilName[I] .. "Wire"

~ 27 ~

end

-- Define new materials for the enameled copper wire being used
-- Relative permeability in r-direction = 1
-- Relative permeability in z-direction = 1
-- Permanent magnet coercivity = 0
-- Applied source current density = 0
-- Electrical conductivity = 58 MS/m for copper wire
-- Lamination thickness = 0
-- Hysteresis lag angle = 0
-- Lamination fill fraction = 1
-- Lamination type = 3 (This code identifies magnet wire)
-- Hysteresis lag angle in the x-direction = 0
-- Hysteresis lag angle in the y-direction = 0
-- Number of strands in wire = 1
-- Diameter of wire (in millimeters) has already been specified above.
-- For the wire-wound coils
for I= 0,5 do
 mi_addmaterial(CoilMaterial[I],1,1,0,0,58,
 0,0,1,3,0,0,1,CoilWireExtDiamMM[I])
end

-- Define block labels for all coils. Set the current to 1A for
-- initialization purposes only.
Current = 1
for I= 0,5 do
 CentroidR = (CoilInnerRad[I] + CoilOuterRad[I]) / 2
 CentroidZ = (CoilPosEndZ[I] + CoilNegEndZ[I]) / 2
 mi_addcircprop(CoilName[I],Current,1)
 mi_addblocklabel(CentroidR,CentroidZ)
 mi_clearselected()
 mi_selectlabel(CentroidR,CentroidZ)
 TotalNumTurns = CoilNumLayers[I] * CoilNumTurns[I]
 mi_setblockprop(CoilMaterial[I],0,MaxMeshSize,CoilName[I],0,I,TotalNumTurns)
end

--//
--// Now that the geometry has been specified, we can save the construction
--// in a temporary file which will be a sister file to this Lua script.
--// Then, we can get ready to do some analysis.
--//
mi_saveas("./temp.fem") -- Save the geometry
main_maximize() -- Maximize the main FEMM window
mi_zoomnatural() -- Zoom the display for the best fit
showconsole() -- Show the Lua output window
clearconsole() -- Clear the Lua output window
mi_seteditmode("group") -- Make edits such as translation by Group

--//
--// Analyze the coils independently
--// We will power up each coil separately to calculate its Ohmic resistance
--// and self-inductance. While we are at it, we will calculate the mutual
--// inductance between this coil and all the other coils. We will do this
--// for all coils, even though there will be (or should be) redundancy
--// between corresponding pairs and even though not all coils may be

~ 28 ~

--// included in the simulation.
--///
for I= 0,5 do
 -- Zero out all currents, for all coils, including the powered coil
 for J= 0,5 do
 mi_modifycircprop(CoilName[J],1,0)
 end
 -- Set the current in the powered coil to 100A
 mi_modifycircprop(CoilName[I],1,100)
 -- Analyze the problem
 mi_analyze()
 mi_loadsolution()
 -- For the powered coil, val1=current, val2=voltage and val3=flux
 val1,val2,val3 = mo_getcircuitproperties(CoilName[I])
 CoilRfemm[I] = val2 / val1 -- Ohmic resistance
 CoilLfemm[I] = val3 / val1 -- Self-inductance
 -- For each other coil, val4=current, val5=voltage and val6=flux
 for J= 0,5 do
 if (J ~= I) then
 val4,val5,val6 = mo_getcircuitproperties(CoilName[J])
 CoilMfemm[I][J] = val6 / val1
 end
 end
end

-- Display the interim results in the Lua window
for I= 0,5 do
 print(CoilName[I])
 print("R=",CoilRfemm[I])
 print("L(uH)=",CoilLfemm[I]*1000000)
 for J= 0,5 do
 if (J ~= I) then
 print("CoilM(uH) ",I," to ",J," = ",CoilMfemm[I][J]*1000000)
 end
 end
end

--//
--// There are a large number of variables which are best suited for
--// representation as vectors. Some of these are fixed parameters, some
--// are initial conditions and some are temporary variables which will be
--// needed during the simulation. I will try to list these new vectors
--// in that order.
--//

-- Additional resistance in each coil circuit. No harm is done if we
-- define some extra resistance even for coils which are not used during
-- a particular run.
CoilRextra = {}
CoilRextra[0] = 0.0001 -- Solder joint of two layers in armature
CoilRextra[1] = 0.02 -- SCR
CoilRextra[2] = 0.02 -- SCR
CoilRextra[3] = 0.02 -- SCR
CoilRextra[4] = 0.02 -- SCR
CoilRextra[5] = 0.02 -- SCR

~ 29 ~

-- Total resistance of each coil circuit. The total resistance is the Ohmic
-- resistance computed by FEMM plus the extra resistance just defined.
CoilR = {}
for I= 0,5 do
 CoilR[I] = CoilRfemm[I] + CoilRextra[I]
end

-- Capacitance in each coil circuit. There will never be any capacitance in
-- the armature circuit, but no harm is done if we define a zero-value
-- capacitance anyway.
Cap = {}
Cap[0] = 0
Cap[1] = 0.000032
Cap[2] = 0.000032
Cap[3] = 0.000032
Cap[4] = 0.000032
Cap[5] = 0.000032

-- These "offsets" control the times at which the switches (SCRs) are closed
-- for each coil circuit. The offsets are distances measured along the z-
-- axis. The switch which controls Coil #I will close when the leading edge
-- of the armature reaches StartOffset[I]. Since the armature circuit is
-- always closed, its StartOffset[0] is irrelevant, and is set to a big
-- negative distance just so its usage is consistent with the others. The
-- offset for barrel coils #2 and later is set by default to one-half inch
-- past the positive end of the coil. Since the armature has a length of
-- about one inch, this will start these later coils when the armature is
-- just about centered on the downstream lip of the coil. The offset for
-- the first barrel can be used in two different ways, depending on the
-- setting of the CoilConnect[1] variable, which see. If CoilConnect[1] is
-- set to one, then the switch for barrel coil #1 will be closed at time t=0
-- when the simulation starts. If that is the case, the starting offset is
-- simply not relevant. On the other hand, if CoilConnect[1] is set to zero,
-- then barrel coil #1 will start up on the same condition as the others,
-- when the leading edge of the armature reaches the given z-value. That
-- only makes sense, however, if the armature has some positive speed at the
-- start, which will carry it forward to the trigger point.
StartOffset = {}
StartOffset[0] = -1000 -- Armature circuit is always closed
StartOffset[1] = CoilPosEndZ[1] + 0.5 -- Start barrel coil #1 here
StartOffset[2] = CoilPosEndZ[2] + 0.5 -- Start barrel coil #2 here
StartOffset[3] = CoilPosEndZ[3] + 0.5 -- Start barrel coil #3 here
StartOffset[4] = CoilPosEndZ[4] + 0.5 -- Start barrel coil #4 here
StartOffset[5] = CoilPosEndZ[5] + 0.5 -- Start barrel coil #5 here

-- Declare which coil circuits are closed, i.e., "connected", at the start of
-- the simulation. These must not conflict with the distances in the
-- StartOffset[] vector since these variables are used as Boolean flags to
-- tell the procedure which coils are in operation at the start of any
-- particular time step. The default settings assume the gun starts up from
-- rest, with the switch for barrel coil #1 closed at the commencement of the
-- simulation.
CoilConnect = {}
CoilConnect[0] = 1

~ 30 ~

CoilConnect[1] = 1
CoilConnect[2] = 0
CoilConnect[3] = 0
CoilConnect[4] = 0
CoilConnect[5] = 0

-- The CircuitMode[] states whether the diode in a particular barrel coil
-- circuit is reverse-biased or forward-biased. This variable is only
-- used for barrel coils which are in operation, i.e., CoilConnect[I] = 1.
-- The flags are "R" for reverse-bias and "F" for forward-bias. Since all
-- barrel coils start of with a charged capacitor, the CircuitMode is
-- initialized to "R".
CircuitMode = {}
CircuitMode[0] = "X" -- Not relevant for the armature
CircuitMode[1] = "R"
CircuitMode[2] = "R"
CircuitMode[3] = "R"
CircuitMode[4] = "R"
CircuitMode[5] = "R"

-- Vdiode[] is the forward voltage drop over the diode when it is conducting
Vdiode = {}
Vdiode[0] = 0 -- Not relevant for the armature
Vdiode[1] = 1.5
Vdiode[2] = 1.5
Vdiode[3] = 1.5
Vdiode[4] = 1.5
Vdiode[5] = 1.5

-- Initial voltages on the capacitors. Only non-zero capacitors should be given
-- non-zero initial voltages.
Vcap_0 = {}
Vcap_0[0] = 0
Vcap_0[1] = 5000
Vcap_0[2] = 0
Vcap_0[3] = 0
Vcap_0[4] = 0
Vcap_0[5] = 0

-- Instantaneous voltage drops over capacitors. The following line only
-- declares the vector. We do not need to insert specific values at this
-- time.
Vcap = {}

-- Initial electrical charge stored in the capacitors
Q_0 = {}
for I= 1,5 do
 Q_0[I] = Cap[I] * Vcap_0[I]
end

-- Instantaneous electrical charge stored in the capacitors
Q_start = {}
Q_end = {}

-- Initial currents flowing in the coils. These will be zero for all coils if

~ 31 ~

-- the simulation starts up from rest. However, we can use a non-zero initial
-- current to "start" the armature without having to go through a complete
-- start-up cycle.
I_0 = {}
I_0[0] = 0
I_0[1] = 0
I_0[2] = 0
I_0[3] = 0
I_0[4] = 0
I_0[5] = 0

-- Instantaneous currents flowing through the coils. The following lines only
-- declare the vectors. We do not need to insert specific values at this time.
I_start = {}
I_end = {}

-- Instantaneous first derivatives of the currents flowing through the coils.
-- The following line only declares the vectors. The numerical integration
-- procedure assumes these derivatives remain constant throughout each time
-- step, so they are given the subscript "constant".
dIdt_const = {}

-- Spatial derivative of the mutual inductances. Since this is only relevant
-- when one of each pair of coils is the armature, we can get away with using
-- a vector instead of an array.
dMdz = {}

-- deltaER[] is the energy burned off as heat by Ohmic resistance during one
-- time step. This is recorded for each separate coil circuit at the end of
-- each time step. ERCum[] is the cumulative energy burned off by the
-- resistances since the start of the simulation. A separate total is kept
-- for each resistance. ERCum[] is not printed out in version of the script,
-- but can be if it is useful to know the resistance loss in different barrel
-- coils, or the armature.
deltaER = {}
ERCum = {}

-- deltaED[] is the energy burned off as heat by the diodes during one time
-- step. This is recorded for each separate diode at the end of each time
-- step. EDCum[] is the cumulative energy burned off by the diodes since
-- the start of the simulation. A separate total is kept for each diode.
-- EDCum[] is not printed out in this version of the script, but can be if it
-- is useful to track the diode loss in different barrel coils.
deltaED = {}
EDCum = {}

-- Instantaneous stores of energy -- kinetic, electrostatic, self-inductive,
-- mutual inductive and cumulative Ohmic heat. These are the values at the
-- START of each time step.
EK = 0
ECTotal = 0
ELTotal = 0
EMTotal = 0
ERTotal = 0
EDTotal = 0

~ 32 ~

ETotal = 0
EError = 0

-- Initial stores of energy. These will be calculated at the start of the
-- first iteration in the simulation.
EK_0 = 0
ECTotal_0 = 0
ELTotal_0 = 0
EMTotal_0 = 0
ERTotal_0 = 0
EDTotal_0 = 0
ETotal_0 = 0

-- Define certain other scalar parameters and variables (for completeness only)
-- Force_const -- Force on armature, constant during time step
-- Speed_start -- Speed of armature at start of time step
-- ArmPosEndZ_start -- Location of armature's positive end at start of ts
-- Distance_start -- Cumulative distance travelled at start of time step

--//
--// Initialize working variables for the simulation. This involves setting
--// the working variables to their proper values for time Time=0.
--//
ArmPosEndZ_end = CoilPosEndZ[0]
Speed_end = Speed_0 -- Speed of armature at end of time step
Distance_end = 0 -- Cumulative distance travelled at end of time step
for I= 0,5 do
 Q_end[I] = Q_0[I]
 I_end[I] = I_0[I]
end

--//
--// Open a text file for output and write a short header
--//
handle = openfile("./Induction_Gun_Results.txt","a")
write(handle,"\nFiring an induction gun with:\n")
write(handle," TimeStep = ",deltaT*1000000," micro-seconds\n")
write(handle," Armature starting conditions:\n")
write(handle," Positive end location = ",ArmPosEndZ_0," inches\n")
write(handle," Speed = ",Speed_0," m/s\n")
write(handle," Current = ",I_0[0]," Amperes\n")
write(handle," FEMM maximum mesh size = ",MaxMeshSize,"\n")
write(handle," FEMM maximum residual = ",MaxResidual,"\n")

-- Write the self-inductances and the resistances
for I= 0,5 do
 write(handle,"NumLayers[",I,"] = ",CoilNumLayers[I],"\n")
 write(handle,"NumTurns[",I,"] = ",CoilNumTurns[I],"\n")
 write(handle,"CoilTrueLength[",I,"](inch) = ",CoilLength[I],"\n")
 write(handle,"L[",I,"](uH) = ",CoilLfemm[I]*1000000,"\n")
 write(handle,"R[",I,"](Ohms) = ",CoilR[I],"\n")
end

-- Write the mutual inductances (upper triangle only)
for I= 0,4 do

~ 33 ~

 for J= (I+1),5 do
 write(handle,"M[",I,"][",J,"] = ",CoilMfemm[I][J],"\n")
 end
end

-- Write the starting values for Time=0 in the same order that they will
-- be written at the end of every time step. This will be the first row
-- in the listing of the simulation results. Note that only the mutual
-- inductances with respect to the armature are written. Also note that
-- zero results will be written for all coils, even if they do not take
-- part in the simulation. This keeps all columns aligned when coil
-- circuits happen to start up or shut down during the simulation.
write(handle,"Time(us)=,",0,",")
for I= 0,5 do
 write(handle,"I_0[",I,"](A)=,",I_0[I],",")
 write(handle,"CircuitMode[",I,"]=,",CircuitMode[I],",")
end
for I= 1,5 do
 write(handle,"MA_start[",I,"](uH)=,",CoilMfemm[0][I]*1000000,",")
end
for I= 1,5 do
 write(handle,"Q_0[",I,"](C)=,",Q_0[I],",")
 write(handle,"Vcap_0[",I,"](V)=,",Vcap_0[I],",")
end
write(handle,"Force_const(N)=,",0,",")
write(handle,"ArmPosEndZ_end(inch)=,",ArmPosEndZ_end,",")
write(handle,"Distance_end(mm)=,",Distance_end,",")
write(handle,"Speed_end(m/s)=,",Speed_end,",")
write(handle,"EK(J)=,,")
write(handle,"ECTotal(J)=,,")
write(handle,"ELTotal(J)=,,")
write(handle,"EMTotal(J)=,,")
write(handle,"ERTotal(J)=,,")
write(handle,"EDTotal(J)=,,")
write(handle,"ETotal(J)=,,")
write(handle,"EError(J)=,\n")
SaveCounter = 0

--//
--// This is the simulation's main loop through time
--//
for TimeStep = 1,MaxNumTimeSteps do
 Time = TimeStep * deltaT

 -- Step #1: Bring forward the values from the end of the previous time step
 Speed_start = Speed_end
 Distance_start = Distance_end
 ArmPosEndZ_start = ArmPosEndZ_end
 for I= 0,5 do
 Q_start[I] = Q_end[I]
 I_start[I] = I_end[I]
 end

 -- Step #2: Use FEMM to calculate the mutual inductances in the new location.
 -- Note that the armature will already have been moved to its new location.

~ 34 ~

 -- Set the current in the armature to 100A
 mi_modifycircprop(CoilName[0],1,100)
 -- Zero out the currents in all coils other than the armature
 for J= 1,5 do
 mi_modifycircprop(CoilName[J],1,0)
 end
 -- Analyze the problem
 mi_analyze()
 mi_loadsolution()
 -- For the armature, val1=current, val2=voltage and val3=flux
 val1,val2,val3 = mo_getcircuitproperties(CoilName[0])
 -- For each other coil, val4=current, val5=voltage and val6=flux
 -- No harm is done if the mutual inductance is calculated for all coils,
 -- whether they are in operation or not.
 for I= 1,5 do
 val4,val5,val6 = mo_getcircuitproperties(CoilName[I])
 CoilMfemm[0][I] = val6 / val1
 CoilMfemm[I][0] = CoilMfemm[0][I]
 end

 -- Step #3: Move the armature to a slightly different location and
 -- calculate the mutual inductances again. Use the difference to
 -- calculate the spatial derivative of the mutual inductances. The
 -- spatial derivatives will be in units of Henries per meter.
 -- Step #3A: Translate the armature to its joggled location
 Joggle = 0.02 -- Joggle distance in inches
 mi_seteditmode("group")
 mi_clearselected()
 mi_selectgroup(0)
 mi_movetranslate(0,Joggle)
 -- Step #3B: Calculate the new mutual inductances. Keep the same currents
 -- as used in Step #2.
 mi_analyze()
 mi_loadsolution()
 -- For the armature, val1=current, val2=voltage and val3=flux
 val1,val2,val3 = mo_getcircuitproperties(CoilName[0])
 -- For each other coil, val4=current, val5=voltage and val6=flux
 for I= 1,5 do
 val4,val5,val6 = mo_getcircuitproperties(CoilName[I])
 NewMfemm = val6 / val1
 dMdz[I] = (NewMfemm - CoilMfemm[0][I]) / (Joggle * 2.54 / 100)
 end

 -- Step #4: Use FEMM to calculate the force in the new configuration
 -- Step #4A: Move the armature back to its location before the joggle
 mi_seteditmode("group")
 mi_clearselected()
 mi_selectgroup(0)
 mi_movetranslate(0,-Joggle)
 -- Step #4B: Re-set the currents to their values at start of time step
 for I= 0,5 do
 mi_modifycircprop(CoilName[I],1,I_start[I])
 end
 -- Calculate the force on the armature, which is Group(0)
 mi_analyze()

~ 35 ~

 mi_loadsolution()
 mo_groupselectblock(0)
 Force_const = mo_blockintegral(19)

 -- Step #5: This is a convenient place to calculate the stored magnetic energy
 -- at the START of the time step. Only include coils in operation. If this
 -- happens to be the first time step, then make a note of the initial self-
 -- inductive energy.
 ELTotal = 0
 for I= 0,5 do
 if (CoilConnect[I] == 1) then
 ELTotal = ELTotal + (0.5 * CoilLfemm[I] * I_start[I] * I_start[I])
 end
 end
 if (TimeStep == 1) then
 ELTotal_0 = ELTotal
 end

 -- Step #6: Calculate the magnetic energy stored in the mutual inductances at
 -- the START of the time step
 EMTotal = 0
 -- Deal with interactions with the armature first
 for I= 1,5 do
 if (CoilConnect[I] == 1) then
 EMTotal = EMTotal + (CoilMfemm[0][I] * I_start[0] * I_start[I])
 end
 end
 -- Deal with all other interactions
 for I= 1,4 do
 if (CoilConnect[I] == 1) then
 for J= (I+1),5 do
 if (CoilConnect[J] == 1) then
 EMTotal = EMTotal +
 (CoilMfemm[I][J] * I_start[I] * I_start[J])
 end
 end
 end
 end
 if (TimeStep == 1) then
 ELTotal_0 = ELTotal
 end

 -- Step #7: Calculate the armature's kinetic energy at the START of the time step
 EK = 0.5 * Mass * Speed_start * Speed_start
 if (TimeStep == 1) then
 EK_0 = EK
 end

 -- Step #8: Calculate the electrostatic energy stored in all capacitors at the
 -- START of the time step.
 ECTotal = 0
 for I= 1,5 do
 if (Cap[I] == 0) then
 Vcap[I] = 0
 else

~ 36 ~

 Vcap[I] = Q_end[I] / Cap[I]
 ECTotal = ECTotal + (0.5 * Cap[I] * Vcap[I] * Vcap[I])
 end
 end
 if (TimeStep == 1) then
 ECTotal_0 = ECTotal
 end

 -- Step #9: Calculate the total heat energy by the START of the time step.
 -- This is the awkward calculation because it uses the heat burned off during
 -- the previous time step, which was stored at that time in the variable
 -- deltaER[], with one vector element per coil circuit. It is necessary to do
 -- an energy balance at the start of each time step, or at the end. Since the
 -- magnetic energy is much easier to calculate at the start of each time step,
 -- when the mutual inductances have just been re-calculated, that is the point
 -- in time when we will do the energy balance calculation.
 if (TimeStep == 1) then
 for I= 0,5 do
 deltaER[I] = 0
 deltaED[I] = 0
 ERCum[I] = 0
 EDCum[I] = 0
 end
 ERTotal = 0
 ERTotal_0 = 0
 EDTotal = 0
 EDTotal_0 = 0
 else
 for I= 0,5 do
 ERTotal = ERTotal + deltaER[I]
 EDTotal = EDTotal + deltaED[I]
 end
 end

 -- Step #10: Calculate the total system energy, and the energy error, at the
 -- START of the time step.
 ETotal = EK + ECTotal + ELTotal + EMTotal + ERTotal + EDTotal
 if (TimeStep == 1) then
 ETotal_0 = ETotal
 end
 EError = ETotal - ETotal_0

 -- Step #11: Construct the inductance matrix A[][]. Only circuits which
 -- are connected at this time are included in the matrix. Note that all
 -- elements are algebraically positive.
 MatrixRow = 0
 for I= 0,5 do
 if (CoilConnect[I] == 1) then
 MatrixRow = MatrixRow + 1
 MatrixColumn = 0
 for J= 0,5 do
 if (J == I) then
 MatrixColumn = MatrixColumn + 1
 A[MatrixRow][MatrixColumn] = CoilLfemm[I]
 else

~ 37 ~

 if (CoilConnect[J] == 1) then
 MatrixColumn = MatrixColumn + 1
 A[MatrixRow][MatrixColumn] = CoilMfemm[I][J]
 end
 end
 end
 end
 end
 MatrixOrder = MatrixRow

 -- Step #12: Load the constant vector B[]. Note that the armature's
 -- circuit is a little different from the others. The matrix equation
 -- is the same for circuits in reverse-biased and forward-biased modes.
 -- Step #12A: Load B[0] for the armature
 B[1] = -CoilR[0] * I_start[0]
 for I= 1,5 do
 if (CoilConnect[I] == 1) then
 B[1] = B[1] - (Speed_start * dMdz[I] * I_start[I])
 end
 end
 -- Step #12B: Load B[] for the other coils
 MatrixRow = 1
 for I= 1,5 do
 if (CoilConnect[I] == 1) then
 MatrixRow = MatrixRow + 1
 B[MatrixRow] =
 (-Speed_start * dMdz[I] * I_start[0]) +
 (-CoilR[I] * I_start[I]) +
 (Q_start[I] / Cap[I])
 end
 end
 -- Step #12C: If desired for debugging purposes, uncomment the following
 -- two lines to write the matrix equation to the output text file.
 --write(handle,"Matrix equation before inversion\n")
 --WRITEMATRIXEQUATION(MatrixOrder)

 -- Step #13: Solve the matrix equation
 INVERT(MatrixOrder)

 -- Step #14: Transfer the solution to the appropriate "constant-slope"
 -- variable
 dIdt_const[0] = X[1]
 SolutionIndex = 1
 for I= 1,5 do
 if (CoilConnect[I] == 1) then
 SolutionIndex = SolutionIndex + 1
 dIdt_const[I] = X[SolutionIndex]
 end
 end

 -- Step #15: Do the first-order integrations, but only for the circuits
 -- which are in operation
 for I= 0,5 do
 if (CoilConnect[I] == 1) then
 I_end[I] = I_start[I] + (dIdt_const[I] * deltaT)

~ 38 ~

 else
 -- No current will flow through unconnected coils
 I_end[I] = 0
 end
 end

 -- Step #16: Do the second-order integration, but only for those
 -- circuits which have capacitors, are connected and have not yet
 -- entered their forward-biased modes.
 for I= 1,5 do
 if ((CoilConnect[I] == 1) and (CircuitMode[I] == "R")) then
 Q_end[I] = Q_start[I] +
 (-I_start[I] * deltaT) +
 (-0.5 * dIdt_const[I] * deltaT * deltaT)
 else
 -- Hold over the charge on all other capacitors, including
 -- those in forward-biased mode.
 Q_end[I] = Q_start[I]
 end
 end

 -- Step #17: Calculate the armature's kinematics
 Accel_const = Force_const / Mass
 Speed_end = Speed_start + (Accel_const * deltaT)
 Distance_end = Distance_start +
 (Speed_start * deltaT) +
 (0.5 * Accel_const * deltaT * deltaT)

 -- Step #18: Convert the change in distance (meters) to location (inches)
 ArmPosEndZ_end = ArmPosEndZ_start +
 ((Distance_end - Distance_start) * 100 / 2.54)

 -- Step #19: Translate the armature to its new location
 mi_seteditmode("group")
 DesiredLELocation = ArmPosEndZ_end
 RequiredTranslation = DesiredLELocation - ArmPosEndZ_start
 mi_clearselected()
 mi_selectgroup(0)
 mi_movetranslate(0,RequiredTranslation)
 CurrentLELocation = ArmPosEndZ_end

 -- Step #20: Calculate the energy consumed by the resistors during this time
 -- step, but only for circuits which are operating. These values will be
 -- held over until the start of the next time step, when the energy balances
 -- are reconciled.
 for I= 0,5 do
 if (CoilConnect[I] == 1) then
 deltaER[I] = CoilR[I] * deltaT * (
 (I_start[I] * I_start[I]) +
 (I_start[I] * dIdt_const[I] * deltaT) +
 (dIdt_const[I] * dIdt_const[I] * deltaT * deltaT / 3))
 else
 -- No current will flow through unconnected coils
 deltaER[I] = 0
 end

~ 39 ~

 ERCum[I] = ERCum[I] + deltaER[I]
 end

 -- Step #21: Calculate the energy consumed by the diodes during this time
 -- step, but only for circuits which are operating and in forward-biased
 -- mode. These energies will be held over until the start of the next time
 -- step, when the energy balances are reconciled.
 for I= 1,5 do
 if ((CoilConnect[I] == 1) and (CircuitMode == "F")) then
 deltaED[I] = Vdiode[I] * deltaT * (
 (Istart[I] + (0.5 * dIdt_const[I] * deltaT)))
 else
 -- No current will flow through reverse-biased diodes
 deltaED[I] = 0
 end
 EDCum[I] = EDCum[I] + deltaED[I]
 end

 -- Step #22: Calculate the voltage drops over all capacitors. If a particular
 -- capacitance is zero, set its voltage drop to zero.
 for I= 0,5 do
 if (Cap[I] == 0) then
 Vcap[I] = 0
 else
 Vcap[I] = Q_end[I] / Cap[I]
 end
 end

 -- Step #23: Write the interim results to the output text file
 SaveCounter = SaveCounter + 1
 if (SaveCounter >= SaveInterval) then
 SaveCounter = 0
 write(handle,"Time(us)=,",Time * 1000000,",")
 for I= 0,5 do
 write(handle,"I_end[",I,"](A)=,",I_end[I],",")
 write(handle,"CircuitMode[",I,"]=,",CircuitMode[I],",")
 end
 for I= 1,5 do
 write(handle,"MA_start[",I,"](uH)=,",CoilMfemm[0][I]*1000000,",")
 end
 for I= 1,5 do
 write(handle,"Q_end[",I,"](C)=,",Q_end[I],",")
 write(handle,"Vcap_end[",I,"](V)=,",Vcap[I],",")
 end
 write(handle,"Force_const(N)=,",Force_const,",")
 write(handle,"ArmPosEndZ_end(inch)=,",ArmPosEndZ_end,",")
 write(handle,"Distance_end(mm)=,",Distance_end,",")
 write(handle,"Speed_end(m/s)=,",Speed_end,",")
 write(handle,"KE_start(J)=,",EK,",")
 write(handle,"ECTotal_start(J)=,",ECTotal,",")
 write(handle,"ELTotal_start(J)=,",ELTotal,",")
 write(handle,"EMTotal_start(J)=,",EMTotal,",")
 write(handle,"ERTotal_start(J)=,",ERTotal,",")
 write(handle,"EDTotal_start(J)=,",EDTotal,",")
 write(handle,"ETotal_start(J)=,",ETotal,",")

~ 40 ~

 write(handle,"EError_start(J)=,",EError,"\n")
 end

 -- Step #24: Terminate the simulation if the armature has passed through
 -- the last barrel coil by at least two inches. Obviously, this
 -- termination condition can be adjusted to suit before beginning any
 -- particular simulation.
 TerminalLELocation = CoilPosEndZ[2] + 2
 if (ArmPosEndZ_end >= TerminalLELocation) then
 TimeStep = MaxNumTimeSteps + 1
 end

 -- Step #25: Check all operating coils which are in reverse-biased mode,
 -- checking to see whether the capacitor has discharged. If so, the
 -- forward-biased mode should begin.
 for I= 1,5 do
 if ((CoilConnect[I] == 1) and (CircuitMode[I] == "R")) then
 if (Vcap[I] <= -Vdiode[I]) then
 CircuitMode[I] = "F"
 end
 end
 end

 -- Step #26: Turn on any coil circuit whose starting time has arrived.
 -- Note that coil circuits which have completed their operation will
 -- have CoilConnect[] =-1. Do not restart them.
 for I= 1,5 do
 if ((CoilConnect[I] == 0) and (ArmPosEndZ_end >= StartOffset[I])) then
 CoilConnect[I] = 1
 Q_end[I] = Q_0[I]
 I_end[I] = 0
 end
 end

 -- Step #27: Turn off any operating coil circuit controlled by an SCR
 -- whose current flow has become negative. Set CoilConnect[] = -1 to
 -- avoid inadvertently turning this coil back on.
 for I= 1,5 do
 if (CoilConnect[I] == 1) then
 if (I_end[I] < 0) then
 CoilConnect[I] = -1
 end
 end
 end

 -- Step #28: Display a message to the user in the Lua window
 print("Time(us)=",Time * 1000000)
 print("IArm(A)=",I_end[0]," Icoil#1(A)=",I_end[1])
 print("Force(N)=",Force_const," Mode=",CircuitMode[1])
 print("ArmPosEndZ(inch)=",ArmPosEndZ_end)
 print("Speed_end(m/s)=",Speed_end)

end

-- Close out the Lua program

~ 41 ~

closefile(handle)
mo_close()
mi_close()
messagebox("All done.")

