
~ 1 ~

PIC-to-Host PC communication test for my post-War Lionel control system

The control system for my post-War Lionel layout uses many Microchip 16F882
microcontrollers ("PICs"). Control of the hardware is divided into eight separate
channels, each controlled by one PIC. For example, Channel #0 is managed by PIC
#0, and collects data about the sections of track which are occupied. Channel #1 is
managed by PIC #1, and closes and opens turnouts. Channel #4 is managed by PIC
#4, and receives speed and e-Unit commands from the locomotive handsets.

Two separate PICs, called CommPIC #A and CommPIC #B, are the intermediaries
between the eight channel-control PICs and the Host PC. Each manages four of the
channel-control PICs. CommPIC #A and CommPIC #B only handle communications -
they do not do any "thinking". They relay commands sent out by the Host PC to the
appropriate channels, and relay information coming in from the channels to the Host
PC.

CommPIC #A and CommPIC #B are connected to the Host PC through serial-to-USB
adapter cables. The protocol is full-duplex asynchronous RS232 at 19,200 baud.

The hardware and software for CommPICA and CommPICB are almost identical. (The
only difference is in register names -- whereas CommPIC #A makes reference to
Channels 0-3, CommPIC #B makes reference to Channels 4-7. This difference does
not arise in the test program described below.) I used two separate PICs because the
16F882 chip has only 22 I/O pins, a limitation which makes it cumbersome to connect to
more than four channel PICs. Of course, the Host PC has to remember which
CommPIC supervises which channels and to address the appropriate CommPIC
through its dedicated USB port.

Host PC

Comm
PIC #A

PIC #0

PIC #1

PIC #2

PIC #3

Comm
PIC #B

PIC #4

PIC #5

PIC #6

PIC #7

Serial-to-USB

Serial-to-USB

~ 2 ~

This paper deals solely with a test of the communication between the Host PC and one
of the CommPICs. A separate test, of the communication between the CommPICs and
the individual channel-control PICs will be described in a subsequent paper.

The breadboard used for the test

The following photograph shows the breadboard used for the test. The schematic
diagram is set out in Appendix "A" below.

Eight red LEDs are driven by portB. They display data being exchanged during the test.
Four yellow are used to display error codes. They are driven by the low nibble of portC.

The program in the PIC uses Microchip's built-in EUSART module, which reserves pin
18 (RC7) for reception from the Host PC and pin 17 (RC6) for transmission to the Host.
A MAX232E chip is used as a line driver. The MAX232e has two channels for input
signals and two for output signals, but only one of each is used here. I have confirmed
that the chip has internal protection against floating inputs, so have not added pull-up
resistors at the chip's unused inputs.

Signals received from the Host PC run along the green wire from pin 3 of the DB9
connector. In a pinout of the DB9 connector, pin 3 is called the TX pin because it
handles transmissions from the Host. Signals sent by the PIC to the Host run along the

MAX232E

16F882

DB9

~ 3 ~

blue wire to pin 2 of the DB9 connector. Pin 2 is called the RX pin because it handles
reception by the Host.

The MAX232E chip requires five capacitors. Four of them are used by the voltage-level
shifters in the chip. This chip is a convenient way to interface the 5V logic used by the
PIC to the ±8.5V levels required by the RS232 protocol.

The photograph shows four wires soldered to the DB9 connector. There are the TX and
RX lines, of course. Ground is connected to pin 5 of the connector through the black
wire. The last wire -- the orange one -- is soldered to the CTS line (pin 8) of the DB9
connector. CTS stands for "Clear-to-send" and was once widely used by printers and
terminals to tell the boss (the mainframe computer) that they were ready to receive
something. In this circuit, the CTS line is connected directly to pin 2 of the MAX232E
chip. That pin is the +8.5V voltage which the chip generates internally. The Host PC
checks the CTS line for this voltage, and uses it as a test of whether or not the PIC is
powered up.

I need to say a word about the USB-to-serial port cable. I spent several frustrating
hours before I discovered that the USB-to-serial port cables I had been using were not
compatible with Windows 10. It seems that many such cables became obsolete when
Microsoft migrated up to Windows 10. The packaging or datasheet for your new cables
should state explicitly that they will work with Windows 10.

Packets contain 24 bits

All information throughout the control system, including communication between PICs,
is sent in 24-bit packets. When necessary, as in the RS232 protocol, the 24 bits are
sent as three consecutive bytes. The three bytes are always transmitted in this order:
the high byte first, then the middle byte, with the low byte last.

Test programs and test results

The CommPIC runs the Microchip Assembly code listed in Appendix "B". The Host PC
runs the Visual Basic program listed in Appendix "C".

In the test, the Host PC sends a packet to the CommPIC. The CommPIC complements
the packet and sends it back to the Host PC. Once the Host PC verifies that the packet
it received is correct, it increments the value in the outgoing packet, and sends the
incremented value to the CommPIC. In the test, the initial packet is &H000000. The
two computers exchange packets until the final packet -- &H07FFFF -- has been
exchanged.

During the test, the Host PC sends out a total of 8 * 256 * 256, or 524,288 packets. The
CommPIC sends one packet back for each packet received. Since each packet
contains 24 information bits, a total of 524,288 * 2 * 24, or 25,165,824 information bits
are sent during the test.

~ 4 ~

With the RS232 configuration set to 19,200 baud, the test takes 4,681 seconds,
representing a speed of 5,376 information bits per second. This is so far below the
nominal 19,200 baud rate that it deserves investigation. See below.

Initialization sequence

The production versions of CommPIC #A and CommPIC #B do not have on/off switches
or reset pushbuttons. The CommPICs begin running as soon as the master power
switch for the complete control system is flipped on. It is therefore imperative that the
CommPICs and the Host PC are able to begin talking to each other automatically and
without outside intervention.

When a CommPIC is powered up, it begins running a infinite loop waiting to receive a
single ping byte 0xF5. Interrupts are not enabled and time-outs are not recognized.

The loop simply tests bit PIR1<rcif>, which will go high when the EUSART receives one
byte. The CommPIC ignores any errors and ignores any other bytes until it receives
0xF5. When it gets that ping, the CommPIC sends a single byte -- 0xF6 -- back to the
Host PC. The CommPIC then enables receive-complete interrupts and begins running
a second loop, waiting (indefinitely, if need be) for the Host PC to send a specific ping
packet 0xF00505. When it's received, the PIC sends a specific response ping packet
0xF00606.

The Host PC is under the control of the human User, who starts the Visual Basic
program by clicking on a button on the main form. The Host PC first checks to see
whether or not the serial-to-USB cable is plugged in. If the cable is not plugged in, the
program prompts the User and waits (indefinitely, if need be) until the cable is plugged
in. The Host PC then checks to see whether or not the CommPIC is powered up. It
uses the CTS line for this purpose. If the CommPIC is not powered up, the program
prompts the User and begins to wait (indefinitely, if need be) until the power is turned
on. At this point, the Host PC enters an infinite loop, sending ping byte &HF5 to the
CommPIC and waiting 25ms for a reply.

Eventually, the Host PC will receive the expected response ping byte: &HF6. After a
short wait, long enough to allow the PIC to configure itself for packet transmission, the
Host PC sends ping packet &HF00505. When it receives ping response packet
&HF00606, the Host PC knows that initialization and synchronization are complete and
begins running the main program, which in this case is the test program.

Details about the PIC program

The Assembly code for the PIC test program is listed in Appendix "B". The program
uses interrupts to send and receive packets. Let me describe reception first.

When the EUSART module receives a byte, interrupt flag bit PIR1<rcif> will go high.
Once the initialization process is complete, receive-complete interrupts are enabled by

~ 5 ~

setting interrupt enable bit PIE1<rcie> high. Receive-complete interrupts remain
enabled as long as the program runs.

Six User-registers are used for reception:

 HostInByte holds the byte just received

 HostInPktH, HostInPktM, HostInPktL hold the three bytes in the packet

 HostInNumByte holds the numbers of bytes received so far

 IntTrig<HostPktRecd> is set high when a whole packet is ready

When an interrupt occurs, the ISR (Interrupt Service Routine) "reads" the byte by

moving it from the EUSART register RCREG into User-register HostInByte. By referring

to HostInNumByte, the ISR can tell whether this byte is the first (high), second (middle)
or third (low) byte in the packet. Unless this byte is the last one in the packet, the ISR

simply stores the byte received, increments the count in HostInNumByte and returns. If
the byte is the last one, then the ISR does two more things: (i) it clears the count in

HostInNumByte in readiness for the next packet to be received, and (ii) it sets the flag bit

IntTrig<HostPktRecd>. Note that the ISR does not need to, and cannot, clear the

PIR1<rcif> flag which triggered these interrupts.

Throughout this period, the main program has been in a loop watching the

IntTrig<HostPktRecd> bit. When it goes high, the main program moves on. It
complements the bytes in the packet and transmits them back to the Host PC.

Let me now describe transmission. The interrupt flag bit used for transmission needs

special treatment. This bit PIR1<txif> goes low one instruction cycle after the byte to

be transmitted is moved into EUSART register TXREG. It goes high after the EUSART
module has processed the byte (which does not necessarily mean that transmission is

finished, just that another byte can now be moved into register TXREG). This has two
consequences. Firstly, the main program must start the transmission process, which it

does by moving the first (high) byte of the packet into register TXREG. Secondly,
transmission-complete interrupts cannot be enabled until after this first byte has been

moved into TXREG. They are enabled by setting bit PIE1<txie> high.

Seven User-registers are used for transmission:

 HostOutByte holds the byte to be transmitted

 HostOutPktH, HostOutPktM, HostOutPktL hold the three bytes in the packet

 HostOutNumByte holds the numbers of bytes transmitted so far

 IntTrig<HostPktSent> is set high when the whole packet has been sent

 IntDoISR is a clue to the ISR about what to do

When the ISR is called by a transmission-complete interrupt, the ISR refers to the count

in HostOutNumByte to determine which byte has been sent. It then loads the next byte

into register TXREG and returns. When the last byte has been sent, the ISR does four

things: (i) it clears the count in HostOutNumByte in readiness for the next packet to be

sent, (ii) it sets the flag bit IntTrig<HostPktSent>, (iii) it disables transmission-complete

interrupts and (iv) it clears the "clue" register IntDoISR.

~ 6 ~

What is the clue register? In many programs, including this test program, there are
multiple sources of interrupts. When an interrupt occurs, the ISR has to figure out what
caused the interrupt. It usually does this by examining the interrupt flags bits to find out
which one is high. But this process can fail if a particular source of interrupts is
disabled. Such is the case in the test program. The transmission-interrupt flag bit

PIR1<txif> will almost always be high -- it is low only during the short periods of time a
byte is being transmitted. If an interrupt occurs for some other reason, such as a
receive-complete, the transmit-complete flag will be high. The ISR would be misled into
thinking that a transmission was underway.

I use register IntDoISR as a mask to tell the ISR whether or not to process transmission-

complete interrupts. If bit IntDoISR<HostPktSend> is high, the ISR will process
transmissions; if it is low the ISR will not process transmissions. (As an alternative, the

ISR could test the interrupt enable bit PIE1<txie> to determine if it should be processing

these interrupts. But system-register PIE1 is located in bank 1, and it is more

convenient to use User-register IntDoISR located in bank 0.)

Details about the Visual Basic program

The Visual Basic code for the Host PC test program is listed in Appendix "C". It

consists of a main form Form1.vb and one module PICComm.vb. The main form contains
text boxes which display information to the User. It displays the times at which the test
started and finished. It has a text box to display the status of communication. The
background colour of the status textbox is set to light red or light green as appropriate.
Lastly, there is a textbox which displays the contents of the packet currently being sent
to the PIC. The following screenshot shows the main form when the test program is
done.

~ 7 ~

The real work of the test is carried out in module PICComm.vb using the SerialPort object.
The properties of the serial port must be defined before the port is opened. I used the
following declaration:

 CommPICASerialPort = New SerialPort

 CommPICASerialPort.PortName = DefaultCommPICASerialPort

 CommPICASerialPort.BaudRate = 19200

 CommPICASerialPort.DataBits = 8

 CommPICASerialPort.StopBits = StopBits.One

 CommPICASerialPort.Parity = Parity.None

 CommPICASerialPort.Handshake = Handshake.None

 CommPICASerialPort.ReadBufferSize = 2048

 CommPICASerialPort.WriteBufferSize = 2048

 CommPICASerialPort.ReceivedBytesThreshold = 1

 CommPICASerialPort.ReadTimeout = -1

There are several things to note:

1. The protocol does not check parity, even though it would be better practice to
use at least one parity bit. The limitation here is in the PIC. While the EUSART module
of the PIC does have a procedure to inject a ninth bit into every byte, and that ninth bit
can be used as a parity bit, the procedure to do so is a little bit clumsy and time-
consuming. Because the USB-to-serial port cable is relatively short and will be used a
considerable distance away from the electrical noise underneath the layout, I elected to
dispense with the parity check.

2. ReceivedBytesThreshold is set to one. That means that the operating system will
alert the program as soon as it can after every single byte is received.

3. ReadTimeout is set to minus one to disable time-outs.

Reception is carried out by an asynchronous reader which runs constantly throughout
the test. The asynchronous reader is defined as:

 Private Async Sub CommPICAAsyncReadBytes()

This subroutine contains an infinite loop which reads any and all bytes which have
become available since the previous pass through the loop. The following function call
returns the number of bytes which are now available and moves them into a temporary

byte buffer called ReceiveBuffer.

 NumBytesRead =

 Await CommPICASerialPort.BaseStream.ReadAsync(

 ReceiveBuffer, 0, BytesToRead, CancellationToken.None)

If one or more bytes have become available since the last pass through the loop, they

are then moved from the ReceiveBuffer into the main input buffer CommPICAInBytes()

by the following For-Next block.

 For I As Int32 = 1 To NumBytesRead Step 1

 CommPICAInBytes_NumBytesAdded =

~ 8 ~

 CommPICAInBytes_NumBytesAdded + 1

 CommPICAInBytes(CommPICAInBytes_NumBytesAdded) =

 ReceiveBuffer(I - 1)

 Next I

CommPICAInBytes_NumBytesAdded is a counter which keeps track of the number of bytes
which have been moved into the main storage vector.

Note that I keep using the phrase "bytes which have become available". That is
because the Windows operating system does not instantly report every time it receives
a byte. It processes serial ports on an every-now-and-then basis, so bytes do not
become available on a regular basis.

The main program runs a loop calling function GetNextPacket() to determine if a packet
has been received. This function uses a second counter, named

CommPICAInBytes_NumBytesUsed, to keep track of the number of bytes which have been

"read" from the main storage vector. Whenever counter CommPICAInBytes_NumBytesAdded

is greater than counter CommPICAInBytes_NumBytesUsed by at least three, then the three
"unused" bytes constitute the next packet.

That's reception. Transmission is handled differently. When a packet is ready to send

to the PIC, a background worker named BWCommPICASendPkt_DoWork() is invoked.
It uses the following instruction to send the three bytes in the packet:

 CommPICASerialPort.Write(lOutPkt, 0, 3)

When the packet has been sent, the operating system calls a handler named

BWCommPICASendPkt_RunWorkerCompleted(). This handler simply sets a Boolean flag

CommPICASendPktComplete. The main program runs a loop waiting for this flag to turn
True. Once that happens, it moves on and begins to wait for the PIC to respond.

The asynchronous reader used for reception and the background worker used for
transmission are useful because they run on separate threads from the main program.
Therefore, they do not prevent the main program from doing other things. In the test
program here, there is not much for the main program to do, other than wait for
reception or transmission to finish. But in the Lionel control system, there is a great
deal for the main program to do, and there is not enough free time available for it to
"blocked" just to allow communication to take place.

Input and output buffers and thread safety

In the test program, the input buffer used by the Host PC is the vector

CommPICAInBytes() I mentioned above. It is neither circular nor resettable. I simply
made it long enough to hold all 3 * 8 * 256 * 256 = 1,572,864 bytes which will be
received during the test. This may seem wasteful, but it is not outrageously so. And, it
makes it easy to guarantee thread safety.

~ 9 ~

The asynchronous reader, running on its own thread, adds byte to the input buffer and

moves its counter CommPICAInBytes_NumBytesAdded monotonically out to higher indices
in the buffer.

The main program and its function GetNextPacket() run on a different thread. The

function has its own counter CommPICAInBytes_NumBytesUsed, which also moves out
monotonically to higher indices in the buffer.

The sole point of intersection between the two threads, and the only point of potential

conflict, occurs when function GetNextPacket() subtracts the "used" counter from the
"added" counter to calculate how many unprocessed bytes there are in the buffer. The
worst that can possibly happen is that asynchronous reader adds a third byte
immediately after the function has done its calculation, with the result that the main
program misses the opportunity to process a packet. However, the main program will
catch this packet during the next pass through its main loop.

 Why is the realized speed so low?

It should be understood that the back-and-forth exchange of packets between the two
computers takes no advantage whatsoever of the full-duplex capability that is available.
Each computer must wait to receive a full packet, and then process it before sending a
full packet out. The turn-around time at each end is the most significant reason why the
realized speed is so much less than the nominal baud rate. Let me describe the various
uses of time during the test.

1. At 19,200 baud, each bit has a theoretical duration of 1 / 19,200 = 52.083µs. A
total of 25,165,824 information bits were sent during the test, which requires a total
theoretical time of 52.083µs * 25,165,824 = 1,310.720 seconds.

2. The RS232 protocol used has one start bit and one stop bit per byte. That
means that ten bits are sent for each eight information bits. This adds 25%, or 327.680
seconds, to the total theoretical time required.

3. It takes the PIC time to realize that it has received a packet. Although a separate
interrupt occurs at the end of each byte received, it is only the time required after the
last byte that is of interest here. The time taken to collect the first two bytes does not
matter because they are being received at a rate determined by the Host PC at the
other end. Let's say that it takes the PIC one instruction cycle to move the last byte into

system-register RCREG, another instruction cycle to set the PIR1<rcif> flag high, two
more instruction cycles to push the PC address onto the stack and another two
instruction cycles to jump to the start of the Interrupt Service Routine. It takes 25

instruction cycles to work through from the start of the ISR to label ISR3, where
processing of the third byte received takes place. It takes another 13 instruction cycles
to complete the ISR and another four, say, to pop the PC address off the stack and
jump back into the main program. All told, 48 instruction cycles are needed before
control returns to the main program. The main program is running a tight loop, testing

~ 10 ~

IntTrig<HostPktRecd>. At most, it will take the main program four instruction cycles to
detect the bit high and to fall out of the loop into the next step. Thus, a total of 52
instruction cycles elapses between reception of the last bit of the last byte in a packet
and starting the next step. Since the PIC is clocked with a 20MHz crystal, each
instruction cycle takes 200ns. The 52 instruction cycles take 52 * 0.2µs = 10.4µs. This
delay is incurred for each of the 524,288 packets received, for a total delay of 10.4µs *
524,288 = 5.453 seconds.

4. The next step for the PIC after reception is to complement the three bytes in the
packet. This takes six instruction cycles, or 6 * 0.2µs = 1.2µs, per packet, for a total
delay during the test of 1.2µs * 524,288 = 0.629 seconds.

5. Now, for the transmission of the complemented packet back to the Host PC. We
need to examine each byte separately. The main program starts the transmission of the
first byte. It takes the main program two instruction cycles to load the first byte into

register TXREG. That step launches the first byte down the cable. We do not really care
how long it takes the PIC to enable transmission-complete interrupts and so forth
because the first byte is already on its way. The delay we are interested in only starts
when the first interrupt occurs. Let's say that it takes the PIC one instruction cycle to set

the PIR1<txif> flag high, two more instruction cycles to push the PC address onto the
stack and another two instruction cycles to jump to the start of the Interrupt Service
Routine. It takes eight instruction cycles to work through from the start of the ISR to

label ISR4, where processing of transmission interrupts begins. It takes another 11

instruction cycles to load the second byte into register TXREG. What happens after that
does not matter because the second byte is now on its way. When the second interrupt
occurs, it once again takes five instruction cycles to get the ISR going, and another

eight to get down to label ISR4. This time, it takes 17 instruction cycles until the third

byte of the packet is loaded into register TXREG. That's it -- the last byte is now on its
way down the cable and we can ignore the time it takes the PIC to sort itself out and get
ready to receive the next packet. All in, it takes 56 instructions to get the packet out the
door. These 56 instruction cycles take 56 * 0.2µs = 11.2µs. This delay is incurred for
each of the 524,288 packets transmitted, for a total delay of 11.2µs * 524,288 = 5.872
seconds.

6. The MAX232E line driver introduces some delay. Its datasheet says that the
propagation delay of a bit passing through is 500ns. There are 24 information bits, or
30 physical bits, in each packet, but the 500ns delay affects each bit equally. The
propagation delay does not increase the spacing between the bits -- it simply delays the
entire packet by 500ns. Each packet that passes through, in either direction, is delayed
by 0.5µs. Thus, the total delay during the test is 0.5µs * 2 directions * 524,288 = 0.524
seconds.

7. The microprocessor embedded in the USB-to-serial port cable is also a source of
delay. The cable I have does not a datasheet. I estimate that its propagation delay will
be comparable to that of the MAX232E chip. To be conservative, let's say that it adds
one second to the duration of the test.

~ 11 ~

8. The USB-to-serial port cable I use is 36 inches long. It takes time for electrical
pulses to travel up and down the cable. Let's assume that the signals travel through the
cable at 80% of the speed of light. That is 0.8 * 3x108 = 2.4x108 meters per second. A
36 inch of cable is 0.914 meters long. It therefore takes a pulse 0.914 / 2.4x108 =
0.00381µs to travel from one end to the other. The total travel time for the 1,048,576
packets which travel up or down the cable is 0.00381µs * 1,048,576 = 3995µs, or
0.004 seconds. Note that this factor is one that affects all bits in a packet in the same
way, with the result that it does not increase the spacing between the individual bits, but
simply delays the entire packet as a whole.

9. The sum of the eight items above is 1,652 seconds. Activity by the Host PC
takes up the rest of the time -- 3,029 seconds -- bringing the total time required for the
test up to 4,681 seconds. The following pie chart shows where all the time went.

The red slice is the Host PC. The blue slice is the speed required to send 24 bits per
packet at the theoretical speed of 19,200 bits per second. The green slice is the extra
time required to send start and stop bits at the theoretical speed. All of the other delays,
due to the PIC, the MAX232E chip, and so on, are concentrated in the black slice, which
is vanishingly small.

To confirm that this analysis is sound, I re-ran the test with the computers at both ends
configured to send and receive at 9,600 baud. This time around, the test took a total of
6,350 seconds. At 9,600 baud, each bit has a theoretical duration of 1 / 9,600 =
104.167µs. Since the same number of information bits -- 25,165,824 -- was sent during
this test, the total theoretical time required is 104.167µs * 25,165,824 = 2,621.440
seconds. Once again, the start and stop bits add 25%, or 655.360 seconds in this case,
to the theoretical time required.

The following table compares the time required for the two tests.

Test duration
Host PC

Theoretical baud

Start and stop bits

PIC reception

PIC complementation

PIC transmission

MAX232E

Microprocessor in cable

Speed of light

~ 12 ~

 9,600 baud 19,200 baud

Elapsed time for test 6,350.00 4,681.00

Less :Theoretical time for 24 bits (2,621.44) (1,310.72)

Less: Extra time for start and stop bits (655.36) (327.68)

"Overhead" 3,073.20 3,042.60

I have called the difference between the actual time required and the theoretical time
required the "overhead". That's the time required by the computers to turn around the
packets they receive. Note that it is almost exactly the same -- within one percent -- for
the two tests. This makes sense since the same packets were sent in both tests and
the same programs and hardware were used in both.

The conclusion

The Host PC is, by a huge margin, the biggest source of delay. About two-thirds of the
time needed to communicate with the PIC is taken up by the Host PC playing around
with itself. It's not because the Host PC runs slowly, but because it runs a great many
instructions on multiple threads. There is the Visual Basic program, which interacts with
the SerialPort APIs, which in turn interact with the Windows operating system. All of
this commotion requires time.

The Windows setup is geared towards sending large files or receiving large files. When
a lot of bytes are being sent in one direction, this issue of "turn around" time is much
less important. The turn-around and its inherent delay occur only once, after the entire
file has been processed. Windows is just not very effective for sending and receiving
little bits of information like our 24-bit packets.

If one needed faster communication between the Host PC and the CommPICs, then
one would probably need to migrate to another operating system. I have not done so.
One of the biggest reasons is my preference for Visual Basic. It is ideal for
programming all of the other tasks which the Lionel control system needs to operate. I
find that Visual Basic is an excellent compromise between the absence of structure in C
and the anal micromanagement demanded by Python. While there is much not to like
about Microsoft, I do have to give credit where it is deserved.

Jim Hawley
June 2022

(As always, an e-mail pointing out errors and omissions would be appreciated.)

~ 13 ~

Appendix "A"

Schematic diagram of the circuit used to test PIC to Host PC communication

~ 14 ~

Appendix "B"

Assembly code for the 16F882 PIC

; Program for Hawley's Lionel train system

; PICtoHostCommTest: Communications test between Host PC and CommPIC #A

; For 16F882 microprocessor

;

; 1. There are two sources of interrupts: (i) UART receive-complete interrupts

; and (ii) UART transmit-complete interrupts.

;

; 2. User-register IntTrig has a bit for each source of interrupts. These flags

; are set by the ISR when it has finished processing an interrupt. For

; example, when the ISR has finished reading a three-byte packet sent by the

; Host PC, it will set bit IntTrig<HostPktRecd>.

;

; 3. A second User-register IntDoISR also has a bit for each source of

; interrupts. These bits are set by the main program to tell the ISR whether

; or not to process a particular type of interrupt. This is necessary

; because of the way the ISR (any ISR, not just this one) works. Once the

; ISR starts running, it examines the interrupt flag bits. But the interrupt

; flag bit for a particular source of interrupts can be set even if

; interrupts from that source are not enabled. This is a serious issue for

; UART transmission. The PIR1<txif> flag is ALWAYS high except in the very

; special case when a byte is moved into system register TXREG. Even then,

; this flag goes low after one instruction cycle. Even if PIE1<txie>

; interrupts are disabled, the PIR1<txif> flag will almost always be set. If

; the ISR is called for some other reason, it will be misled by the

; PIR1<txif> flag into thinking that a transmission has occurred. To prevent

; this and similar errors, the ISR checks the appropriate IntDoISR bit for

; each source of interrupt before processing it.

;

; 4. The ISR handles reception of all three bytes (24 bits) in a packet sent by

; the Host PC. User-register HostInNumByte is a counter of the number of

; bytes which have been received from the Host PC. It is cleared at power-

; on. Once things get started, UART receive-complete interrupts are

; enabled and they continue to be enabled as long as the program runs. When

; a byte is received, the PIC places it in system-register RCREG and triggers

; a PIR1<rcif> interrupt. Since HostInNunByte is zero, the ISR knows that

; this is the first byte in the packet, and moves TXREG into User-register

; HostInPktH, which is the first (high) byte in the packet. The ISR then

; increments the count in HostInNumByte and returns, leaving bit

; IntTrig<HostPktRecd> low. The main program can continue to do other stuff.

; When another byte is received, another PIR1<rcif> interrupt occurs. Since

; HostInNumByte is one, the ISR knows that this is the second byte in the

; packet, It transfers RCREG into User-register HostInPktM, increments

; HostInNumByte and returns with IntTrig<HostPktRecd> still low. When a

; third byte is received, a third PIR1<rcif> interrupt occurs. It transfers

; RCREG into User-register HostInPktL. This time, though, the ISR knows the

; packet is complete. It now sets bit IntTrig<HostPktRecd>. It also clears

; the count in User-register HostInNumByte to get things ready for the next

; packet. Now, when control returns to the main program, its polling of

; flag IntTrig<HostPktRecd> will cause it to begin processing the full

; packet, which is stored in triplet HostInPktH, HostInPktM and HostInPktL.

;

; 5. The ISR also handles transmission of all three bytes (24 bits) in a packet

~ 15 ~

; being sent to the Host PC. User-register HostOutNumByte is a counter of

; the number of bytes which have been sent (past tense). Before starting

; the transmission, the three bytes are loaded into User-registers

; HostOutByteH, HostOutByteM and HostOutByteL. They will be sent in that

; order. UART transmission interrupts PIE1<txie> are enabled only AFTER byte

; HostOutByteH is moved into system-register TXREG. Note that it takes one

; instruction cycle for flag bit PIR1<txif> to go low after that move. The

; first PIR1<txif> interrupt will occur after the UART module has removed the

; first byte from system-register TXREG. (Note that it will take the UART

; module further time to send the byte even after it has been removed from

; TXREG.) Even so, the ISR can tell from the count in HostOutNumByte that

; the first byte is well on its way. It therefore loads the second byte

; (HostOutPktM) into TXREG, increments HostOutNumByte and returns, with

; completion flag IntTig<HostPktSent> still low. When the second byte has

; been removed from TXREG, a second interrupt will occur. The ISR will then

; load the third byte (HostOutPktL) into TXREG, increment HostOutNumByte and

; return, with completion flag IntTrig<HostPktSent> still low. When the

; third and last byte has been sent, the ISR will disable transmission-

; complete interrupts by clearing bit PIE1<txie>. It will clear the count

; in HostOutNumByte and return with flag IntTrig<HostPktSent> high. Now,

; when control returns to the main program, its polling of flag

; IntTrig<HostPktSent> will cause it to move on to whatever it does after a

; packet has been sent. Note that interrupt flag PIR1<txif> will be high

; and it will stay high. This is why User-register IntDoISR is needed -- we

; do not want the ISR to be misled, if it is called for something else, into

; thinking that another transmission is under way.

;

; 6. UART interrupts are not used during the initialization of communication

; with the Host PC. Only after the Host PC has sent ping byte 0xF5 and this

; PIC has replied with ping response byte 0xF6 are UART interrupts enabled

; to allow the exchange of complete packets.

;

; 7. The routines are grouped into the following blocks:

; A. Definition of system registers

; B. Definition of user registers

; C. Interrupt Service Routine

; D. Initialization of system registers

; E. Initialization of user registers

; F. Initialize communication with the Host PC

; G. Main program

; H. Subroutine Error_Flash

; I. Miscellaneous and timing subroutines

;

; Configuration Words for 16F882

; b<13>=1 Disable in-circuit debugger

; b<12>=0 Disable Low-Voltage Programming

; b<11>=0 Disable fail-safe clock monitor

; b<10>=0 Disable internal/external switchover

; b<9-8>=00 Disable brown-out reset

; b<7>=1 Turn OFF EEPROM memory protection

; b<6>=1 Turn OFF program memory protection

; b<5>=1 Set standard /MCLR operation

; b<4>=1 Disable power-up timer

; b<3>=0 Disable watch-dog timer

; b<2-0>=010 Set HS oscillator gain

 #include "p16F882.inc"

 processor 16F882

~ 16 ~

 __CONFIG _CONFIG1,0x20F2 ; b'xx10 0000 1111 0010'

 __CONFIG _CONFIG2,0x3FFF

;

; Crystal frequency is 20MHz, so the instruction cycle time is 200ns.

;

; **

; Block A - Definition of PIC 16F882 system registers

; **

;

; System registers in Bank 0

TMR0 equ 0x01 ; Timer0 count register

STATUS equ 0x03 ; Status register

carry equ 0x00 ; carry from MSB occurred

zero equ 0x02 ; result of operation is zero

page0 equ 0x05 ; register bank selector low bit

page1 equ 0x06 ; register bank selector high bit

portA equ 0x05

portB equ 0x06

portC equ 0x07

INTCON equ 0x0B ; Interrupt control register

gie equ 0x07 ; global interrupt enable

peie equ 0x06 ; peripheral interrupt enable

tmr0ie equ 0x05 ; Timer0 interrupt enable

tmr0if equ 0x02 ; Timer0 interrupt flag

PIR1 equ 0x0C ; Peripheral interrupt flags reg 1

tmr1if equ 0x00 ; Timer1 interrupt flag

txif equ 0x04 ; UART transmit interrupt flag

rcif equ 0x05 ; UART receive interrupt flag

TMR1L equ 0x0E ; Timer1 count register low byte

TMR1H equ 0x0F ; Timer1 count register high byte

T1CON equ 0x10 ; Timer1 control register

SSPCON equ 0x14 ; Synch serial port control reg 1

CCP1CON equ 0x17 ; Capture/Compare/PWM control reg 1

RCSTA equ 0x18 ; Receive status and control register

spen equ 0x07 ; serial port enable

rx9 equ 0x06 ; 9-bit receive enable

sren equ 0x05 ; single receive enable

cren equ 0x04 ; continuous receive enable

adden equ 0x03 ; address detect enable

ferr equ 0x02 ; framing error

oerr equ 0x01 ; overrun error

rx9d equ 0x00 ; 9th bit of received data

TXREG equ 0x19 ; UART transmit data register

RCREG equ 0x1A ; UART receive data register

CCP2CON equ 0x1D ; Capture/Compare/PWM control reg 2

ADCON0 equ 0x1F ; Analogue-to-digital control reg 0

;

; System registers in Bank 1

OPTION_REG equ 0x81 ; Option register

TRISA equ 0x85 ; portA pin I/O direction

TRISB equ 0x86 ; portB pin I/O direction

TRISC equ 0x87 ; portC pin I/O direction

PIE1 equ 0x8C ; Peripheral interrupt enable reg 1

tmr1ie equ 0x00 ; Timer1 interrupt enable

txie equ 0x04 ; UART transmit interrupt enable flag

rcie equ 0x05 ; UART receive interrupt enable flag

PCON equ 0x8E ; Power control register

~ 17 ~

WPUB equ 0x95 ; portB weak pull-up resistors

IOCB equ 0x96 ; portB interrupt-on-change

TXSTA equ 0x98 ; Transmit status and control register

csrc equ 0x07 ; clock source select

tx9 equ 0x06 ; 9-bit transmit enable

txen equ 0x05 ; transmit enable

synch equ 0x04 ; UART mode select

sendb equ 0x03 ; send break character

brgh equ 0x02 ; high baud rate select

trmt equ 0x01 ; transmit shift register status

tx9d equ 0x00 ; 9th bit of transmit data

SPBRG equ 0x99 ; Serial port baud rate generator

SPBRGH equ 0x9A ; Serial port baud rate generator (high)

PSTRCON equ 0x9D ; pulse steering control register

;

; System registers in Bank 2

CM1CON0 equ 0x107 ; Comparator C1 control register 0

CM2CON0 equ 0x108 ; Comparator C2 control register 0

CM2CON1 equ 0x109 ; Comparator C2 control register 1

;

; System registers in Bank 3

BAUDCTL equ 0x187 ; Baud rate control register

abdovf equ 0x07 ; auto-baud detect overflow

rcidl equ 0x06 ; receive idle flag

sckp equ 0x04 ; synchronous clock polarity select

brg16 equ 0x03 ; 16-bit baud rate generator

wue equ 0x01 ; wake-up enable

abden equ 0x00 ; auto-baud detect enable

ANSEL equ 0x188 ; Analogue select channels 0-7

ANSELH equ 0x189 ; Analogue select channels 8-13

;

f equ 0x01 ; f and w identify destination register

w equ 0x00

;

; **

; Block B - Definition of user registers - Accessible only in bank 0

; **

;

; I/O ports

portAmirror equ 0x20

ncRA0 equ 0x00 ; Output - not connected

ncRA1 equ 0x01 ; Output - not connected

ncRA2 equ 0x02 ; Output - not connected

ncRA3 equ 0x03 ; Output - not connected

ncRA4 equ 0x04 ; Output - not connected

ncRA5 equ 0x05 ; Output - not connected

;

portBmirror equ 0x21

Bit1 equ 0x00 ; Output - Display LED - LSB

Bit2 equ 0x01 ; Output - Display LED

Bit3 equ 0x02 ; Output - Display LED

Bit4 equ 0x03 ; Output - Display LED

Bit5 equ 0x04 ; Output - Display LED

Bit6 equ 0x05 ; Output - Display LED

Bit7 equ 0x06 ; Output - Display LED

Bit8 equ 0x07 ; Output - Display LED - MSB

;

~ 18 ~

portCmirror equ 0x22

ERR1 equ 0x00 ; Output - Error LED - LSB

ERR2 equ 0x01 ; Output - Error LED

ERR3 equ 0x02 ; Output - Error LED

ERR4 equ 0x03 ; Output - Error LED - MSB

Byte1 equ 0x04 ; Output - not connected

Byte2 equ 0x05 ; Output - not connected

TX equ 0x06 ; Output - UART asynchronous transmit

RX equ 0x07 ; Input - UART asynchronous receive

;

; Flags to indicate which types of interrupts should be processed by the ISR.

; If a bit is zero, the corresponding interrupts are not processed

IntDoISR equ 0x23

HostPktRecv equ 0x00 ; A packet is being received from Host PC

HostPktSend equ 0x01 ; A packet is being sent to Host PC

TimerZero equ 0x02 ; 1ms Timer0 expiry

TimerOne equ 0x03 ; 10ms Timer1 expiry

;

; Flags to indicate which types of interrupts have occurred, and been processed

; by the ISR

IntTrig equ 0x24 ; Flags for interrupt identification

HostPktRecd equ 0x00 ; A packet has been received from Host PC

HostPktSent equ 0x01 ; A packet has been sent to Host PC

TimerZero equ 0x02 ; 1ms Timer0 expiry

TimerOne equ 0x03 ; 10ms Timer1 expiry

;

; Any byte received from or sent to the Host PC

HostInByte equ 0x25

HostOutByte equ 0x26

;

; Three-byte packet being received from the host PC

HostInNumByte equ 0x27 ; Number of bytes received so far

HostInPktH equ 0x28 ; Most-significant byte in packet

HostInPktM equ 0x29

HostInPktL equ 0x2A ; Least-significant byte in packet

;

; Three-byte packet being sent to the host PC

HostOutNumByte equ 0x2B ; Number of bytes sent so far

HostOutPktH equ 0x2C ; Most-significant byte in packet

HostOutPktM equ 0x2D

HostOutPktL equ 0x2E ; Least-significant byte in packet

;

; Register used to display error codes

ErrorCode equ 0x2F

;

; Temporary registers used in the subroutines indicated

tempDus equ 0x30 ; del10us(), del50us() and del100us()

;

; Registers used for saves before executing ISR

w_temp equ 0x70

status_temp equ 0x71

;

; **

; Hard start

; **

;

 org 0x0000

~ 19 ~

HardStart

 bcf INTCON,gie

 goto InitializeSystemRegisters

;

; **

; Block C - Interrupt Service Routine

; **

;

 org 0x0004

ISR

 ; Disable global interrupts

 bcf INTCON,gie

 ; Save current status and w-reg. Swaps do not affect status bits.

 movwf w_temp

 swapf STATUS,w

 movwf status_temp

ISR1

 ; Branch based on the UART receive-complete interrupt flag

 btfss PIR1,rcif

 goto ISR4 ; Goto since not a receive interrupt

 ; Do we want to process receive-complete interrupts? This test is

 ; not really necessary since we always want to process packets received

 ; from the Host PC.

 ;btfss IntDoISR,HostPktRecv

 ;goto ISR_Finish ; Goto since we do not want these interrupts

 ; **

 ; *** Process a byte received from the Host PC *************************

 ; **

 ; Before reading the byte, check the error flags in register RCSTA

 btfsc RCSTA,ferr ; Bit=1 after a framing error

 goto Error_FrameErr ; Goto since a framing error occurred

 btfsc RCSTA,oerr ; Bit=1 after an overrun error

 goto Error_OverrunErr ; Goto since an overrun error occurred

 ; No errors were detected, so read the byte received

 movf RCREG,w

 movwf HostInByte ; Save the byte in register HostInByte

 ; These interrupts occur after a byte has been read, so register

 ; HostInNumByte needs to be incremented. Note that HostInNumByte is

 ; reset to zero after the third byte in a packet has been received.

 incf HostInNumByte,f

 ; If appropriate, save the first (high) byte of the incoming packet

 movf HostInNumByte,w

 xorlw 0x01 ; Z=1 if number of bytes received = 1

 btfss STATUS,zero

 goto ISR2 ; Goto since number of bytes received > 1

 movf HostInByte,w

 movwf HostInPktH ; Save high (first) byte of packet

 goto ISR_Finish

ISR2

 ; If appropriate, save the second (middle) byte of the incoming packet

 movf HostInNumByte,w

 xorlw 0x02 ; Z=1 if number of bytes received = 2

 btfss STATUS,zero

 goto ISR3 ; Goto since number of bytes received > 2

 movf HostInByte,w

 movwf HostInPktM ; Save middle byte of packet

 goto ISR_Finish

~ 20 ~

ISR3

 ; The only choice left is to save the third (low) byte of the packet

 movf HostInByte,w

 movwf HostInPktL ; Save low (last) byte of packet

 ; Reset HostInNumByte to zero in preparation for the next packet

 clrf HostInNumByte ; Set number of bytes received = 0

 ; Tell the MainProgram that a packet has been received

 bsf IntTrig,HostPktRecd

 goto ISR_Finish

ISR4

 ; Branch based on the UART transmit-complete interrupt flag

 btfss PIR1,txif

 goto ISR_Finish ; Goto since not a transmit interrupt

 ; Do we want to process transmit-complete interrupts?

 btfss IntDoISR,HostPktSend

 goto ISR_Finish ; Goto since we do not want these interrupts

 ; **

 ; *** Process completion of sending a byte to the Host PC **************

 ; **

 ; These interrupts occur after a byte has been transferred out, so

 ; register HostOutNumByte needs to be incremented. HostOutNumByte is

 ; reset to zero after the third byte has been sent.

 incf HostOutNumByte,f

 ; If appropriate, send the second (middle) byte of the outgoing packet

 movf HostOutNumByte,w

 xorlw 0x01 ; Z=1 if number of bytes sent = 1

 btfss STATUS,zero

 goto ISR5 ; Goto since number of bytes sent > 1

 movf HostOutPktM,w

 movwf TXREG ; Send the middle byte of the packet

 goto ISR_Finish

ISR5

 ; If appropriate, send the third (low) byte of the outgoing packet

 movf HostOutNumByte,w

 xorlw 0x02 ; Z=1 if number of bytes sent = 2

 btfss STATUS,zero

 goto ISR6 ; Goto since number of bytes sent > 2

 movf HostOutPktL,w

 movwf TXREG ; Send the low byte of the packet

 goto ISR_Finish

ISR6

 ; Three bytes have been sent, so the packet transmission is complete

 bsf STATUS,page0 ; Select register bank 1

 bcf PIE1,txie ; Disable UART transmit-complete interrupts

 bcf STATUS,page0 ; Re-select register bank 0

 ; Record that we no longer want the ISR to process interrupts arising

 ; from transmission to the Host PC

 bcf IntDoISR,HostPktSend

 ; Reset HostOutNumByte to zero in preparation for the next packet

 clrf HostOutNumByte

 ; Tell the MainProgram that the packet has been sent

 bsf IntTrig,HostPktSent

 goto ISR_Finish

ISR_Finish

 ; End-of-interrupt

 swapf status_temp,w ; Retrieve the original status and w-reg

 movwf STATUS

~ 21 ~

 swapf w_temp,f

 swapf w_temp,w

 bsf INTCON,gie ; Re-enable global interrupts

 retfie

;

; **

; Block D - Initialization of system registers

; **

;

InitializeSystemRegisters

 ; Select register bank 0

 bcf STATUS,page0

 bcf STATUS,page1

 ; Reset the Timer0 counter

 clrf TMR0

 ; INTCON=0 disables all interrupt activity (affects portB)

 clrf INTCON

 ; Reset the Timer1 counters

 clrf TMR1L

 clrf TMR1H

 ; PIR1=0 clears all peripheral interrupt flags

 clrf PIR1

 ; Configure Timer1

 clrf T1CON

 ; SSPCON<5>=0 disables synchronous serial port (affects portA and portC)

 clrf SSPCON

 ; CCP1CON=0 disables Enhanced C/C/P module (affects portB and portC)

 clrf CCP1CON

 ; Configure RCSTA: UART receive status and control register

 ; Default configuration is for both Transmit and Receive modes enabled,

 ; with the UART module not enabled yet.

 ; RCSTA<spen>=0/1 ; Serial port disabled/enabled

 ; RCSTA<rx9>=0 ; 8-bit transmission

 ; RCSTA<sren>=0 ; Don't care (Asynchronous mode)

 ; RCSTA<cren>=0/1 ; Disable/enable receiver

 ; RCSTA<adden>=0 ; Disable address detection

 ; RCSTA<ferr>=0 ; No framing error

 ; RCSTA<oerr>=0 ; No overrun error

 ; RCSTA<rx9D>=0 ; 9th bit is not used

 ; To receive: b'10010000'

 movlw B'00010000'

 movwf RCSTA

 ; Clear the UART transmit and receive registers

 clrf TXREG

 clrf RCREG

 ; CCP2CON=0 disables C/C/P module (affects portC)

 clrf CCP2CON

 ; ADCON0=0 disables the A/D module (affects portA)

 clrf ADCON0

 ;

 ; Select register bank 1

 bsf STATUS,page0

 bcf STATUS,page1

 ; Configure OPTION_REG (affects portB)

 ; OPTION_REG<7>=1 ; Disable PortB pull-up resistors

 ; OPTION_REG<6>=0 ; RB0 interrupt on falling edge

 ; OPTION_REG<5>=0 ; Internal clock (Fosc/4) drives Timer0

~ 22 ~

 ; OPTION_REG<4>=0 ; Increment Timer0 on low-to-high

 ; OPTION_REG<3>=0 ; Assign prescalar to Timer0

 ; OPTION_REG<2-0>=100 ; Set Timer0 prescalar 32:1

 movlw 0x84

 movwf OPTION_REG

 ; Configure portA for output

 clrf TRISA

 ; Configure all pins of portB for output

 movlw 0x00

 movwf TRISB

 ; Configure RC7 for input; all other pins of portC for output

 movlw 0x80

 movwf TRISC

 ; PIE1=0 disables all peripheral interrupt activity

 clrf PIE1

 ; PCON<4-5>=0 disables wake-up and brown-out resets

 bcf PCON,5

 bcf PCON,4

 ; WPUB=0 disables weak pull-up resistors (affects portB)

 clrf WPUB

 ; IOCB=0 disables Interrupt-on-change (affects portB)

 clrf IOCB

 ; Configure TXSTA: UART transmit status and control register

 ; Default configuration is for both Transmit and Receive modes enabled,

 ; with the UART module not enabled yet.

 ; Note: For 9600 baud in asynchronous mode when using a 20MHz clock, the

 ; best baud rate setting is achieved with: (i) brgh=1, (ii) brg16=1 and

 ; spbrg=d'520'. The resulting timing error is -0.03%.

 ; Note: For 19,200 baud with a 20MHz clock, set (i) brgh=1, (ii) brg16=1

 ; and spbrg=d'259'. The resulting error is +0.16%.

 ; TXSTA<csrc>=0 ; Don't care (Asynchronous mode)

 ; TXSTA<tx9>=0 ; 8-bit transmission

 ; TXSTA<txen>=1/0 ; Transmit enabled/disabled

 ; TXSTA<synch>=0 ; Asynchronous mode

 ; TXSTA<sendb>=0 ; Synch break transmission completed

 ; TXSTA<brgh>=1 ; High-speed baud rate selected

 ; TXSTA<trmt>=0 ; TSR register is full

 ; TXSTA<tx9d>=0 ; 9th bit is not used

 ; To transmit: b'10100100'

 movlw B'00100100'

 movwf TXSTA

 ; Configure SPBRG and SPBRGH for 9600 baud as described above, where

 ; d'520' = 0x0208, or configure for 19,200 baud with d'259' = 0x0103.

 movlw 0x03

 movwf SPBRG

 movlw 0x01

 movwf SPBRGH

 ; PSTRCON=0 zeroes the steering pin assignments (affects portC)

 clrf PSTRCON

 ;

 ; Select register bank 2

 bcf STATUS,page0

 bsf STATUS,page1

 ; CM1CON0=0 disables Comparator 1 module (affects portA)

 clrf CM1CON0

 ; CM2CON0=0 disables Comparator 2 module (affects portA)

 clrf CM2CON0

~ 23 ~

 ; CM2CON1=0 disables Comparator 2 module (affects portA and portB)

 clrf CM2CON1

 ;

 ; Select register bank 3

 bsf STATUS,page0

 bsf STATUS,page1

 ; Configure BAUDCTL: Baud rate control register

 ; BAUDCTL<abdovf>=0 ; Read-only

 ; BAUDCTL<rcidl>=0 ; Read-only

 ; BAUDCTL<sckp>=0 ; Transmit non-inverted

 ; BAUDCTL<brg16>=1 ; Use 16-bit baud rate generator

 ; BAUDCTL<wue>=0 ; Receiver is operating normally

 ; BAUDCTL<abden>=0 ; Disable auto-baud detect

 movlw 0x08

 movwf BAUDCTL

 ; Ensure that all pins are digital I/O, not analogue

 clrf ANSEL ; Set portA pins as digital I/O

 clrf ANSELH ; Set portB pins as digital I/O

 ;

 ; Select register bank 0 for main program

 bcf STATUS,page0

 bcf STATUS,page1

;

; **

; Block E - Initialization of user registers

; **

;

InitializeUserRegisters

 ; Clear all Display LEDs

 clrf portBmirror

 movf portBmirror,w

 movwf portB

 ; Clear all Error LEDs, but be careful not to touch RC7 and RC8

 movf portC,w

 andlw 0xC0

 movwf portC

 ; For the time being, the ISR should ignore all types of interrupts

 clrf IntDoISR

 ; Since no interrupts have occurred, clear the IntTrig register

 clrf IntTrig

;

; **

; Block F - Initialize communication with the Host PC

; **

;

 ; Wait 100ms before starting the initialization process. This will

 ; de-bounce the power-on or reset procedure and prevent the

 ; initialization process from re-starting, something which will confuse

 ; the Host PC.

 call del100ms

 ; Enable the UART module (Note that all interrupts are disabled)

 bsf RCSTA,spen

 ; Make sure the receive buffer is completely empty

 movf RCREG,w

 movf RCREG,w

ICWHP1

 ; Wait until a byte is received from the Host PC

~ 24 ~

 btfss PIR1,rcif ; Bit=1 when a byte has been received

 goto ICWHP1 ; Goto since nothing has been received

 ; Read the error flags in register RCSTA

 btfsc RCSTA,ferr ; Bit=1 after a framing error

 goto Error_FrameErr ; Goto since a framing error occurred

 btfsc RCSTA,oerr ; Bit=1 after an overrun error

 goto Error_OverrunErr ; Goto since an overrun error occurred

 ; No errors were detected, so read the byte received

 movf RCREG,w

 movwf HostInByte ; Save the byte in register HostInByte

 ; Display the byte received on portB

 movwf portB

 ; Test if the byte received is ping byte 0xF5. It is assumed, but it's

 ; not vital, that the Host PC will be turned on before this PIC. When

 ; the Host PC is turned on, it may send some spurious signals to the

 ; serial port. The following code ignores all bytes received which are

 ; not the ping byte 0xF5. Of course, if one of the spurious bytes

 ; happens to be 0xF5, then the initialization process will likely stall

 ; and the Host PC will prompt he User to re-start this PIC.

 xorlw 0xF5

 btfss STATUS,zero ; Z=1 if the byte is the ping byte

 goto ICWHP1 ; Wait for a correct ping byte

 ; Transmit ping response byte 0xF6 to the Host PC

 movlw 0xF6

 movwf TXREG

 ; Display the byte sent on portB. Note: It takes one instruction cycle

 ; before the PIR1 register can be tested for completion. It is not

 ; necessary to include a nop instruction since the following movwf

 ; instruction takes the same length of time.

 movwf portB

ICWHP2

 ; Wait until the byte has been transferred out

 btfss PIR1,txif ; Bit=1 when the byte has been transferred

 goto ICWHP2 ; Goto since the transfer is not complete

 ; The Host PC waits 10ms after it receives ping response byte 0xF6.

 ; That delay gives this PIC time to re-configure to receive packets

 ; instead of individual bytes.

 ; Wait 1ms in case the Host PC happens to send another ping byte 0xF5

 ; before it was able to process this PIC's ping response byte.

 call del1ms

 ; Just in case the Host PC does send another ping byte or two before it

 ; can process this PIC's ping response byte, make sure the receive

 ; buffer is completely empty.

 movf RCREG,w

 movf RCREG,w

 ; Set the number of bytes received in the first packet to zero. Note

 ; that the ISR re-sets this number to zero just after receiving the

 ; third byte of a packet. Therefore, the following instruction does not

 ; need to be repeated once this PIC begins to receive complete packets.

 clrf HostInNumByte

 ; Clear the IntTrig receive-complete interrupt flag in preparation for

 ; receiving the first packet

 bcf IntTrig,HostPktRecd

 ; Record that we want the ISR to start processing reception from the

 ; Host PC

 bsf IntDoISR,HostPktRecd

 ; Enable UART receive-complete interrupts. Do not enable UART transmit-

~ 25 ~

 ; complete interrupts.

 bsf STATUS,page0 ; Select register bank 1

 bsf PIE1,rcie ; Enable UART receive-complete interrupts

 bcf STATUS,page0 ; Re-select register bank 0

 bsf INTCON,peie ; Enable peripheral interrupts

 bsf INTCON,gie ; Enable global interrupts

ICWHP3

 ; Wait until the first packet is received from the Host PC

 btfss IntTrig,HostPktRecd ; Bit=1 when a packet has been received

 goto ICWHP3 ; Goto since no packet has been received

 ; Clear the IntTrig receive-complete interrupt flag in preparation for

 ; the next packet

 bcf IntTrig,HostPktRecd

 ; Display the low byte of the packet received on portB

 movf HostInPktL,w

 movwf portB

 ; Test if the packet received is ping packet 0xF00505

 movf HostInPktH,w

 xorlw 0xF0

 btfss STATUS,zero ; Z=1 if the high byte is 0xF0

 goto Error_NotPingPkt ; Goto since not the correct ping packet

 movf HostInPktM,w

 xorlw 0x05

 btfss STATUS,zero ; Z=1 if the middle byte is 0x05

 goto Error_NotPingPkt ; Goto since not the correct ping packet

 movf HostInPktL,w

 xorlw 0x05

 btfss STATUS,zero ; Z=1 if the low byte is 0x05

 goto Error_NotPingPkt ; Goto since not the correct ping packet

 ; Set up the ping response packet 0xF00606

 movlw 0xF0

 movwf HostOutPktH

 movlw 0x06

 movwf HostOutPktM

 movlw 0x06

 movwf HostOutPktL

 movwf portB ; Display the Low byte on portB

 ; Set the number of bytes already sent in the first packet to zero.

 ; Note that the ISR re-sets this number to zero just after sending the

 ; third byte of a packet. Therefore, the following instruction does not

 ; need to be repeated once this PIC begins to send complete packets.

 clrf HostOutNumByte

 ; Clear the IntTrig transmit-complete interrupt flag in preparation for

 ; sending the first packet

 bcf IntTrig,HostPktSent

 ; Send the first (High) byte. The ISR will send the last two bytes

 ; automatically.

 movf HostOutPktH,w

 movwf TXREG

 ; Record that we want the ISR to start processing interrupts arising

 ; from the transmission of three bytes to the Host PC. This flag is

 ; turned off by the ISR once it has sent the third byte.

 bsf IntDoISR,HostPktSent

 ; Enable UART transmit-complete interrupts. Note that txie interrupts

 ; may be enabled only after loading register TXREG has started the

 ; process. If interrupts are enabled before moving a byte into register

 ; TXREG, an interrupt will fire immediately.

~ 26 ~

 bsf STATUS,page0 ; Select register bank 1

 bsf PIE1,txie ; Enable UART transmit-complete interrupts

 bcf STATUS,page0 ; Re-select register bank 0

ICWHP4

 ; Wait until the entire packet 0xF00606 has been transferred out

 btfss IntTrig,HostPktSent

 goto ICWHP4

 ; Clear the IntTrig transmit-complete interrupt flag in preparation for

 ; the next packet

 bcf IntTrig,HostPktSent

 ; Initialization is complete; start the main program

;

; **

; Block G - Main program

; **

;

MainProgram

ReceiveFromHost

 ; Wait until the next packet is received from the Host PC

 btfss IntTrig,HostPktRecd

 goto ReceiveFromHost

 ; Clear the IntTrig receive-complete interrupt flag in preparation for

 ; the next packet

 bcf IntTrig,HostPktRecd

 ; Display the low byte of the packet on portB

 movf HostInPktL,w

 movwf portB

 ; Complement the packet received

 comf HostInPktH,w

 movwf HostOutPktH

 comf HostInPktM,w

 movwf HostOutPktM

 comf HostInPktL,w

 movwf HostOutPktL

 ; Send the complemented packet

 movf HostOutPktH,w

 movwf TXREG

 ; Record that we want the ISR to start processing interrupts arising

 ; from the transmission of three bytes to the Host PC. This flag is

 ; turned off by the ISR once it has sent the third byte.

 bsf IntDoISR,HostPktSend

 ; Enable UART transmit-complete interrupts. Note that txie interrupts

 ; may be enabled only after loading register TXREG has started the

 ; process. If interrupts are enabled before moving a byte into register

 ; TXREG, an interrupt will fire immediately.

 bsf STATUS,page0 ; Select register bank 1

 bsf PIE1,txie ; Enable UART transmit-complete interrupts

 bcf STATUS,page0 ; Re-select register bank 0

MP1

 ; Wait until the entire packet has been transferred out

 btfss IntTrig,HostPktSent

 goto MP1

 ; Clear the IntTrig transmit-complete interrupt flag in preparation for

 ; the next packet

 bcf IntTrig,HostPktSent

 ; Start waiting to receive another packet

~ 27 ~

 goto ReceiveFromHost

;

; **

; Block H - Subroutine Error_Flash flashes a unique non-zero error code on the

; four low-order bits of portC. The error code is lit up for one-half

; second, alternating with half-second blanks. The error code is

; passed into this subroutine in User register ErrorCode. Care must

; be taken when using portC, which is also used for UART

; communication.

; Error codes while receiving a byte from the Host:-

; Code 0x01: Framing error detected by UART module

; Code 0x02: Overrun error detected by UART module

; Error codes while receiving a packet from the Host PC:-

; Code 0x03: First packet is not ping packet 0xF00505

; **

;

Error_FrameErr

 movlw 0x01

 movwf ErrorCode

 goto Error_Flash

Error_OverrunErr

 movlw 0x02

 movwf ErrorCode

 goto Error_Flash

Error_NotPingPkt

 movlw 0x03

 movwf ErrorCode

 goto Error_Flash

Error_Flash

EF1

 movwf portC

 andlw 0xC0

 xorwf ErrorCode,w

 movwf portC

 call del500ms

 movwf portC

 andlw 0xC0

 movwf portC

 call del500ms

 goto EF1

;

; **

; Block I - Miscellaneous and timing subroutines

; Subroutines:-

; del1us - timed delay of exactly 1.00us

; del10us - timed delay of exactly 10.0us

; del50us - timed delay of exactly 50us

; del100us - timed delay of exactly 100us

; del1ms - timed delay of approximately 1ms

; del10ms - timed delay of approximately 10ms

; del100ms - timed delay of approximately 100ms

; del500ms - timed delay of approximately 500ms

; **

;

del1us

; This subroutine is a timed delay of exactly one microsecond, including the

; invoking "call". At 20MHz, each instruction cycle takes 200ns, or 0.2us. To

~ 28 ~

; delay 1us, we need 5 instruction cycles. The "call" takes 2 cycles. The

; "return" takes 2 instruction cycles. The "nop" takes 1 instruction cycle.

 nop

 return

;

del10us

; This subroutine is a timed delay of exactly 10 microseconds, including the

; invoking "call". This is equal to 50 instruction cycles at 20MHz.

 call del1us ; 5 cycles

 movlw 0x0A ; 1 cycle; 0x0A = d'10'

 movwf tempDus ; 1 cycle

D10us

 nop ; 10 cycles

 decfsz tempDus,f ; 9 interim tests + 2 final = 11 cycles

 goto D10us ; 9 x 2 cycles = 18 cycles

 return ; 2 cycles

;

del50us

; This subroutine is a timed delay of exactly 50 microseconds, including the

; invoking "call". This is equal to 250 instruction cycles at 20MHz.

 nop ; 1 cycle

 movlw 0x3D ; 1 cycle; 0x3D = d'61'

 movwf tempDus ; 1 cycle

D50us

 nop ; 61 cycles

 decfsz tempDus,f ; 60 interim tests + 2 final = 62 cycles

 goto D50us ; 60 x 2 cycles = 120 cycles

 return ; 2 cycles

;

del100us

; This subroutine is a timed delay of exactly 100 microseconds, including

; the invoking "call". This is equal to 500 instruction cycles are 20MHz.

 nop ; 5 cycles for the nop's

 nop

 nop

 nop

 nop

 movlw 0x62 ; 1 cycle; 0x62 = d'98'

 movwf tempDus ; 1 cycle

D100us

 nop ; 98 cycles

 nop ; 98 cycles

 decfsz tempDus,f ; 97 interim tests + 2 final = 99 cycles

 goto D100us ; 97 x 2 cycles = 194 cycles

 return ; 2 cycles

;

del1ms

; This subroutine is a timed delay of about one millisecond. It calls

; subroutine del100us() ten times.

 call del100us

 call del100us

 call del100us

 call del100us

 call del100us

 call del100us

 call del100us

 call del100us

~ 29 ~

 call del100us

 call del100us

 return

;

del10ms

; This subroutine is a timed delay of about ten milliseconds. It calls

; subroutine delay100us() ten times.

 call del1ms

 call del1ms

 call del1ms

 call del1ms

 call del1ms

 call del1ms

 call del1ms

 call del1ms

 call del1ms

 call del1ms

 return

;

del100ms

; This subroutine is a timed delay of about 100 milliseconds. It calls

; subroutine del10ms() ten times.

 call del10ms

 call del10ms

 call del10ms

 call del10ms

 call del10ms

 call del10ms

 call del10ms

 call del10ms

 call del10ms

 call del10ms

 return

;

del500ms

; This subroutine is a timed delay of about 500 milliseconds. It calls

; subroutine del100ms() five times.

 call del100ms

 call del100ms

 call del100ms

 call del100ms

 call del100ms

 return

;

 END ; end assembly

~ 30 ~

Appendix "C"

Visual Basic program for the Host PC

Main form Form1.vb

Option Strict On
Option Explicit On

Imports System
Imports System.Windows.Forms
Imports System.ComponentModel
Imports System.Threading
Imports System.IO
Imports System.IO.Ports

Public Class Form1
 Inherits System.Windows.Forms.Form

 Public Sub New()
 ' Set parameters of the screen and the display
 Name = "Main"
 Text = "PIC-to-Host Comm Test"
 FormBorderStyle = System.Windows.Forms.FormBorderStyle.Fixed3D
 Size = New Drawing.Size(My.Computer.Screen.Bounds.Width, My.Computer.Screen.Bounds.Height)
 CenterToScreen()
 MinimizeBox = True
 MaximizeBox = True
 Me.Refresh()
 End Sub

 Private Sub Main_Load() Handles Me.Load
 ' This subroutine runs automatically when the form is loaded
 End Sub

 ' ***
 ' *** Controls for program flow ***
 ' ***
 Private ButtonRow As Int32 = 5
 Private TimeRow As Int32 = 40
 Private CommStatusRow As Int32 = TimeRow + 40

 Private WithEvents buttonStart As New System.Windows.Forms.Button With
 {.Size = New Drawing.Size(100, 30), .Location = New Drawing.Point(5, ButtonRow),
 .Text = "Start", .TextAlign = ContentAlignment.MiddleCenter,
 .Font = New Font("Arial", 14), .Visible = True, .Parent = Me}

 Private Sub buttonStart_Click() Handles buttonStart.MouseClick
 PICComm.InitializeCommWithCommPICA()
 PICComm.TestProgram()
 End Sub

 Private WithEvents buttonExit As New System.Windows.Forms.Button With
 {.Size = New Drawing.Size(100, 30), .Location = New Drawing.Point(110, ButtonRow),
 .Text = "Exit", .TextAlign = ContentAlignment.MiddleCenter,
 .Font = New Font("Arial", 14), .Visible = True, .Parent = Me}

~ 31 ~

 Public Sub buttonExit_Click() Handles buttonExit.MouseClick
 ' Close the serial port
 Try
 If (CommPICASerialPort.IsOpen = True) Then
 CommPICASerialPort.Close()
 CommPICASerialPort.Dispose()
 End If
 Catch
 End Try
 ' Exit from the application
 Application.Exit()
 End
 End Sub

 ' ***
 ' *** Controls for start and stop times ***
 ' ***

 Private labelStartTime As New System.Windows.Forms.Label With
 {.Size = New Drawing.Size(140, 30), .Location = New Drawing.Point(5, TimeRow),
 .Text = "Start time", .TextAlign = ContentAlignment.MiddleLeft,
 .Font = New Font("Arial", 14), .Visible = True, .Parent = Me}

 Public tbStartTime As New System.Windows.Forms.Label With
 {.Size = New Drawing.Size(140, 30), .Location = New Drawing.Point(150, TimeRow),
 .Text = "", .TextAlign = ContentAlignment.MiddleLeft, .BackColor = Color.White,
 .Font = New Font("Arial", 14), .BorderStyle = BorderStyle.FixedSingle,
 .Visible = True, .Parent = Me}

 Private labelStopTime As New System.Windows.Forms.Label With
 {.Size = New Drawing.Size(140, 30), .Location = New Drawing.Point(330, TimeRow),
 .Text = "Stop time", .TextAlign = ContentAlignment.MiddleLeft,
 .Font = New Font("Arial", 14), .Visible = True, .Parent = Me}

 Public tbStopTime As New System.Windows.Forms.Label With
 {.Size = New Drawing.Size(140, 30), .Location = New Drawing.Point(475, TimeRow),
 .Text = "", .TextAlign = ContentAlignment.MiddleLeft, .BackColor = Color.White,
 .Font = New Font("Arial", 14), .BorderStyle = BorderStyle.FixedSingle,
 .Visible = True, .Parent = Me}

 ' ***
 ' *** Controls for communication status ***
 ' ***

 Private labelBreakLine1 As New System.Windows.Forms.Panel With
 {.Size = New Drawing.Size(610, 2), .Location = New Drawing.Point(5, TimeRow + 35 - 1),
 .BackColor = Color.Black, .Visible = True, .Parent = Me}

 Private labelCommStatus As New System.Windows.Forms.Label With
 {.Size = New Drawing.Size(200, 30), .Location = New Drawing.Point(5, CommStatusRow),
 .Text = "Communication status", .TextAlign = ContentAlignment.MiddleLeft,
 .Font = New Font("Arial", 14), .Visible = True, .Parent = Me}

 Private labelCommPICAStatusHdr As New System.Windows.Forms.Label With
 {.Size = New Drawing.Size(150, 30), .Location = New Drawing.Point(5, CommStatusRow + 35),
 .Text = "CommPICA", .TextAlign = ContentAlignment.MiddleLeft,
 .Font = New Font("Arial", 14), .Visible = True, .Parent = Me}

~ 32 ~

 Public WithEvents labelCommPICAStatus As New System.Windows.Forms.Label With
 {.Size = New Drawing.Size(460, 50), .Location = New Drawing.Point(160, CommStatusRow + 35),
 .Text = "", .TextAlign = ContentAlignment.TopLeft, .BackColor = Color.White,
 .Font = New Font("Arial", 14), .BorderStyle = BorderStyle.FixedSingle,
 .Visible = True, .Parent = Me}

 Private labelCommPICATestHdr As New System.Windows.Forms.Label With
 {.Size = New Drawing.Size(150, 30), .Location = New Drawing.Point(5, CommStatusRow + 90),
 .Text = "CommPICA test", .TextAlign = ContentAlignment.MiddleLeft,
 .Font = New Font("Arial", 14), .Visible = True, .Parent = Me}

 Public WithEvents labelCommPICATest As New System.Windows.Forms.Label With
 {.Size = New Drawing.Size(460, 50), .Location = New Drawing.Point(160, CommStatusRow + 90),
 .Text = "", .TextAlign = ContentAlignment.TopLeft, .BackColor = Color.White,
 .Font = New Font("Arial", 14), .BorderStyle = BorderStyle.FixedSingle,
 .Visible = True, .Parent = Me}

End Class

Module PICComm.vb

Option Strict On
Option Explicit On

' This module contains all of the routines needed to communicate with CommPICA.

' List of subroutines:-
' RS-232 communication with CommPICA
' InitializeCommWithCommPICA()
' TestProgram()
' BWCommPICASendPkt_DoWork(Int32)
' BWCommPICASendPkt_RunWorkerCompleted()
' CommPICAAsyncReadBytes()
' CommPICAGetNextPacket(Int32)

Imports System
Imports System.Windows.Forms
Imports System.ComponentModel
Imports System.Threading
Imports System.IO
Imports System.IO.Ports

Public Module PICComm

 ' Serial port for CommPICA
 Public WithEvents CommPICASerialPort As SerialPort
 Private DefaultCommPICASerialPort As String = "COM5"

 ' One-based buffer which stores ***ALL*** bytes received from CommPICA. NumBytesAdded
 ' is the number of bytes placed into the buffer by the read-procedure. NumBytesUsed
 ' is the number of bytes which have been taken out of the buffer by the packet-
 ' generation-procedure.
 Private CommPICAInBytes(3 * 256 * 256 * 256) As Byte
 Private CommPICAInBytes_NumBytesAdded As Int32
 Private CommPICAInBytes_NumBytesUsed As Int32

~ 33 ~

 ' A packet to be sent to CommPICA
 Private CommPICAPktToSend As Int32

 ' Background worker for transmission
 Private WithEvents BWCommPICASendPkt As BackgroundWorker

 ' Flag to mark completion of transmission
 Private CommPICASendPktComplete As Boolean = False

 ' Variables to display the start and stop times
 Private StartDateTime As Date
 Private StartTimeStr As String
 Private StopDateTime As Date
 Private StopTimeStr As String

 Public Sub InitializeCommWithCommPICA()
 ' This subroutine runs through all of the steps to initialize communication with
 ' CommPICA. Since communication with CommPICA is vital, this is a "blocking"
 ' subroutine which does not allow anything else to happen until communication
 ' has been established successfully.
 ' Step #1: ' Close any CommPICA serial port which is already open
 Try
 CommPICASerialPort.Close()
 CommPICASerialPort.Dispose()
 Threading.Thread.Sleep(25)
 Application.DoEvents()
 Catch
 End Try
 ' Step #2: Set the properties for CommPICA before it is opened
 CommPICASerialPort = New SerialPort
 CommPICASerialPort.PortName = DefaultCommPICASerialPort
 CommPICASerialPort.BaudRate = 19200
 CommPICASerialPort.DataBits = 8
 CommPICASerialPort.StopBits = StopBits.One
 CommPICASerialPort.Parity = Parity.None
 CommPICASerialPort.Handshake = Handshake.None
 CommPICASerialPort.ReadBufferSize = 2048
 CommPICASerialPort.WriteBufferSize = 2048
 CommPICASerialPort.ReceivedBytesThreshold = 1
 CommPICASerialPort.ReadTimeout = -1
 ' Step #3: Check every 25ms until a USB-to-serial port adapter cable is inserted
 ' into the default CommPICA USB socket.
 Do
 Try
 ' Try to open the selected serial port
 CommPICASerialPort.Open()
 ' Empty CommPICA's input and output buffers
 CommPICASerialPort.DiscardInBuffer()
 CommPICASerialPort.DiscardOutBuffer()
 Exit Do
 Catch
 Form1.labelCommPICAStatus.Text =
 "Could not open CommPICA serial port." & vbCrLf &
 "Make sure that CommPICA is plugged in."
 Form1.labelCommPICAStatus.BackColor = Color.HotPink
 Form1.labelCommPICAStatus.Refresh()
 End Try

~ 34 ~

 Threading.Thread.Sleep(25)
 Application.DoEvents()
 Loop
 Form1.labelCommPICAStatus.Text = ""
 Form1.labelCommPICAStatus.BackColor = Color.White
 Form1.labelCommPICAStatus.Refresh()
 ' Step 4: Check every 25ms until CommPICA is powered up
 Do
 If (CommPICASerialPort.CtsHolding = True) Then
 Exit Do
 Else
 Form1.labelCommPICAStatus.Text =
 "CTS from CommPICA is low." & vbCrLf &
 "Make sure that CommPICA is turned on."
 Form1.labelCommPICAStatus.BackColor = Color.HotPink
 Form1.labelCommPICAStatus.Refresh()
 End If
 Threading.Thread.Sleep(25)
 Application.DoEvents()
 Loop
 Form1.labelCommPICAStatus.Text = ""
 Form1.labelCommPICAStatus.BackColor = Color.White
 Form1.labelCommPICAStatus.Refresh()
 ' Step #6: Send ping byte &HF5 to CommPICA
 Dim CommPICAOutputByte(0) As Byte
 Try
 CommPICAOutputByte(0) = &HF5
 CommPICASerialPort.Write(CommPICAOutputByte, 0, 1)
 Catch ex As Exception
 ' Treat failure to send as a fatal error. Display an error message for
 ' five seconds and then abort.
 Form1.labelCommPICAStatus.Text =
 "Failed to send ping byte &&HF5 to CommPICA." & vbCrLf &
 "ex = " & ex.ToString
 Form1.labelCommPICAStatus.BackColor = Color.HotPink
 Form1.labelCommPICAStatus.Refresh()
 Threading.Thread.Sleep(5000)
 Application.Exit()
 Exit Sub
 End Try
 ' Step #7: Every 25ms, check to see if CommPICA has sent anything. If CommPICA
 ' has not sent anything, then wait 1ms and then resend ping byte &HF5. If
 ' CommPICA has sent a byte, check to see if it is the ping response byte &HF6.
 ' If it is, then proceed to the next step. Otherwise, wait 1ms and resend ping
 ' byte &HF5.
 Dim CommPICAInputByte(0) As Int32
 Do
 'Wait 25ms
 Threading.Thread.Sleep(25)
 Application.DoEvents()
 ' Check if a reply has been received
 If (CommPICASerialPort.BytesToRead >= 1) Then
 CommPICAInputByte(0) = CommPICASerialPort.ReadByte
 ' Check if the reply is ping response byte &HF6
 If (CommPICAInputByte(0) = &HF6) Then
 Exit Do
 Else
 ' If the byte received is not the ping response byte &HF6, then

~ 35 ~

 ' display the byte received.
 Form1.labelCommPICAStatus.Text =
 "CommPICA responded to ping byte with &&H" &
 CommPICAInputByte(0).ToString("X2")
 Form1.labelCommPICAStatus.BackColor = Color.HotPink
 Form1.labelCommPICAStatus.Refresh()
 End If
 Else
 Form1.labelCommPICAStatus.Text =
 "CommPICA has not responded to ping byte &&HF5."
 Form1.labelCommPICAStatus.BackColor = Color.HotPink
 Form1.labelCommPICAStatus.Refresh()
 End If
 ' Resend ping byte &HF5 to CommPICA
 Try
 CommPICAOutputByte(0) = &HF5
 CommPICASerialPort.Write(CommPICAOutputByte, 0, 1)
 Catch ex As Exception
 ' Treat failure to send as a fatal error. Display an error message for
 ' five seconds and then abort.
 Form1.labelCommPICAStatus.Text =
 "Failed to send ping byte &&HF5 to CommPICA." & vbCrLf &
 "ex = " & ex.ToString
 Form1.labelCommPICAStatus.BackColor = Color.HotPink
 Form1.labelCommPICAStatus.Refresh()
 Threading.Thread.Sleep(5000)
 Application.Exit()
 Exit Sub
 End Try
 Loop
 ' Step #8: Wait 10ms for CommPICA to set the interrupt enables for packet
 ' reception. Use this period to start the asynchronous reader.
 ' Empty CommPICA's input and output buffers
 CommPICASerialPort.DiscardInBuffer()
 CommPICASerialPort.DiscardOutBuffer()
 ' Set the timeout for the base stream
 CommPICASerialPort.BaseStream.ReadTimeout = SerialPort.InfiniteTimeout
 ' Start the asynchronous reader
 CommPICAAsyncReadBytes()
 ' Wait 10ms
 Threading.Thread.Sleep(10)
 ' Step #9: Send the ping packet &HF00505 to CommPICA
 CommPICAPktToSend = &HF00505
 ' Update the GUI
 Form1.labelCommPICAStatus.Text =
 "Sending ping packet &&HF00505 to CommPICA."
 Form1.labelCommPICAStatus.BackColor = Color.White
 Form1.labelCommPICAStatus.Refresh()
 ' Clear the completion flag CommPICASendPktComplete. When the transmission
 ' is complete, the RunWorkerCompleted subroutine will set the flag high.
 CommPICASendPktComplete = False
 ' Start the transmit background worker
 BWCommPICASendPkt = New BackgroundWorker
 BWCommPICASendPkt.RunWorkerAsync(CommPICAPktToSend)
 ' Wait for the transmission to be completed
 Do
 If (CommPICASendPktComplete = True) Then
 CommPICASerialPort.DiscardOutBuffer()

~ 36 ~

 Exit Do
 Else
 Application.DoEvents()
 End If
 Loop
 ' Step #11: Wait for ping response packet &HF00606 to be received
 Do
 Application.DoEvents()
 Dim lNextPacket As Int32
 If (GetNextPacket(lNextPacket) = True) Then
 Form1.labelCommPICATest.Text = lNextPacket.ToString("X6")
 Form1.labelCommPICATest.Refresh()
 ' Test if lNextPacket is the ping response packet &HF00606
 If (lNextPacket = &HF00606) Then
 Form1.labelCommPICAStatus.Text = "CommPICA is in sync."
 Form1.labelCommPICAStatus.BackColor = Color.LightGreen
 Form1.labelCommPICAStatus.Refresh()
 Exit Do
 Else
 Form1.labelCommPICAStatus.Text =
 "CommPICA responded to the ping packet with &&H" &
 lNextPacket.ToString("X6")
 Form1.labelCommPICAStatus.BackColor = Color.HotPink
 Form1.labelCommPICAStatus.Refresh()
 Threading.Thread.Sleep(5000)
 Application.Exit()
 Exit Sub
 End If
 Else
 Form1.labelCommPICAStatus.Text =
 "CommPICA has not responded to ping packet &&HF00505."
 Form1.labelCommPICAStatus.BackColor = Color.HotPink
 Form1.labelCommPICAStatus.Refresh()
 End If
 Loop
 End Sub

 Public Sub TestProgram()
 ' Display the starting time
 StartDateTime = Date.Now
 StartTimeStr = StartDateTime.ToString("h:mm:ss tt")
 Form1.tbStartTime.Text = StartTimeStr
 ' Initialize the first packet to be sent
 CommPICAPktToSend = &H000000
 Do
 ' Clear the completion flag CommPICASendPktComplete. When the transmission
 ' is complete, the RunWorkerCompleted subroutine will set the flag high.
 CommPICASendPktComplete = False
 ' Send the packet
 BWCommPICASendPkt.RunWorkerAsync(CommPICAPktToSend)
 ' Wait for the transmission to be completed
 Do
 If (CommPICASendPktComplete = True) Then
 Exit Do
 Else
 Application.DoEvents()
 End If
 Loop

~ 37 ~

 ' Wait for a packet to be received
 Dim lPacketReceived As Int32
 Do
 If (GetNextPacket(lPacketReceived) = True) Then
 Exit Do
 Else
 Application.DoEvents()
 End If
 Loop
 ' Validate the packet received
 Dim XORResult As Int32 = CommPICAPktToSend Xor lPacketReceived
 If (XORResult <> &H00FFFFFF) Then
 MsgBox(
 "Exchange Error:" & vbCrLf &
 "Packet sent = &&H" & CommPICAPktToSend.ToString("X6") & vbCrLf &
 "Packet received = &&H" & lPacketReceived.ToString("X6"))
 End If
 ' Display the packet sent
 Form1.labelCommPICATest.Text =
 "Packet sent = &&H" & CommPICAPktToSend.ToString("X6")
 Form1.labelCommPICATest.BackColor = Color.Wheat
 Form1.labelCommPICATest.Refresh()
 ' Increment the packet value
 CommPICAPktToSend = CommPICAPktToSend + 1
 ' Test for completion
 If (CommPICAPktToSend >= &H080000) Then
 ' Display the stopping time
 StopDateTime = Date.Now
 StopTimeStr = StopDateTime.ToString("h:mm:ss tt")
 Form1.tbStopTime.Text = StopTimeStr
 MsgBox("Test is complete.")
 Form1.buttonExit_Click()
 End If
 Loop
 End Sub

 Private Sub BWCommPICASendPkt_DoWork(
 ByVal sender As System.Object,
 ByVal e As System.ComponentModel.DoWorkEventArgs) Handles _
 BWCommPICASendPkt.DoWork
 ' Retrieve the packet to send
 Dim lCommPICAPktToSend As Int32 = CInt(e.Argument)
 ' Parse the packet into three bytes
 Dim lOutPkt(2) As Byte
 lOutPkt(0) = CByte((lCommPICAPktToSend And &H00FF0000) >> 16)
 lOutPkt(1) = CByte((lCommPICAPktToSend And &H0000FF00) >> 8)
 lOutPkt(2) = CByte(lCommPICAPktToSend And &H000000FF)
 ' Start to send the packet
 CommPICASerialPort.Write(lOutPkt, 0, 3)
 End Sub

 Private Sub BWCommPICASendPkt_RunWorkerCompleted(
 ByVal sender As Object,
 ByVal e As System.ComponentModel.RunWorkerCompletedEventArgs) Handles _
 BWCommPICASendPkt.RunWorkerCompleted
 ' Set the completion flag
 CommPICASendPktComplete = True
 End Sub

~ 38 ~

 Private Async Sub CommPICAAsyncReadBytes()
 ' Initialize the number of bytes added and used
 CommPICAInBytes_NumBytesAdded = 0
 CommPICAInBytes_NumBytesUsed = 0
 ' Infinite Do-loop runs continuously during the application
 Do While (CommPICASerialPort.IsOpen)
 ' Create a temporary buffer
 Dim BytesToRead As Int32 = 1024
 Dim ReceiveBuffer(1024) As Byte
 Dim NumBytesRead As Int32 = 0
 Try
 ' Read all available bytes -- returns zero if EOF
 NumBytesRead =
 Await CommPICASerialPort.BaseStream.ReadAsync(
 ReceiveBuffer, 0, BytesToRead, CancellationToken.None)
 If (NumBytesRead > 0) Then
 ' Add the bytes to the buffer
 For I As Int32 = 1 To NumBytesRead Step 1
 CommPICAInBytes_NumBytesAdded =
 CommPICAInBytes_NumBytesAdded + 1
 CommPICAInBytes(CommPICAInBytes_NumBytesAdded) =
 ReceiveBuffer(I - 1)
 Next I
 End If
 Catch ex As Exception
 MsgBox(
 "Error in CommPICAAsyncReadBytes()" & vbCrLf &
 ex.ToString())
 End Try
 Loop
 End Sub

 Private Function GetNextPacket(ByRef lNextPacket As Int32) As Boolean
 ' This function returns True if there are enough unprocessed bytes in buffer
 ' CommPICAInBytes to create a packet. The packet is returned in ByRef variable
 ' lNextPacket, but is not meaningful if the function returns False.
 ' Calculate the number of bytes which have not been processed yet
 Dim lNumUnprocessedBytes As Int32 =
 CommPICAInBytes_NumBytesAdded - CommPICAInBytes_NumBytesUsed
 ' Return failure unless there are at least three unprocessed bytes
 If (lNumUnprocessedBytes <= 2) Then
 Return False
 End If
 ' Grab the next three unprocessed bytes
 CommPICAInBytes_NumBytesUsed = CommPICAInBytes_NumBytesUsed + 1
 Dim lInByteH As Int32 = CommPICAInBytes(CommPICAInBytes_NumBytesUsed)
 CommPICAInBytes_NumBytesUsed = CommPICAInBytes_NumBytesUsed + 1
 Dim lInByteM As Int32 = CommPICAInBytes(CommPICAInBytes_NumBytesUsed)
 CommPICAInBytes_NumBytesUsed = CommPICAInBytes_NumBytesUsed + 1
 Dim lInByteL As Int32 = CommPICAInBytes(CommPICAInBytes_NumBytesUsed)
 ' Calculate the value of the packet
 lNextPacket = (lInByteH << 16) + (lInByteM << 8) + lInByteL
 ' Return success
 Return True
 End Function

End Module

