
~ 1 ~ 
 

The magnetic field in and around a finite cylindrical air-core solenoid 

 

Consider a solenoid in the shape of a circular cylinder.  Let its length and inner radius be represented by 

 and , respectively.  Let the number of turns of wire per layer and the number of layers be 

represented by  and , respectively.  A steady current of  amperes flows through the 

winding.  I will often refer to the solenoid as the “coil”. 

 

We will make only two material idealizations.  Firstly, we will assume that the direct current flows 

uniformly through the cross-sectional area of the wire.  Secondly, we will assume that each turn of the 

winding lies entirely in a plane perpendicular to the longitudinal axis of the coil.  In other words, the 

helical “tilt” of practical windings will be ignored.  In practice, winding a coil with an even number of 

layers from one end of the coil and back again will cancel out most of the effect of the tilt. 

 

Let us calculate the magnetic field at some point  which is an axial distance  from the center of the 

coil and a radial distance  away from the longitudinal axis.  Point  can be in the interior of the coil, or 

outside of it, but not in the winding itself. 

 

It is helpful to impose a Euclidian co-ordinate frame with its origin  located at the geometric center of 

the coil.  The -axis is set coincident with the longitudinal axis of the coil and taken to be “positive” when 

pointing more or less in the direction of point .  The -axis can always be chosen so that the plane 

formed by the - and -axes includes point .  But, let us not make that choice.  It is sometimes handy to 

be able to calculate the magnetic field at any point using a single co-ordinate frame.  Instead, let us 

assume that the ray  from the origin to point  falls in a plane rotated around the -axis by angle  in 

the right-hand direction.  The situation is therefore as shown in the following diagram.  Note that I have 

shown the coil with its longitudinal axis vertical.  I have also labeled the central turn of wire and the turns 

at both ends. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The radius of the coil is shown in the figure using the symbol  and not the symbol .   was 

described above as the inner radius of the coil, like the outside of the cylindrical form on whigh the wire 

was wound.  But, the wire itself has non-zero thickness so the exact radius  of any point in the winding 

will depend on which layer of wire is being examined.  To explore this matter further, let us look at one 
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particular turn of the winding.  Let us look at the 
th
 turn from the bottom of the coil in the 

th
 layer of 

the winding. 

 

Let  be the outside diameter of the wire with which the coil is wound.  Since there are  of 

wire along the coil’s length, which we will assume to be wound close one-to-the-next, we can relate the 

length of the coil to the diameter of the wire by .  Therefore, the center of the 

wires in the 
th
 turn from the bottom of the coil has a -co-ordinate equal to: 

 

 

 

Just to be certain, the -co-ordinates of the bottom and top turns are equal to: 

 

 

 

Some quick mental arithmetic will confirm that these are the correct distances whether  is odd or 

even. 

 

In a similar way, one can see that the distance from the longitudinal axis of the coil to the center of the 

wires in the 
th
 layer is equal to: 

 

 

 

The vertical distance  is the same for the 
th
 turn in each layer.  Similarly, the radial distance 

 is the same for all turns in the 
th
 layer. 

 

Now, let us turn our attention to some point  located on the 
th
 turn of wire (the descriptor “from the 

bottom of the coil” will be dropped from now on) in the 
th
 layer of the winding.  Point  can be located 

anywhere “around” this turn of wire.  We can specify exactly where point  is located using the azimuth 

angle  by which the ray  from the origin to point  is rotated away from the -  plane.  The view of 

this turn, as seen from above, is shown in the following figure. 
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Consider now a very small piece of the wire at point , short enough to be considered straight.  If the 

piece you have in mind still has noticeable curvature, then pick a piece one-hundredth as big.  Let the 

length of this small piece of wire be represented by .  Of course, it will be tangent to the circle which 

passes through point .  Accordingly, we can use a vector  to capture both the magnitude and direction 

of the piece of wire.  The “positive” direction of  will be established using the right-hand-rule applied 

to the -axis, which points up out of the page in the figure above.  The following figure shows the 

geometry of , as seen from above. 

 

 

 

 

 

 

 

 

 

 

 

Because it is tangent to the winding,  will be perpendicular to the ray from the longitudinal axis 

(the -axis) to point .  For convenience, we will select  so that point  lies at its geometric midpoint.  

The components of  along the - and -axes are given by  and , respectively, so the vector  

can be written as: 

 

 
 

We can relate length  to angle , or rather to a change in the angle , in the following way.  As seen 

from the longitudinal axis of the coil, line segment  subtends a small angle, which we will represent by 

.  We know that the radius from the longitudinal axis to point  is  so, using the definition of 

the tangent function, we have: 

 

 

 

In the limit, as  gets very small, the tangent function approaches its argument, so this equation 

simplifies to: 

 

 

 

This lets us write vector  as: 

 

 

 

Now, let us look again at this very small piece of wire  and imagine that a direct current of  amperes is 

flowing along its length, in the direction of the vector.  The tiny vector  is called a “current element”.  

Its units are ampere-meters. 
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We now have all the parts which we need to apply Biot-Savart’s Law.  The experiments first done by 

Messrs. Biot and Savart, and confirmed by many others since, showed that a current element such as our 

 produces a magnetic field, which we will represent by , at some point removed by vector  from 

the center of the current element, which is given by: 

 

 

 

There are six things to note about this expression. 

1. Do not confuse  and .   is the ray from the geometric center of the solenoid to the spot at 

which we want to calculate the magnetic field.   points to the same spot, but it starts at the center 

of current element . 

2. The multiplication  in the numerator is a vector cross-product.  The cross-product of two 

vectors, say,  is a third vector, which is perpendicular to both  and  and whose 

magnitude is the scalar product of their two lengths and the sine of the angle between them. 

3.  is the entire magnetic field produced by this current element at point .  The symbol , 

which represents that field, is shown with the difference “ ” because we will (below) add up the 

fields from a lot of such current elements, of which this is only one.   

4. Distance  is the length of vector . 

5. Biot-Savart’s equation is often written using the ratio  instead of , where  is a vector 

with unit length pointing in the direction of .  The two representations are identical. 

6.  is the permeability of the medium at the point of interest .  In our case, the medium is air.  

Free space is a good approximation for air (it works both ways, right?) and the permeability of 

free space, which is usually represented by the symbol , has the value  T/Am. 

 

We need to re-arrange a couple of things before we can substitute our symbols into Biot-Savart’s 

equation.  In their equation, vector  points from the mid-point of the current element (which is our point 

) to the point of interest (which is our point ).  We can calculate vector  using straightforward vector 

subtraction, as follows: 

 

 
 

In our co-ordinate frame,  
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We have already expressed  in a suitable form in Equation , as: 

 

 

 

The vector cross-product of  and  can be represented as the following determinant: 

 

 

 

which expands out to: 

 

 

 

The -component can be expanded and then simplified using two trigonometric identities.  Using the 

shorthand  for  and  for , we can write the term in square brackets as: 

 

 

 

 

The two trigonometric identities are  and .  Remember that cosine 

is a symmetric function, so it does not matter if we use  or .  Substituting these 

identities, we get: 

 

 

 

We also need to calculate  in order to use Biot-Savart’s equation.  Since the square of the length of a 

vector is the sum of the squares of its components, , we can write down by inspection: 

 

 

 

This can be simplified using the two trigonometric identities once more, to: 

 

 

 

In the case of , there is one further simplification we can make.  Three of its terms are the square of a 

sum.  Sorting that out leaves: 

 

 



~ 6 ~ 
 

Now, we are ready to use the Biot-Savart equation.  Substitution Equations  and  gives: 

 

 

 

As explained above,  is the total magnetic field at point  generated by the direct current flowing 

through the small piece of wire whose geometric center is at point  and whose centerline is .  The total 

magnetic field set up by the magnet as a whole at point  can be calculated by adding up the contributions 

from all the small pieces of wire which comprise the 
th
 turn of the 

th
 layer, and then adding up the 

similar contributions from all of the  turns.  Doing these sums gives the three 

components of the magnetic field at point  as: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are three things to note about these equations. 

1. The outer summation over the layers in the winding (using counter ) and the middle summation 

over the turns in the layers (using counter ) have the physical meanings already described.  The 

third, inner, summation has not yet been completely described.  The intention, of course, is to 

divide the circle representing one turn of wire into small arcs, each arc having a subtended angle 

of , and then to add up the contributions to the magnetic field from all the arcs around the 

circle, from angle  to angle  = .  How many arcs the circle should be 

divided into is up to you and the speed of your computer.  My experience has been that 1000 arcs 

is sufficient – the increased accuracy from using more arcs is minor. 

2. There is a symmetry between the first two components,  and , there being a  in the 

former and a  in the latter.  The symmetry has a physical implication and a computational 

implication.  If each term in the summation for  is compared with the corresponding term in the 

summation for , the  term divided by the  term will always be equal to , or 

.  Since the azimuth angle for that particular term is , it follows that the resultant of the  

and  components has the same direction as the ray from the solenoid’s centerline (the -axis) to 

the current element.  Physically, this means that the magnetic field will be radially symmetric 

around the centerline of the coil.  In each plane containing the -axis, the magnetic field will 

appear the same.  The computational implication is this.  In some applications, it may be enough 

to do the summations for a single value of , say, .   describes a radial plane (that is, 

 

 

 

Equations to calculate the magnetic field at point  
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it contains the -axis) and  will be zero everywhere in it.  The  components calculated for 

this plane are, in fact, the radial components of the field.   and  can then be found for other 

values of   by multiplying the appropriate radial component by the appropriate  and  

factors.    

3. In the days before computers, much effort was spent trying to obtain closed-form solutions for 

these equations.  Imagining thinner and thinner wires, so that  becomes extremely large, 

enables the middle summation to be approximated by an integral over the axial length of the coil.  

Imagining thinner wires also enables either of two assumptions: (i) that the winding can be 

replaced by a thin “sheet” of current, removing the outermost summation entirely, or (ii) that the 

winding can be modeled by a torus with a rectangular cross-section and a uniform current density, 

so the outermost summation can be approximated by an integral operating radially from the inner 

radius to the outer radius of the coil.  Similarly, the innermost summation can be approximated by 

an integral around the circle.  Only a very few special geometries surrendered to this effort.  As 

always, though, it is useful to benchmark your numerical procedure against one or more of those 

special geometries. 

________________________________________ 

(Sample calculation) 

 

Let us wind a coil using  gauge enameled copper wire.  This wire has an outside diameter, including 

insulation, of  and a resistance of .  A coil  long will just accommodate  

turns.  Let the inner radius of the winding be  and wind  layers.  Finally, let us power the coil 

with  dc.   

 

The winding is  layers, or  thick, so the average radius of all the turns is .  The 

length of wire in the coil is the total number of turns multiplied by the average circumference, or 

, or .  The resistance of the coil as a whole is , or 

.  Ohm’s Law gives the current through the coil as . 

 

I have calculated the  and  components of the magnetic field at certain points above the top turn of 

the solenoid.  These components are shown in the following two graphs.  Each component is shown for 

points from  on one side of the centerline to  on the other side of the centerline.  The field 

strength is shown for three elevations:  above the top turn of the magnet,  above and  

above.  The strength of the magnetic field is expressed in units of Gauss.   
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The algebraic signs of the components of the magnetic field are as expected and are consistent with the 

right-hand rule.  The  component is positive, meaning that it “points” upwards in the region above the 

solenoid.  The  component is positive at points to the right of the centerline, where it “points” away 

from the centerline, and it is negative to the left of the centerline, where it also “points” away from the 

centerline.  Of course, both components show symmetry about the centerline. 

 

To get some feeling for the horizontal dimension, note that the inner diameter of the coil is , one-

half of the spacing of the vertical gridlines in the graphs.  It is apparent that the  component has its 

maximum values right above the wires in the winding.  The  component has its maximum value right 

on the centerline. 

 

To get some feeling for the vertical scale, note that the strength of the Earth’s magnetic field is about one-

half Gauss at mid-latitudes.   

 

The subroutine used to calculate these values is listed below. 

________________________________________ 

(An aside for a benchmark solution) 

 

I mentioned above the importance of benchmarking your numerical procedure against a known solution.  

That is so important that it is useful to have ready at hand such a known solution.  One obvious point to 

use for this purpose is the geometric center of the coil.  That is the point where we placed the origin of our 

co-ordinate system.  Let us calculate the magnetic field here.  At this handy spot, both  and  are zero 

so the three summations reduce to: 
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Before swimming into deeper waters, look at the terms in the innermost summation.  The innermost 

summation is a summation over angles, during which ,  and  are constant.  These 

constant factors can be taken outside the summation.  The  term, for example, can be re-written as: 

 

 

 

It can be seen by inspection that the innermost summation vanishes.  For every value of , there is a 

corresponding value on the “other” side of the circle, having a negative cosine with the same magnitude.  

Take small enough arcs, and the innermost summation becomes the integral of  around a circle.  In a 

similar way,  also vanishes.  From a physical point-of-view, this means that the magnetic field has no 

radial component at the center of the coil.  This is true whether the coil is long or short compared with its 

radius.  It is true whether the wire is fat or skinny.  (The only assumption still in effect is that each turn of 

wire falls wholly in a plane perpendicular to the longitudinal axis.) 

 

The  term does not vanish, but does become easier to deal with.  Removing constant factors from the 

innermost summation for  gives: 

  

 

 

The sum of the angles of arc around a circle is , so this simplifies immediately to: 

 

 

 

Up until now, we have assumed that the current  flows along the centerlines of  discrete 

circular turns.  What we are going to do now is to “smooth out” that total current uniformly over the 

cross-sectional area of the winding.  A cross-section of the coil is shown in the following figure. 
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The cross-sectional area of the winding is .  The total 

current flowing through this area (into the page on one side and out of the page on the other) is 

.  We can define the current density  as the current flowing per unit area of the 

cross-section.  Then: 

 

 

 

So, the current flowing through a small rectangle  wide and  high, as shown in the figure, would be 

equal to . 

 

Now, we can replace the summation over layers with a summation over bits of  from the inner radius of 

the core  to the outer radius of the winding .  We can replace the 

summation over turns with a summation over bits of  from the bottom turn of the coil, at  

, to the top turn of the coil, at .  And, of course, the current flowing through 

each rectangular bit is .  Making these substitutions gives the following expression for : 

 

 

 

In the limit, as we pick  and  extremely small, we can replace the summations with integrals. 
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Withdrawing constants, and dividing both the numerator and the denominator by , we can re-write this 

expression as: 

 

 

 

We divided through by  so that the integral in the square brackets would appear in a more digestible 

form.  In indefinite form, it is: 

 

 

 

This can be integrated easily, starting by adding and subtracting  to the numerator, and then using the 

product rule: 

 

 

 

Applying this result to the expression for , we get: 

 

 

 

The integrand is symmetric about , so we can evaluate at the endpoints to obtain: 
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Now, making a few adjustments to clarify the dependence on the remaining variable , we get: 

 

 

 

If, for the moment, we introduce the constant , then the interesting part can be processed as 

follows: 

 

 

 

Applying this result to the equation for , we get: 

 

 

 

Recalling that the difference between two logarithms is the logarithm of their ratio, this can be evaluated 

as: 
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This may be unwieldy, but it is a closed-form result.  Most often, simplifying assumptions are now made.  

It is here that the traditional “coil is much longer than its radius” assumption is made.  If the coil is much 

longer than its radius, then the square root terms can be expanded into their Taylor series and the terms 

greater than the first order ignored.  For example: 

 

 

 

Applying this approximation to the expression for  gives: 

 

 

 

Extracting  from both the numerator and denominator of the logarithm’s argument leaves: 

 

 

  

The numerator and denominator each contain three terms: unity, a first-order term in  

and a second-order term in .  Having already assumed that the coil is much longer than its 

radius, the second-order term will be much smaller than the first-order term.  If we ignore the second-

order terms, the expression reduces to: 

 

 

 

Since , we can make good use of another Taylor series expansion and truncation: 
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Applying this approximation to the expression for  gives: 

 

 

 

If the coil is much longer than its radius, it should be the case the coil is also much longer than the 

thickness of its winding, .  Therefore, we can use a third Taylor series expansion, that 

, and approximate the series with its first term, , with the following 

result: 

 

 

 

Remember that the height of the coil  is related to the wire diameter  by the number of turns 

per layer  through the relationship .  Eliminating  using this 

relationship gives the classical result for the magnetic field at the center of a long solenoid: 

 

 

 

The factor  is called the “ampere-turns” of the coil.  It is one measure of the coil’s 

strength.  Note that the magnetic field strength does not depend on the radius of the coil, so long as it is 

much less than the length. 
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As a numerical example, consider a coil  long (about four inches) wound with  total turns 

carrying 1 ampere.  The magnetic field at this coil’s center is axial and, if it has an air-core, has a 

magnitude equal to: 

 

 

 

 is the Tesla, the SI unit of magnetic field strength.  One Tesla equals  Gauss, so this field 

strength can also be expressed as 126 Gauss.  I have already pointed out that the Earth’s magnetic field 

has a strength of about one-half Gauss.  By way of comparison, the magnetic field strength at the face of a 

rare earth magnet can be  Gauss or more. 

________________________________________ 

(A second aside for a second benchmark solution) 

 

The magnetic field at the geometric center of a solenoid is sometimes less useful to know than the 

magnetic field strength at the center of one “face” of the coil.  Fortunately, this is very easy to calculate.  

Like many scalar and vector fields in nature, magnetic fields can be added by superposition.  Two 

identical cylindrical air-core solenoids brought together end-to-end generate exactly the same magnetic 

field as one similar solenoid twice as long.  In reverse, imagine a cylindrical solenoid being cut at its 

middle and the two halves separated.  The magnetic field at the center of the two faces which were in 

proximity must add up to the magnetic field at the geometric center of the original solenoid.  Since the 

two sub-solenoids are identical, each of the two faces must have contributed the same amount to the 

original field.  One face is now a “north” pole and its counterpart is now a “south” pole.  When added, the 

field lines add constructively.  The magnetic field at the center of a face must be one-half of the strength 

of a solenoid twice as long: 

 

 

________________________________________ 

(Computational procedure) 

 

The following listing is a Visual Basic subroutine which calculates the components of the magnetic field 

at any given point in or around a cylindrical air-core solenoid.  The co-ordinate frame is as used above – 

centered at the coil’s center with the -axis axial.  The variable names used in the subroutine match those 

used above.  The ByVal arguments passed to the subroutine are the input parameters; the ByRef 

arguments are the magnetic field components returned by the subroutine.  The subroutine also returns a 

string, which is either “SUCCESS” or an error message. 
      
'////////////////////////////////////////////////////////////////////////////////////// 
'// Generalized subroutine to calculate the components of the magnetic field at any 
'// arbitrary point in or around a cylindrical air-core solenoid. 
'// Nturns = number of turns of wire in each layer 
'// Nlayers = number of layers of wire in the winding 
'// I = current flow, in amperes 
'// Rcore = inner radius of the winding, in meters 
'// Hcoil = height of winding, in meters  
'// *** Note that Dwire, the diameter of the wire, is calculated from Hcoil / Nturns *** 
'// U = permeability of the medium, in T/mA 
'// Ntheta = number of arcs into which each turn is divided (1000 is good) 
'// Pz = axial displacement from center of coil to point P, in meters 
'// Pr = radial displacement from centerline of coil to point P, in meters 
'// Pphi = angular displacement of point P from the x-axis, in radians 
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'// Bx, By, Bz = components of the magnetic field at vector P, in Telsa 
'// ReturnString = "SUCCESS" or an appropriate error message 
Public Sub MagneticFieldAroundCoil( _ 
    ByVal Nturns As Int32, _ 
    ByVal Nlayers As Int32, _ 
    ByVal I As Double, _ 
    ByVal Rcore As Double, _ 
    ByVal Hcoil As Double, _ 
    ByVal U As Double, _ 
    ByVal Ntheta As Int32, _ 
    ByVal Pz As Double, _ 
    ByVal Pr As Double, _ 
    ByVal Pphi As Double, _ 
    ByRef Bx As Double, _ 
    ByRef By As Double, _ 
    ByRef Bz As Double, _ 
    ByRef ReturnString As String) 
    Dim PI As Double = 3.141592654 
    Dim Dwire As Double         ' Diameter of the wire, in meters 
    Dim zNthturn As Double      ' Height of the Nth turn from center of coil, in meters  
    Dim rMthlayer As Double     ' Radius of Mth layer from centerline of coil, in meters 
    Dim Theta As Double         ' Azimuth of current element from x-axis 
    Dim CosTheta As Double      ' Cosine of angle Theta 
    Dim SinTheta As Double      ' Sine of angle Theta 
    Dim CosThetaPhi As Double   ' Cosine of differential angle Theta - Pphi 
    Dim Denominator1 As Double  ' Temporary variable 
    Dim Denominator2 As Double  ' Temporary variable 
    Dim dBx As Double 
    Dim dBy As Double 
    Dim dBz As Double 
    ' Validate the incoming arguments. 
    If (Nturns < 1) Then 
        ReturnString = "Error -- number of turns must be positive" 
        Exit Sub 
    End If 
    If (Nlayers < 1) Then 
        ReturnString = "Error -- number of layers must be positive" 
        Exit Sub 
    End If 
    If (Ntheta <= 100) Then 
        ReturnString = "Error -- number of elements per turn must exceed 100" 
        Exit Sub 
    End If 
    If (Rcore < 0) Then 
        ReturnString = "Error -- inner radius of coil must be positive" 
        Exit Sub 
    End If 
    If (Hcoil < 0) Then 
        ReturnString = "Error -- height of coil must be positive" 
    End If 
    Try 
        Bx = 0 : By = 0 : Bz = 0 
        Dwire = Hcoil / Nturns 
        ' Loop which steps through the layers of the winding 
         For M As Int32 = 1 To Nlayers Step 1 
            rMthlayer = Rcore + (Dwire * (M - 0.5)) 
            ' Loop which steps through the turns in each layer 
            For N As Int32 = 1 To Nturns Step 1 
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                zNthturn = Dwire * (N - 0.5 - (Nturns / 2)) 
                Denominator1 = (Pr * Pr) + _ 
                    ((Pz - zNthturn) * (Pz - zNthturn)) + _ 
                    (rMthlayer * rMthlayer) 
                ' Loop which steps around a single turn 
                For Itheta As Int32 = 1 To Ntheta Step 1 
                    Theta = 2 * PI * (Itheta - 0.5) / Ntheta 
                    CosTheta = Math.Cos(Theta) 
                    SinTheta = Math.Sin(Theta) 
                    CosThetaPhi = Math.Cos(Theta - Pphi) 
                    Denominator2 = Denominator1 - (2 * Pr * rMthlayer * CosThetaPhi) 
                    Denominator2 = Denominator2 * Math.Sqrt(Denominator2) 
                    Denominator2 = rMthlayer * (2 * PI / Ntheta) / Denominator2 
                    dBx = (Pz - zNthturn) * CosTheta * Denominator2 
                    dBy = (Pz - zNthturn) * SinTheta * Denominator2 
                    dBz = (rMthlayer - (Pr * CosThetaPhi)) * Denominator2 
                    Bx = Bx + dBx 
                    By = By + dBy 
                    Bz = Bz + dBz 
                Next Itheta 
            Next N 
        Next M 
        Bx = I * U * Bx / (4 * PI) 
        By = I * U * By / (4 * PI) 
        Bz = I * U * Bz / (4 * PI) 
        ReturnString = "SUCCESS" 
    Catch e As Exception 
        ReturnString = "Error -- " & e.ToString 
    End Try 
End Sub 
 

One further bit of information will be needed by the practitioner of coil winding: the diameters of 

standard enameled copper wire.  The following table sets out the diameter, in millimeters, for a range of 

common AWG wire gauges.  To be useful, the table also gives the resistance per unit length.  And, 

finally, the table is expressed as a Visual Basic subroutine, with which these properties can be looked up 

programmatically. 
    
'////////////////////////////////////////////////////////////////////////////////////// 
'// Generalized subroutine which returns the diameter and lineal resistance of common 
'// enameled copper wire. 
'// Gauge = AWG solid enameled copper wire gauge 
'// Diameter = wire diameter, including coating, in millimeters 
'// Resistance = resistance per unit length, in Ohms per meters 
'// ReturnString = "SUCCESS" or an appropriate error message 
Public Sub GetWireProperties( _ 
    ByVal Gauge As Int32, _ 
    ByRef Diameter As Double, _ 
    ByRef Resistance As Double, _ 
    ByRef ReturnString As String) 
    ReturnString = "SUCCESS" 
    Select Case Gauge 
        Case 14 : Diameter = 1.69 : Resistance = 0.00844 
        Case 15 : Diameter = 1.51 : Resistance = 0.0106 
        Case 16 : Diameter = 1.34 : Resistance = 0.0134 
        Case 17 : Diameter = 1.2 : Resistance = 0.0169 
        Case 18 : Diameter = 1.08 : Resistance = 0.0213 
        Case 19 : Diameter = 0.962 : Resistance = 0.027 
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        Case 20 : Diameter = 0.864 : Resistance = 0.0339 
        Case 21 : Diameter = 0.767 : Resistance = 0.0428 
        Case 22 : Diameter = 0.686 : Resistance = 0.054 
        Case 23 : Diameter = 0.615 : Resistance = 0.0681 
        Case 24 : Diameter = 0.549 : Resistance = 0.0858 
        Case 25 : Diameter = 0.491 : Resistance = 0.108 
        Case 26 : Diameter = 0.438 : Resistance = 0.136 
        Case 27 : Diameter = 0.391 : Resistance = 0.172 
        Case 28 : Diameter = 0.349 : Resistance = 0.217 
        Case 29 : Diameter = 0.311 : Resistance = 0.274 
        Case 30 : Diameter = 0.281 : Resistance = 0.345 
        Case 31 : Diameter = 0.251 : Resistance = 0.435 
        Case 32 : Diameter = 0.225 : Resistance = 0.549 
        Case 33 : Diameter = 0.2 : Resistance = 0.692 
        Case 34 : Diameter = 0.178 : Resistance = 0.872 
        Case 35 : Diameter = 0.161 : Resistance = 1.1 
        Case 36 : Diameter = 0.145 : Resistance = 1.39 
        Case 37 : Diameter = 0.128 : Resistance = 1.75 
        Case 38 : Diameter = 0.113 : Resistance = 2.21 
        Case 39 : Diameter = 0.102 : Resistance = 2.78 
        Case 40 : Diameter = 0.09 : Resistance = 3.51 
        Case Else : ReturnString = "Error -- unknown wire gauge" 
    End Select 
End Sub 

___________________________________________________________ 

(A procedure to approximate the magnetic field strength by interpolation) 

 

Above, we developed general equations (summations, but not closed-form) which can be used to calculate 

the magnetic field vector at any point inside or around a cylindrical air-core solenoid.  The computational 

procedure which implements the summation is straightforward but time-consuming.  If the coil has ten 

layers and three hundred turns per layer, and one divides the turns into 5000 discrete arcs, the procedure 

can take two or three seconds or more on a typical PC.  This is not a problem if one only wants to 

calculate the magnetic field at a few dozen or hundred spots. 

 

Usually, there is a greater goal.  If one wanted to calculate the force this solenoid exerts on a nearby 

magnet, for example, the magnetic field would need to be calculated at each point in the whole region of 

space occupied by the magnet.  Even if one took advantage of rotational symmetry, and calculated the 

magnetic field strength in a grid 1000 points wide and 1000 points high, the procedure would need to be 

repeated a million times.  For ready reference, the three million seconds the calculation would take is 

equal to 35 days.  Something else needs to be done if calculating the magnetic field is part of a bigger 

procedure. 

 

We will start by taking advantage of the radial nature of the magnetic field inside and around the 

cylindrical solenoid, which has already been described.  Using the notation from above, we can focus our 

attention on a single radial plane, which is the same as all other radial planes.  For convenience, we will 

pick the radial plane which is defined by  in our general equations.  When the co-ordinate frame is 

specified in this way, we need only concern ourselves with the axial -co-ordinate and the radial -co-

ordinate.  The general equations reduce to: 
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Suppose, for our greater purpose, that we want to calculate the magnetic field in some rectangular region 

inside or outside the solenoid (but not including any part of the winding).  The rectangles  shown in 

the following diagram are samples of three regions which might be of interest to us. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

What we will do is this: we will impose a grid of modest size on region , perhaps a grid 100 points 

wide and 100 points high.  We will calculate the magnetic field components  and , and a couple of 

other variables, at each of these 10,000 grid points.  That would take several hours, but less than a day.  

Then, we will devise a strategy to interpolate the values of the magnetic field components at any arbitrary 

location within the grid and between grid points. 

  

Let us impose a rectangular grid on whatever region  is of interest.  The following figure shows a 

rudimentary grid. 
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-axis (radial) 
  

 
 

 

 

I have shown region  as being divided into a  grid, with  grid points, but a useful grid 

would likely be divided much more finely than this.  Neither the region nor the grid need be square, but 

they do need to be rectangular, and the grid points must be equally-spaced in their respective directions.  I 

have shaded in grey one of the rectangles in the grid and labeled its four corners.  The order of the points 

will be important during the analysis – points 3 and 4 are immediately above points 1 and 2, respectively, 

and points 2 and 4 are immediately to the right of points 1 and 3, respectively.   

 

We are going to try to approximate a function within this grid rectangle based on what we know at the 

four corners.  Consider points 1 and 2, which have the same -value. Consider also an arbitrary function 

of the radial distance , , as shown in the following figure: 

 

 

 

 

 

 

 

 

 

Suppose we happened to know the value of the function,  and , at the two points and the value 

of the first derivative,  and , there as well.  With these four bits of information, we could find 

the four constants in the following cubic polynomial which approximates the function: 

 

 
 

A cubic polynomial is not a bad choice – it has exactly one point of inflection, just like the magnetic field 

components which we are interested in. 

 

If we now consider points 1 and 3, which have the same -value, and repeat the process, we could find the 

four constants in the following cubic polynomial which approximates the function (in the -direction): 

 

 

 

We can combine the two strategies, and look for a polynomial of the following form, to approximate the 

function  over the -  surface (within this grid rectangle, at least): 

 

 

 

In fact, we can aim higher than this.  A more general form of cubic polynomial in two dimensions is the 

following: 

 

 
 

This more general polynomial includes all combinations of powers of the independent variables of three 

or less.  There are ten constants.  However, we seem to have twelve pieces of information from which to 

find them:  the value of the function at the four corners, the first derivative of the function in the 

-direction at the four corners and the first derivative of the function in the -direction at the four corners.  

This is unusual, but let us proceed in the customary way. 

 

The proposed polynomial has the following first partial derivatives: 
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We can write down the boundary conditions at the four corners as follows: 

 

 

 

These equations can be written in matrix form.  For now, let us look at the eight derivative conditions 

only.  In matrix form, they are: 

 



~ 22 ~ 
 

 

 

However, recall that we chose the four points which define the grid rectangle so that , , 

 and , in which case these equations can be re-written, with the components of the vector on 

the left-hand side defined by position, as: 

 

 

 

We can take linear combinations of the rows without affecting the equality.  Let us subtract the first row 

from the third row, the second row from the fourth row, the fifth row from the sixth row, and the seventh 

from the eighth row.  The four difference equations are: 
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Oh, dear!  Here we have four equations which depend on only three variables: ,  and .  This is 

telling us that these eight boundary conditions are not independent from each other.  Knowing seven of 

the derivatives, we can calculate the eighth.  In order for our boundary conditions to be independent, we 

must drop one of them.  Which one we drop does not matter.  For convenience, let us eliminate the last 

boundary condition, for . 

 

In a similar way, let us now look at only the four function-value conditions.  In matrix form, they are: 

 

 

 

As we did before, we can substitute the equalities for the grid rectangle: , ,  and 

.  Focusing only on the right-hand side of the equation, we get: 

 

 

 

Subtracting the first row from the third row, and the second row from the fourth row, we get the following 

two difference equations: 

 

 

 

We can repeat our new trick, and subtract the first row from the second row, giving one final difference 

equation: 
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Here, we have another equation which depends only on the same three variables: ,  and .  So, we 

still have one more boundary condition that we need.  We can drop another of the boundary conditions.  

For convenience, let us drop the other derivative at point 4, for , from further consideration.  

Now have ten equations in ten unknowns.  These ten equations should be independent.  Defining 

quantities on the left-hand side using  in order to simplify the appearance of the equations, we get: 

 

 

 

I have already substituted the equalities of the grid rectangle, that  and so on.  We now take linear 

combinations of rows which look similar.  Defining  and , we get: 
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If we re-order the equations, then the matrix becomes block-upper-triangular with three blocks.   

 

Block #1 consists of the fourth, seventh and ninth equations, for which: 

 

 

 

Block #2 consists of the third, eighth and tenth equations, for which: 

 

 

 

Block #3 consists of the first, second, fifth and sixth equations, for which: 

 

 

 

We can solve the three blocks separately.  We can solve Block #1 for ,  and  as follows: 

 

 

 

 

 

Noting that  and similarly that , this 

simplifies to: 
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Withdrawing the common factor  leaves: 

 

 

 

 can be found directly from the first equation in this block.  Knowing , then  can be found from the 

last equation.  Finally, knowing both  and ,  can be found from the middle equation. 

 

Having now calculated ,  and , we turn to Block #2.  We can solve this block for three more 

constants, as follows: 

 

 

 

 

 

Substituting  and , this simplifies to: 

 

 

 

 

 

 can be found directly from the first equation in this block.  Knowing , then  can be found from the 

last equation.  Finally, knowing both  and ,  can be found from the middle equation. 

 

Having now calculated six of the ten constants, we can attack Block #1 to calculate the remaining four. 
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Subtracting  multiplied by the third equation from the second equation, and substituting expressions for 

the difference of squares and cubes, this becomes: 

 

 

 

 

 

 can be found directly from the second equation in this block.  Knowing , then  can be found from 

the last equation.  Then, knowing both  and ,  can be found directly from the third equation.  

Finally,  can be found from the first equation. 

 

There are three things to note. 

1. When reducing the ten equations above, no division was done. 

2. All of the leading coefficients in the ten reduced equations are either 1, powers of  or powers 

of .  So long as the grid is not degenerate, and  and , none of the leading 

coefficients will be zero. 

3. The implication of the first two observations is that there will always be a solution to the ten 

equations as long as the grid is not degenerate. 
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We still have not talked about calculating the partial derivatives at each point.  The method I have found 

successful is based on evaluating the function at two other points around and very near each point in the 

grid, as shown in the following diagram: 

 

 

 

 

 

 

 

 

One can pick  and  small, but not so small that dividing by small numbers causes computational 

errors.  It should be understood that  and  are not the same as the grid spacing  and .  Picking 

them to be 1% of the size of their respective grid sizes would be a good starting point.  The 

approximations for the partial derivatives at point  are then given by: 

 

 

 

This procedure requires that the function be calculated at three points – remember that the value at point 

 itself is also needed – for each grid point in region .  If the region of interest was divided into 25 

elements across and 100 down, then 2  calculations of the function would be needed.  

(In our Visual Basic subroutine listed above, both components of the magnetic field are calculated at the 

same time.) 

________________________________________________ 

(Sample calculation #1) 

 

Let us consider again the coil described above, with height  and core radius .  Let us 

calculate the constants which will enable us to approximate  and  in a rectangular region to the upper 

right of the coil.  The following figure shows the region  we will investigate. 
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Region  happens to be a 130 mm square.  (I selected this region for a purpose.  In a following paper, I 

want to calculate the forces this solenoid exerts on a similar one.  I plan to put a solenoid of a similar size 

at various points in region  to see what happens.  Region  is big enough to allow the new solenoid 

to be located at various relative positions.) 

 

Region  is divided into 2 mm squares, with 65 squares bordering each edge.  Stated differently, 66 

points were equally-spaced along each edge of region  and a grid drawn between opposing points.  

The subroutine listed below, named PolynomialApproximationInRegion(), was executed.  

 pairs of sets of constants were calculated.  Each set consists of the ten constants for use in Equation 

.  Note that a pair of sets is needed for each grid point, one for component  and another for 

component .  This subroutine needed to call subroutine MagneticFieldAroundCoil() three times for 

each point in the grid, for a total of  times.  On my 2 GHz laptop, the calculation 

took a few minutes less than 24 hours. 

 

Let us look at the result in a sample grid square, say, the square whose lower left corner is at  

and .  The constants for this grid square, in all their glorious precision, are: 

 

 

 

These constants must be used with the same units of measurement in which they were calculated.  The 

units used in this case were Gauss and millimeters. 

 

Subroutine PolynomialApproximationInRegion() does not scale lengths (as it could be revised to do) to, 

say, the  and  values at the principal corner.  In exchange for this simplicity, one must be vigilant to 

ensure that the constants do not represent an exploding function.  The following table shows the 

contribution of each term in the polynomials to the total magnetic field strengths. 
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The totals,  and , are the components of the 

magnetic field at the point  and .  Because this point is a grid point, these 

components are exactly equal to the exact values.  For any other point within this grid square, which 

occupies  and , the ten components of  and  would being 

calculated and added up in the same way.   

 

It would seem that all ten components of the polynomials contribute in roughly equal measures to the 

totals.  That is good.  On the other hand, the totals are the sums and differences of some very big 

numbers.  That is bad.  In addition, the contributions from the ,  and  terms do not diminish with 

increasing order as well as could be hoped.  Neither do the terms from increasing orders of .  This means 

that the lower-order terms in the polynomials are not natural representations of the underlying functions.  

But, we already knew that.  What saves us from the problems of a poorly-matched polynomial is double 

precision arithmetic and a small grid size.    

 

Before indiscriminately using the polynomial approximations, it is wise to get some understanding for the 

errors involved.  Since the approximation is derived using values at the four corners, intuition tells us that 

the maximum error will be near the center of each grid square, equidistant from the corners.  Furthermore, 

recall that less information was used for the upper-right corner of each grid cell (both derivatives at point 

4 were dropped), so the location of maximum error will probably lie slightly off center, in the direction 

towards point 4. 

 

As a start towards understanding the errors, I calculated the exact values of  and  at the center of each 

grid square in region , and compared these with the values given by the polynomials.  Both the 

absolute error and the percentage error are of interest. 

 

The five worst absolute errors in  are between 0.019 Gauss and 0.034 Gauss.  The five worst 

percentage errors in  are between  and .  The locations at which these errors occur are all 

located in the lower-left of region , where  is less than  and  is less than .  This is the 

area in region  in which  changes most quickly. 

 

The five worst absolute errors in  are between 0.008 Gauss and 0.010 Gauss.  These absolute errors 

also occur in the lower-left of region .   

 

The five worst percentage errors in  are between 31% and 127%.  The locations at which these 

percentage errors occur fall roughly along a line passing diagonally through region , from the lower 

left to the upper right.  At these points,  is very close to zero and the concept of percentage error begins 

to fail.  For example, the worst percentage error in  occurs where  is only 0.000013 Gauss. 

 

Errors of this magnitude were acceptable for my purpose.  If your work requires more precision, then the 

easiest change would be to reduce the grid size.  Generally, reducing the grid size by a factor of two 

should reduce the absolute errors by a factor of four.  If there are areas in your region where  or  are 

zero or very close to zero, the percentage errors should be interpreted accordingly. 

________________________________________________ 

(Sample calculation #2) 

 

Sample calculation #1 looked at a region outside of a solenoid.  The methodology works just as well for a 

region inside a solenoid.  (The methodology fails for locations inside the winding.)  Sample calculation 

#2 looks at a very wide solenoid.  It has a core radius of  (about 4¾ inches) and a height of only 

 (about ⅜ inch).  It is shaped more like a loop than a traditional coil.  Like the solenoid above, it is 

wound with  layers of  enameled wire.  This winding uses  meters of wire.  When powered by 
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-axis 

-axis 

E(119 mm, 66 mm) 

D(-119 mm, -66 mm) 

10 mm 

120 mm 

a  dc supply, it draws .  This is a  magnet.  (Comparison: the solenoid in 

Sample calculation #1 used  meters of wire, which drew  at .  It had .) 

 

This solenoid, for Sample calculation #2, was chosen to be as different as possible from the one for 

Sample calculation #1.  The solenoid in Sample calculation #1 may be useful for moving things around 

outside itself; the solenoid in Sample calculation #2 would be more useful for moving things around 

inside its bounds.  

 

The following figure shows the region  in which the constants for the polynomials were calculated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this case, the region was divided into  squares.  There are  points in the grid.  

Although there are more grid points in this sample calculation than in Sample calculation #1, there are 

also fewer turns in the winding.  As a result, the calculations of the magnetic field at the grid points run 

more quickly.  Overall, calculating the constants took about seven hours.  Of course, virtually all of this 

time was spent calculating the exact values of  and , and their derivatives, at the grid points. 

 

Calculating the constants took four times longer than it could have taken.  Region  is centered in the 

-  plane so there is symmetry among the four quadrants of the region.  I could have calculated the 

constants only in the first quadrant, for example.  I did not do this.  Not knowing what references would 

be made to this region in subsequent work, I did not want to complicate all subsequent references by 

requiring that they sort out the relevant symmetries. 

 

It should be noted that, although the magnetic field is symmetric among the quadrants, the constants 

themselves are not symmetric.  The constants are derived from squares in which the order of the corners 

is important.  In Quadrant 1, the lower-left point of each grid point (point 1) is the one closest to the 

origin.  In Quadrant 3, point 1 is the one farthest from the origin.  This asymmetry means that the 

constants for any particular grid square are not necessarily related to the constants for the corresponding 

grid square in the other quadrants. 

 

For interest’s sake, the following figure shows the axial component ( ) of the magnetic field across a 

diameter of this solenoid.   is shown for an equatorial diameter (  and at the top (  and 

bottom (  of the winding.   takes the shape of a well, with a minimum at the center and 

rising towards the winding.  The rise at the edges is quite steep.  The curves across the top and bottom of 

the coil are identical.  Because this magnet is very wide compared to its height, the shape of the field is 

very much like that of a single circular loop.   
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The following figure shows the radial component ( ) of the magnetic field across the diameters at the 

same three axial displacements. 

 

The radial component is zero or very small throughout most of the central area, but rises very steeply near 

the winding.  The radial component is asymmetric. 

 

As before, it is necessary to take a look at the errors involved in the polynomial approximations before 

putting them to work.  I calculated the absolute and percentage errors at the centers of all the grid points 
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in the upper-right quadrant of region .  The errors vary across the region and are best understood in 

“bands” of the radial displacement . 

 

 

 

The errors in the first three bands (close to the centerline) occur far above and below the solenoid (at 

, where the magnetic field strength is lowest.  The errors in the last three bands (nearing 

the winding) occur near the central plane of the solenoid, where the change in field strength with distance 

is greatest. 

________________________________________ 

(Computational procedure) 

 

The following listing is a Visual Basic subroutine which evaluates the constants of the two polynomials 

for  and  in a rectangular region.  As always, the ByVal variables should be treated as arguments 

passed to the subroutine and the ByRef variables as those which the subroutine calculates and returns.  

The procedure saves the constants, as well as all intermediate calculations, to a text file. 
     
'////////////////////////////////////////////////////////////////////////////////////// 
'// Generalized subroutine to calculate the 20 coefficients of the two 3rd-order 
'// polynomials which approximate both components of the magnetic field in a region of 
'// space from D=(Rstart,Zstart) to E=(Rend,Zend) divided into a grid with N points in 
'// the r-direction and M points in the z-direction.  Region DE must not intersect the 
'// windings, but the subroutine does not check for this. 
'// 
'// Each grid square has a polynomial of form: Br(r,z) = C(0) + C(1)r + C(2)r^2 + ... 
'// C(3)r^3 + C(4)z + C(5)z^2 + C(6)z^3 + C(7)rz + C(8)rz^2 + C(9)r^2z and a similar 
'// polynomial for Bz(r,z).   
'//  
'// Results are saved to a file on disk named C:\MagFieldRegionApproximation.txt. 
'// The saved file has three parts: 
'// Part A: For each of N*M points, there are three lines of text: 
'//         Line 1 contains r, z, Br and Bz at (r,z) 
'//         Line 2 contains r+delr, z, Br and Bz at (r+delr,z) 
'//         Line 3 contains r, z+delz, Br and Bz at (r,z+delz) 
'// Part B: For each of N*M points, there are three lines of text: 
'//         Line 1 contains r, z, Br and Bz at (r,z) 
'//         Line 2 contains dBr/dr and dBr/dz at (r,z) 
'//         Line 3 contains dBz/dr and dBz/dz at (r,z) 
'// Part C: For each of N*M points, there are eleven lines of text: 
'//         Line 1 contains r and z 
'//         Line 2 contains BrC(0) and BzC(0) at (r,z) 
'//         Line 3 contains BrC(1) and BzC(1) at (r,z) 
'//         ... 
'//         Line 11 contains BrC(9) and BzC(9) at (r,z) 
'// 
'// The increments delR and delZ used to estimate the partial derivatives are set  
'// to 1% of the grid spacing. 
'// 
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'// Nturns = number of turns of wire in each layer 
'// Nlayers = number of layers of wire in the winding 
'// Current = current flow, in amperes 
'// Rcore = inner radius of the winding, in meters 
'// Hcoil = height of windings, in meters  
'// Rstart, Zstart = lower left corner of the region DE, in millimeters 
'// Rend, Zend = upper right corner of the region DE, in millimeters 
'// N = number of grid points in the r-direction 
'// M = number of grid points in the z-direction 
'// ReturnString = "SUCCESS" or an appropriate error message 
Public Sub PolynomialApproximationInRegion( _ 
    ByVal Nturns As Int32, _ 
    ByVal Nlayers As Int32, _ 
    ByVal Current As Double, _ 
    ByVal Rcore As Double, _ 
    ByVal Hcoil As Double, _ 
    ByVal Rstart As Double, _ 
    ByVal Rend As Double, _ 
    ByVal Zstart As Double, _ 
    ByVal Zend As Double, _ 
    ByVal N As Int32, _ 
    ByVal M As Int32, _ 
    ByRef ReturnString As String) 
    Dim OutStream As System.IO.StreamWriter ' Writer for text file 
    Dim InStream As System.IO.StreamReader  ' Reader for text file 
    Dim TempString As String 
    Dim U As Double = 4 * PI * 0.0000001    ' Permeability 
    Dim NumDelTheta As Int32 = 5000         ' Number of elements in a current loop 
    ' Validate the incoming arguments. 
    If (Nturns < 1) Then 
        ReturnString = "Error -- number of turns must be positive" 
        Exit Sub 
    End If 
    If (Nlayers < 1) Then 
        ReturnString = "Error -- number of layers must be positive" 
        Exit Sub 
    End If 
    If (Rcore < 0) Then 
        ReturnString = "Error -- inner radius of coil must be positive" 
        Exit Sub 
    End If 
    If (Hcoil < 0) Then 
        ReturnString = "Error -- height of coil must be positive" 
        Exit Sub 
    End If 
    If (Rend <= Rstart) Then 
        ReturnString = "Error -- Rend must be greater than Rstart" 
        Exit Sub 
    End If 
    If (Zend <= Zstart) Then 
        ReturnString = "Error -- Zend must be greater than Zstart" 
        Exit Sub 
    End If 
    If (N < 2) Then 
        ReturnString = "Error -- horizontal grid N must be greater than 1" 
        Exit Sub 
    End If 
    If (M < 2) Then 
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        ReturnString = "Error -- vertical grid M must be greater than 1" 
        Exit Sub 
    End If 
    ' Calculate delR and delZ for the purpose of calculating derivatives. 
    Dim delR As Double 
    Dim delZ As Double 
    delR = (Rend - Rstart) / (100 * (N - 1)) 
    delZ = (Zend - Zstart) / (100 * (M - 1)) 
    ' Allow the user to skip the evaluations of the magnetic field. 
    If (System.IO.File.Exists("C:\MagFieldRegionApproximation.txt")) Then 
        Dim MsgBoxResult As MsgBoxResult 
        MsgBoxResult = MsgBox("File already exists.  Repeat function evaluations?", _ 
            vbYesNo, "Repeat function evaluations?") 
        If (MsgBoxResult = vbNo) Then 
            GoTo StartPartB 
        End If 
    End If 
    ' Open the file to save Part A: function evaluations. 
    OutStream = New System.IO.StreamWriter("C:\MagFieldRegionApproximation.txt", False) 
    If (OutStream Is Nothing) Then 
        ReturnString = "Error -- Could not open output file" 
        Exit Sub 
    End If 
    ' Write coil and region information as a header for the file. 
    TempString = "Approximating the magnetic field components in a region:" & vbCrLf 
    TempString = TempString & "Rcore (mm) = " & Trim(Str(Rcore)) & vbCrLf 
    TempString = TempString & "Hcoil (mm) =" & Trim(Str(Hcoil)) & vbCrLf 
    TempString = TempString & "Nturns = " & Trim(Str(Nturns)) & vbCrLf 
    TempString = TempString & "Nlayers = " & Trim(Str(Nlayers)) & vbCrLf 
    TempString = TempString & "Current (A) =" & Trim(Str(Current)) & vbCrLf 
    TempString = TempString & "Rstart (mm) =" & Trim(Str(Rstart)) & vbCrLf 
    TempString = TempString & "Rend (mm) =" & Trim(Str(Rend)) & vbCrLf 
    TempString = TempString & "Zstart (mm) =" & Trim(Str(Zstart)) & vbCrLf 
    TempString = TempString & "Zend (mm) =" & Trim(Str(Zend)) & vbCrLf 
    TempString = TempString & "N = " & Trim(Str(N)) & vbCrLf 
    TempString = TempString & "M = " & Trim(Str(M)) & vbCrLf & vbCrLf 
    TempString = TempString & "Part A: Evaluations of the magnetic fields:" & vbCrLf 
    OutStream.Write(TempString) 
    'Part A 
    Dim R As Double 
    Dim Z As Double 
    Dim Bx As Double 
    Dim By As Double 
    Dim Bz As Double 
    ' Main loop in the r-direction 
    For I As Int32 = 1 To N Step 1 
        R = Rstart + ((Rend - Rstart) * (I - 1) / (N - 1)) 
        ' Main loop in the z-direction 
        For J As Int32 = 1 To M Step 1 
            Z = Zstart + ((Zend - Zstart) * (J - 1) / (M - 1)) 
            TempString = "r(mm)=" & Trim(FormatNumber(R, 3)) 
            TempString = TempString & " z(mm)=" & Trim(FormatNumber(Z, 3)) 
            MagneticFieldAroundCoil(Nturns, Nlayers, Current, _ 

         Rcore / 1000, Hcoil / 1000, _ 
         U, NumDelTheta, Z / 1000, R / 1000, 0, Bx, By, Bz, ReturnString) 

            If (ReturnString <> "SUCCESS") Then 
                ReturnString = "Error -- " & ReturnString 
                Exit Sub 
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            End If 
            TempString = TempString & " Br(G)=" & Trim(Str(Bx * 10000)) 
            TempString = TempString & " Bz(G)=" & Trim(Str(Bz * 10000)) & vbCrLf 
            TempString = TempString & "r+delr(mm)=" & Trim(FormatNumber(R + delR, 3)) 
            TempString = TempString & " z(mm)=" & Trim(FormatNumber(Z, 3)) 
            MagneticFieldAroundCoil(Nturns, Nlayers, Current, _ 

         Rcore / 1000, Hcoil / 1000, _ 
         U, NumDelTheta, (R + delR) / 1000, Z / 1000, 0, Bx, By, Bz, ReturnString) 

            If (ReturnString <> "SUCCESS") Then 
                ReturnString = "Error -- " & ReturnString 
                Exit Sub 
            End If 
            TempString = TempString & " Br(G)=" & Trim(Str(Bx * 10000)) 
            TempString = TempString & " Bz(G)=" & Trim(Str(Bz * 10000)) & vbCrLf 
            TempString = TempString & "r(mm)=" & Trim(FormatNumber(R, 3)) 
            TempString = TempString & " z+delz(mm)=" & Trim(FormatNumber(Z + delZ, 3)) 
            MagneticFieldAroundCoil(Nturns, Nlayers, Current, _ 
                Rcore / 1000, Hcoil / 1000, _ 
                U, NumDelTheta, R / 1000, (Z + delZ) / 1000, 0, Bx, By, Bz, ReturnString) 
            If (ReturnString <> "SUCCESS") Then 
                ReturnString = "Error -- " & ReturnString 
                Exit Sub 
            End If 
            TempString = TempString & " Br(G)=" & Trim(Str(Bx * 10000)) 
            TempString = TempString & " Bz(G)=" & Trim(Str(Bz * 10000)) & vbCrLf 
            OutStream.Write(TempString) 
            labelResultsC.Text = "R=" & Trim(Str(R)) & "  Z=" & Trim(Str(Z)) 
            Me.Refresh() 
            Threading.Thread.Sleep(1000) 
        Next J 
    Next I 
    ' Close the output file. 
    OutStream.Close() 
StartPartB: 
    Dim Q(N, M, 12) As Double       ' Q(i,j,1)=r, Q(i,j,2)=z, ... 
    '                               ' Q(i,j,3)=Br(r,z), Q(i,j,4)=Bz(r,z), ... 
    '                               ' Q(i,j,5)=Br(r+delr,z), Q(i,j,6)=Bz(r+delr,z), ... 
    '                               ' Q(i,j,7)=Br(r,z+delz), Q(i,j,8)=Bz(r,z+delz), ... 
    '                               ' Q(i,j,9)=dBr(r,z)/dr, Q(i,j,10)=dBz(r,z)/dr, ... 
    '                               ' Q(i,j,11)=dBr(r,z)/dz, Q(i,j,12)=dBz(x,y)/dz 
    ' Open the file for input. 
    Try 
        InStream = New System.IO.StreamReader("C:\MagFieldRegionApproximation.txt") 
        If (InStream Is Nothing) Then 
            ReturnString = "Error -- Could not open the file" 
            Exit Sub 
        End If 
        ' Find the last row of the header. 
        Dim FoundLastLine As Boolean = False 
        For I As Int32 = 1 To 100 
            TempString = InStream.ReadLine 
            If (Strings.Left(TempString, 6) = "Part A") Then 
                FoundLastLine = True 
                Exit For 
            End If 
        Next I 
        If (FoundLastLine = False) Then 
            InStream.Close() 
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            ReturnString = "Error -- Could not find last line of header" 
            Exit Sub 
        End If 
    Catch e As Exception 
        ReturnString = "Error -- Problem opening file: " & e.ToString 
        Exit Sub 
    End Try 
    ' Read the rows and calculate the derivatives. 
    For Ir As Int32 = 1 To N Step 1 
        For Iz As Int32 = 1 To M Step 1 
            Dim Position As Int32 
            If (InStream.EndOfStream) Then 
                InStream.Close() 
                ReturnString = "Error -- Data ended at (Ir, Iz) = " & _ 
                    Trim(Str(Ir)) & ", " & Trim(Str(Iz)) 
                Exit Sub 
            End If 
            Try 
                TempString = InStream.ReadLine 
                Position = Strings.InStr(TempString, "=") 
                TempString = Strings.Right(TempString, Len(TempString) - Position) 
                Position = Strings.InStr(TempString, " ") 
                Q(Ir, Iz, 1) = Val(Strings.Left(TempString, Position)) 
                TempString = Strings.Right(TempString, Len(TempString) - Position) 
                Position = Strings.InStr(TempString, "=") 
                TempString = Strings.Right(TempString, Len(TempString) - Position) 
                Position = Strings.InStr(TempString, " ") 
                Q(Ir, Iz, 2) = Val(Strings.Left(TempString, Position)) 
                TempString = Strings.Right(TempString, Len(TempString) - Position) 
                Position = Strings.InStr(TempString, "=") 
                TempString = Strings.Right(TempString, Len(TempString) - Position) 
                Position = Strings.InStr(TempString, " ") 
                Q(Ir, Iz, 3) = Val(Strings.Left(TempString, Position)) 
                TempString = Strings.Right(TempString, Len(TempString) - Position) 
                Position = Strings.InStr(TempString, "=") 
                TempString = Strings.Right(TempString, Len(TempString) - Position) 
                Q(Ir, Iz, 4) = Val(TempString) 
            Catch e As Exception 
                ReturnString = "Error -- Problem reading line#1 for (Ir, Iz) = " & _ 
                    Trim(Str(Ir)) & ", " & Trim(Str(Iz)) & ": " & e.ToString 
                InStream.Close() 
                Exit Sub 
            End Try 
            Try 
                TempString = InStream.ReadLine 
                Position = Strings.InStr(TempString, "=") 
                TempString = Strings.Right(TempString, Len(TempString) - Position) 
                Position = Strings.InStr(TempString, " ") 
                TempString = Strings.Right(TempString, Len(TempString) - Position) 
                Position = Strings.InStr(TempString, "=") 
                TempString = Strings.Right(TempString, Len(TempString) - Position) 
                Position = Strings.InStr(TempString, " ") 
                TempString = Strings.Right(TempString, Len(TempString) - Position) 
                Position = Strings.InStr(TempString, "=") 
                TempString = Strings.Right(TempString, Len(TempString) - Position) 
                Position = Strings.InStr(TempString, " ") 
                Q(Ir, Iz, 5) = Val(Strings.Left(TempString, Position)) 
                TempString = Strings.Right(TempString, Len(TempString) - Position) 
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                Position = Strings.InStr(TempString, "=") 
                TempString = Strings.Right(TempString, Len(TempString) - Position) 
                Q(Ir, Iz, 6) = Val(TempString) 
            Catch e As Exception 
                ReturnString = "Error -- Problem reading line#2 for (Ir, Iz) = " & _ 
                    Trim(Str(Ir)) & ", " & Trim(Str(Iz)) & ": " & e.ToString 
                InStream.Close() 
            End Try 
            Try 
                TempString = InStream.ReadLine 
                Position = Strings.InStr(TempString, "=") 
                TempString = Strings.Right(TempString, Len(TempString) - Position) 
                Position = Strings.InStr(TempString, " ") 
                TempString = Strings.Right(TempString, Len(TempString) - Position) 
                Position = Strings.InStr(TempString, "=") 
                TempString = Strings.Right(TempString, Len(TempString) - Position) 
                Position = Strings.InStr(TempString, " ") 
                TempString = Strings.Right(TempString, Len(TempString) - Position) 
                Position = Strings.InStr(TempString, "=") 
                TempString = Strings.Right(TempString, Len(TempString) - Position) 
                Position = Strings.InStr(TempString, " ") 
                Q(Ir, Iz, 7) = Val(Strings.Left(TempString, Position)) 
                TempString = Strings.Right(TempString, Len(TempString) - Position) 
                Position = Strings.InStr(TempString, "=") 
                TempString = Strings.Right(TempString, Len(TempString) - Position) 
                Q(Ir, Iz, 8) = Val(TempString) 
            Catch e As Exception 
                ReturnString = "Error -- Problem reading line#3 for (Ir, Iz) = " & _ 
                    Trim(Str(Ir)) & ", " & Trim(Str(Iz)) & ": " & e.ToString 
                InStream.Close() 
                Exit Sub 
            End Try 
        Next Iz 
    Next Ir 
    InStream.Close() 
    ' Calculate the partial derivatives. 
    For Ir As Int32 = 1 To N Step 1 
        For Iz As Int32 = 1 To M Step 1 
            Try 
                Q(Ir, Iz, 9) = (Q(Ir, Iz, 5) - Q(Ir, Iz, 3)) / delR 
                Q(Ir, Iz, 10) = (Q(Ir, Iz, 6) - Q(Ir, Iz, 4)) / delR 
                Q(Ir, Iz, 11) = (Q(Ir, Iz, 7) - Q(Ir, Iz, 3)) / delZ 
                Q(Ir, Iz, 12) = (Q(Ir, Iz, 8) - Q(Ir, Iz, 4)) / delZ 
            Catch e As Exception 
                ReturnString = "Error -- Problem calculating derivatives at " & _ 

      vbCrLf & "(Ir, Iz)=(" & Trim(Str(Ir)) & ", " & Trim(Str(Iz)) & _ 
      ")" & vbCrLf & e.ToString 

                Exit Sub 
            End Try 
        Next Iz 
    Next Ir 
    ' Open the file to append Part B: partial derivatives. 
    OutStream = New System.IO.StreamWriter("C:\MagFieldRegionApproximation.txt", True) 
    If (OutStream Is Nothing) Then 
        ReturnString = "Error -- Could not open output file" 
        Exit Sub 
    End If 
    ' Write the partial derivatives to the file for safe-keeping. 
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    TempString = " " & vbCrLf & "Part B: Partial derivatives" & vbCrLf 
    OutStream.Write(TempString) 
    For Ir As Int32 = 1 To N Step 1 
        For Iz As Int32 = 1 To M Step 1 
            TempString = "r(mm)=" & Trim(FormatNumber(Q(Ir, Iz, 1))) & _ 
                " z(mm)=" & Trim(FormatNumber(Q(Ir, Iz, 2))) & _ 
                " Br(G)=" & Trim(Str(Q(Ir, Iz, 3))) & _ 
                " Bz(G)=" & Trim(Str(Q(Ir, Iz, 4))) & vbCrLf & _ 
                "dBr/dr=" & Trim(Str(Q(Ir, Iz, 9))) & _ 
                " dBr/dz=" & Trim(Str(Q(Ir, Iz, 11))) & vbCrLf & _ 
                "dBz/dr=" & Trim(Str(Q(Ir, Iz, 10))) & _ 
                " dBz/dz=" & Trim(Str(Q(Ir, Iz, 12))) & vbCrLf 
            OutStream.Write(TempString) 
        Next Iz 
    Next Ir 
StartPartC: 
    Dim BrC(N, M, 9) As Double      ' Coefficients of Br polynomial.  BrC(*,*,0) is used. 
    Dim BzC(N, M, 9) As Double      ' Coefficients of Bz polynomial.  BzC(*,*,0) is used. 
    For Ir As Int32 = 1 To N - 1 Step 1 
        For Iz As Int32 = 1 To M - 1 Step 1 
            ' Calculate delR and delZ for the purpose of solving the constants. 
            delR = (Rend - Rstart) / (N - 1) 
            delZ = (Zend - Zstart) / (M - 1) 
            ' Calculate the coefficients of the Br component from the bottom left point 
            ' of region DE to the top right point less 1 (that is, N-1 and M-1) 
            ' Set up the co-ordinates 
            Dim R1, R2, Z1, Z3 As Double 
            R1 = Q(Ir, Iz, 1)         ' Q(*,*,1) is r 
            R2 = Q(Ir + 1, Iz, 1)     ' Ir + 1 is one grid point to the right of (Ir, Iz) 
            Z1 = Q(Ir, Iz, 2)         ' Q(*,*,2) is z 
            Z3 = Q(Ir, Iz + 1, 2)     ' Iz + 1 is one grid point above (Ir, Iz) 
            ' Set up vector H(10) 
            Dim H1, H2, H3, H4, H5, H6, H7, H8, H9, H10 As Double 
            H1 = Q(Ir, Iz, 3)         ' Q(*,*,3) is Br at Point 1 in the rectangle 
            H2 = Q(Ir + 1, Iz, 3)     ' Point 2 in the rectangle 
            H3 = Q(Ir, Iz + 1, 3)     ' Point 3 in the rectangle 
            H4 = Q(Ir + 1, Iz + 1, 3) ' Point 4 in the rectangle 
            H5 = Q(Ir, Iz, 9)         ' Q(*,*,9) is dBr/dr at Point 1 in the rectangle 
            H6 = Q(Ir + 1, Iz, 9)     ' Point 2 in the rectangle 
            H7 = Q(Ir, Iz + 1, 9)     ' Point 3 in the rectangle 
            H8 = Q(Ir, Iz, 11)        ' Q(*,*,11) is dBr/dz at Point 1 in the rectangle 
            H9 = Q(Ir + 1, Iz, 11)    ' Point 2 in the rectangle 
            H10 = Q(Ir, Iz + 1, 11)   ' Point 3 in the rectangle 
            ' Set up vector J(10) 
            Dim J1, J2, J3, J4, J5, J6, J7, J8, J9, J10 As Double 
            J1 = H1 
            J2 = H2 - H1 
            J3 = H5 
            J4 = H6 - H5 
            J5 = H3 - H1 
            J6 = H8 
            J7 = H10 - H8 
            J8 = H1 - H2 - H3 + H4 
            J9 = H7 - H5 
            J10 = H9 - H8 
            ' Modify the vector J(10) into JJ(10) 
            Dim JJ1, JJ2, JJ3, JJ4, JJ5, JJ6, JJ7, JJ8, JJ9, JJ10 As Double 
            JJ1 = J1 
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            JJ2 = J2 - (delR * J3) - (0.5 * delR * J4) 
            JJ3 = J3 
            JJ4 = J4 
            JJ5 = J5 - (delZ * J6) - (0.5 * delZ * J7) 
            JJ6 = J6 
            JJ7 = J7 
            JJ8 = J8 - (delZ * J10) 
            JJ9 = J9 
            JJ10 = (delZ * J10) - (delR * J9) 
            ' Solve for constants 
            Dim C0, C1, C2, C3, C4, C5, C6, C7, C8, C9 As Double 
            Dim RHS As Double 
            ' First block 
            C8 = (JJ8 / delZ) / (delR * delZ) 
            RHS = -delR * delZ * C8 
            C9 = ((JJ10 / delZ) - RHS) / (delR * delR) 
            RHS = (((2 * Z1) + delZ) * C8) + (2 * R1 * C9) 
            C7 = (JJ9 / delZ) - RHS 
            ' Second block 
            C6 = -JJ5 / (0.5 * delZ * delZ * delZ) 
            RHS = 2 * R1 * delZ * C8 
            RHS = RHS + ((6 * Z1 * delZ + 3 * delZ * delZ) * C6) 
            C5 = (JJ7 - RHS) / (2 * delZ) 
            RHS = (R1 * C7) + (2 * R1 * Z1 * C8) + (R1 * R1 * C9) 
            RHS = RHS + (2 * Z1 * C5) + (3 * Z1 * Z1 * C6) 
            C4 = JJ6 - RHS 
            ' Third block 
            C3 = JJ2 / (-0.5 * delR * delR * delR) 
            RHS = 2 * Z1 * delR * C9 
            RHS = RHS + (((6 * R1 * delR) + (3 * delR * delR)) * C3) 
            C2 = (JJ4 - RHS) / (2 * delR) 
            RHS = (Z1 * C7) + (Z1 * Z1 * C8) + (2 * R1 * Z1 * C9) 
            RHS = RHS + (2 * R1 * C2) + (3 * R1 * R1 * C3) 
            C1 = JJ3 - RHS 
            RHS = (Z1 * C4) + (Z1 * Z1 * C5) + (Z1 * Z1 * Z1 * C6) 
            RHS = RHS + (R1 * Z1 * C7) + (R1 * Z1 * Z1 * C8) + (R1 * R1 * Z1 * C9) 
            RHS = RHS + (R1 * C1) + (R1 * R1 * C2) + (R1 * R1 * R1 * C3) 
            C0 = JJ1 - RHS 
            ' Store the constants 
            BrC(Ir, Iz, 0) = C0 
            BrC(Ir, Iz, 1) = C1 
            BrC(Ir, Iz, 2) = C2 
            BrC(Ir, Iz, 3) = C3 
            BrC(Ir, Iz, 4) = C4 
            BrC(Ir, Iz, 5) = C5 
            BrC(Ir, Iz, 6) = C6 
            BrC(Ir, Iz, 7) = C7 
            BrC(Ir, Iz, 8) = C8 
            BrC(Ir, Iz, 9) = C9 
            ' 
            ' Calculate the coefficients of the Bz component from the bottom left point  
            ' of region DE to the top right point less 1 (that is, N-1 and M-1) 
            ' Set up vector H(10) 
            H1 = Q(Ir, Iz, 4)         ' Q(*,*,4) is Bz at Point 1 in the rectangle 
            H2 = Q(Ir + 1, Iz, 4)     ' Point 2 in the rectangle 
            H3 = Q(Ir, Iz + 1, 4)     ' Point 3 in the rectangle 
            H4 = Q(Ir + 1, Iz + 1, 4) ' Point 4 in the rectangle 
            H5 = Q(Ir, Iz, 10)        ' Q(*,*,10) is dBz/dr at Point 1 in the rectangle 
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            H6 = Q(Ir + 1, Iz, 10)    ' Point 2 in the rectangle 
            H7 = Q(Ir, Iz + 1, 10)    ' Point 3 in the rectangle 
            H8 = Q(Ir, Iz, 12)        ' Q(*,*,12) is dBz/dz at Point 1 in the rectangle 
            H9 = Q(Ir + 1, Iz, 12)    ' Point 2 in the rectangle 
            H10 = Q(Ir, Iz + 1, 12)   ' Point 3 in the rectangle 
            ' Set up vector J(10) 
            J1 = H1 
            J2 = H2 - H1 
            J3 = H5 
            J4 = H6 - H5 
            J5 = H3 - H1 
            J6 = H8 
            J7 = H10 - H8 
            J8 = H1 - H2 - H3 + H4 
            J9 = H7 - H5 
            J10 = H9 - H8 
            ' Modify the vector J(10) 
            JJ1 = J1 
            JJ2 = J2 - (delR * J3) - (0.5 * delR * J4) 
            JJ3 = J3 
            JJ4 = J4 
            JJ5 = J5 - (delZ * J6) - (0.5 * delZ * J7) 
            JJ6 = J6 
            JJ7 = J7 
            JJ8 = J8 - (delZ * J10) 
            JJ9 = J9 
            JJ10 = (delZ * J10) - (delR * J9) 
            ' Solve for constants 
            ' First block 
            C8 = (JJ8 / delZ) / (delR * delZ) 
            RHS = -delR * delZ * C8 
            C9 = ((JJ10 / delZ) - RHS) / (delR * delR) 
            RHS = (((2 * Z1) + delZ) * C8) + (2 * R1 * C9) 
            C7 = (JJ9 / delZ) - RHS 
            ' Second block 
            C6 = -JJ5 / (0.5 * delZ * delZ * delZ) 
            RHS = 2 * R1 * delZ * C8 
            RHS = RHS + ((6 * Z1 * delZ + 3 * delZ * delZ) * C6) 
            C5 = (JJ7 - RHS) / (2 * delZ) 
            RHS = (R1 * C7) + (2 * R1 * Z1 * C8) + (R1 * R1 * C9) 
            RHS = RHS + (2 * Z1 * C5) + (3 * Z1 * Z1 * C6) 
            C4 = JJ6 - RHS 
            ' Third block 
            C3 = JJ2 / (-0.5 * delR * delR * delR) 
            RHS = 2 * Z1 * delR * C9 
            RHS = RHS + (((6 * R1 * delR) + (3 * delR * delR)) * C3) 
            C2 = (JJ4 - RHS) / (2 * delR) 
            RHS = (Z1 * C7) + (Z1 * Z1 * C8) + (2 * R1 * Z1 * C9) 
            RHS = RHS + (2 * R1 * C2) + (3 * R1 * R1 * C3) 
            C1 = JJ3 - RHS 
            RHS = (Z1 * C4) + (Z1 * Z1 * C5) + (Z1 * Z1 * Z1 * C6) 
            RHS = RHS + (R1 * Z1 * C7) + (R1 * Z1 * Z1 * C8) + (R1 * R1 * Z1 * C9) 
            RHS = RHS + (R1 * C1) + (R1 * R1 * C2) + (R1 * R1 * R1 * C3) 
            C0 = JJ1 - RHS 
            ' Store the constants 
            BzC(Ir, Iz, 0) = C0 
            BzC(Ir, Iz, 1) = C1 
            BzC(Ir, Iz, 2) = C2 
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            BzC(Ir, Iz, 3) = C3 
            BzC(Ir, Iz, 4) = C4 
            BzC(Ir, Iz, 5) = C5 
            BzC(Ir, Iz, 6) = C6 
            BzC(Ir, Iz, 7) = C7 
            BzC(Ir, Iz, 8) = C8 
            BzC(Ir, Iz, 9) = C9 
        Next Iz 
    Next Ir 
    ' Write the constants for the Br and Bz polynomials to the file for safe-keeping. 
    TempString = " " & vbCrLf & "Part C: C() for Br and Bz" & vbCrLf 
    OutStream.Write(TempString) 
    For Ir As Int32 = 1 To N Step 1 
        For Iz As Int32 = 1 To M Step 1 
            TempString = "r(mm)=" & Trim(FormatNumber(Q(Ir, Iz, 1))) & _ 
                " z(mm)=" & Trim(FormatNumber(Q(Ir, Iz, 2))) & vbCrLf & _ 
                "BrC(0)=" & Trim(Str(BrC(Ir, Iz, 0))) & _ 
                " BzC(0)=" & Trim(Str(BzC(Ir, Iz, 0))) & vbCrLf & _ 
                "BrC(1)=" & Trim(Str(BrC(Ir, Iz, 1))) & _ 
                " BzC(1)=" & Trim(Str(BzC(Ir, Iz, 1))) & vbCrLf & _ 
                "BrC(2)=" & Trim(Str(BrC(Ir, Iz, 2))) & _ 
                " BzC(2)=" & Trim(Str(BzC(Ir, Iz, 2))) & vbCrLf & _ 
                "BrC(3)=" & Trim(Str(BrC(Ir, Iz, 3))) & _ 
                " BzC(3)=" & Trim(Str(BzC(Ir, Iz, 3))) & vbCrLf & _ 
                "BrC(4)=" & Trim(Str(BrC(Ir, Iz, 4))) & _ 
                " BzC(4)=" & Trim(Str(BzC(Ir, Iz, 4))) & vbCrLf & _ 
                "BrC(5)=" & Trim(Str(BrC(Ir, Iz, 5))) & _ 
                " BzC(5)=" & Trim(Str(BzC(Ir, Iz, 5))) & vbCrLf & _ 
                "BrC(6)=" & Trim(Str(BrC(Ir, Iz, 6))) & _ 
                " BzC(6)=" & Trim(Str(BzC(Ir, Iz, 6))) & vbCrLf & _ 
                "BrC(7)=" & Trim(Str(BrC(Ir, Iz, 7))) & _ 
                " BzC(7)=" & Trim(Str(BzC(Ir, Iz, 7))) & vbCrLf & _ 
                "BrC(8)=" & Trim(Str(BrC(Ir, Iz, 8))) & _ 
                " BzC(8)=" & Trim(Str(BzC(Ir, Iz, 8))) & vbCrLf & _ 
                "BrC(9)=" & Trim(Str(BrC(Ir, Iz, 9))) & _ 
                " BzC(9)=" & Trim(Str(BzC(Ir, Iz, 9))) & vbCrLf 
            OutStream.Write(TempString) 
        Next Iz 
    Next Ir 
    ' Close the file. 
    OutStream.Close() 
    ReturnString = "SUCCESS" 
End Sub 
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