
~ 1 ~

The magnetic field in and around a finite cylindrical air-core solenoid

Consider a solenoid in the shape of a circular cylinder. Let its length and inner radius be represented by

 and , respectively. Let the number of turns of wire per layer and the number of layers be

represented by and , respectively. A steady current of amperes flows through the

winding. I will often refer to the solenoid as the “coil”.

We will make only two material idealizations. Firstly, we will assume that the direct current flows

uniformly through the cross-sectional area of the wire. Secondly, we will assume that each turn of the

winding lies entirely in a plane perpendicular to the longitudinal axis of the coil. In other words, the

helical “tilt” of practical windings will be ignored. In practice, winding a coil with an even number of

layers from one end of the coil and back again will cancel out most of the effect of the tilt.

Let us calculate the magnetic field at some point which is an axial distance from the center of the

coil and a radial distance away from the longitudinal axis. Point can be in the interior of the coil, or

outside of it, but not in the winding itself.

It is helpful to impose a Euclidian co-ordinate frame with its origin located at the geometric center of

the coil. The -axis is set coincident with the longitudinal axis of the coil and taken to be “positive” when

pointing more or less in the direction of point . The -axis can always be chosen so that the plane

formed by the - and -axes includes point . But, let us not make that choice. It is sometimes handy to

be able to calculate the magnetic field at any point using a single co-ordinate frame. Instead, let us

assume that the ray from the origin to point falls in a plane rotated around the -axis by angle in

the right-hand direction. The situation is therefore as shown in the following diagram. Note that I have

shown the coil with its longitudinal axis vertical. I have also labeled the central turn of wire and the turns

at both ends.

The radius of the coil is shown in the figure using the symbol and not the symbol . was

described above as the inner radius of the coil, like the outside of the cylindrical form on whigh the wire

was wound. But, the wire itself has non-zero thickness so the exact radius of any point in the winding

will depend on which layer of wire is being examined. To explore this matter further, let us look at one

Bottom turn

Central turn

Top turn

-axis

-axis

-axis

~ 2 ~

-axis

-axis

-axis

-axis

particular turn of the winding. Let us look at the
th
 turn from the bottom of the coil in the

th
 layer of

the winding.

Let be the outside diameter of the wire with which the coil is wound. Since there are of

wire along the coil’s length, which we will assume to be wound close one-to-the-next, we can relate the

length of the coil to the diameter of the wire by . Therefore, the center of the

wires in the
th
 turn from the bottom of the coil has a -co-ordinate equal to:

Just to be certain, the -co-ordinates of the bottom and top turns are equal to:

Some quick mental arithmetic will confirm that these are the correct distances whether is odd or

even.

In a similar way, one can see that the distance from the longitudinal axis of the coil to the center of the

wires in the
th
 layer is equal to:

The vertical distance is the same for the
th
 turn in each layer. Similarly, the radial distance

 is the same for all turns in the
th
 layer.

Now, let us turn our attention to some point located on the
th
 turn of wire (the descriptor “from the

bottom of the coil” will be dropped from now on) in the
th
 layer of the winding. Point can be located

anywhere “around” this turn of wire. We can specify exactly where point is located using the azimuth

angle by which the ray from the origin to point is rotated away from the - plane. The view of

this turn, as seen from above, is shown in the following figure.

~ 3 ~

-axis

-axis

-axis

Consider now a very small piece of the wire at point , short enough to be considered straight. If the

piece you have in mind still has noticeable curvature, then pick a piece one-hundredth as big. Let the

length of this small piece of wire be represented by . Of course, it will be tangent to the circle which

passes through point . Accordingly, we can use a vector to capture both the magnitude and direction

of the piece of wire. The “positive” direction of will be established using the right-hand-rule applied

to the -axis, which points up out of the page in the figure above. The following figure shows the

geometry of , as seen from above.

Because it is tangent to the winding, will be perpendicular to the ray from the longitudinal axis

(the -axis) to point . For convenience, we will select so that point lies at its geometric midpoint.

The components of along the - and -axes are given by and , respectively, so the vector

can be written as:

We can relate length to angle , or rather to a change in the angle , in the following way. As seen

from the longitudinal axis of the coil, line segment subtends a small angle, which we will represent by

. We know that the radius from the longitudinal axis to point is so, using the definition of

the tangent function, we have:

In the limit, as gets very small, the tangent function approaches its argument, so this equation

simplifies to:

This lets us write vector as:

Now, let us look again at this very small piece of wire and imagine that a direct current of amperes is

flowing along its length, in the direction of the vector. The tiny vector is called a “current element”.

Its units are ampere-meters.

~ 4 ~

We now have all the parts which we need to apply Biot-Savart’s Law. The experiments first done by

Messrs. Biot and Savart, and confirmed by many others since, showed that a current element such as our

 produces a magnetic field, which we will represent by , at some point removed by vector from

the center of the current element, which is given by:

There are six things to note about this expression.

1. Do not confuse and . is the ray from the geometric center of the solenoid to the spot at

which we want to calculate the magnetic field. points to the same spot, but it starts at the center

of current element .

2. The multiplication in the numerator is a vector cross-product. The cross-product of two

vectors, say, is a third vector, which is perpendicular to both and and whose

magnitude is the scalar product of their two lengths and the sine of the angle between them.

3. is the entire magnetic field produced by this current element at point . The symbol ,

which represents that field, is shown with the difference “ ” because we will (below) add up the

fields from a lot of such current elements, of which this is only one.

4. Distance is the length of vector .

5. Biot-Savart’s equation is often written using the ratio instead of , where is a vector

with unit length pointing in the direction of . The two representations are identical.

6. is the permeability of the medium at the point of interest . In our case, the medium is air.

Free space is a good approximation for air (it works both ways, right?) and the permeability of

free space, which is usually represented by the symbol , has the value T/Am.

We need to re-arrange a couple of things before we can substitute our symbols into Biot-Savart’s

equation. In their equation, vector points from the mid-point of the current element (which is our point

) to the point of interest (which is our point). We can calculate vector using straightforward vector

subtraction, as follows:

In our co-ordinate frame,

and

so

~ 5 ~

We have already expressed in a suitable form in Equation , as:

The vector cross-product of and can be represented as the following determinant:

which expands out to:

The -component can be expanded and then simplified using two trigonometric identities. Using the

shorthand for and for , we can write the term in square brackets as:

The two trigonometric identities are and . Remember that cosine

is a symmetric function, so it does not matter if we use or . Substituting these

identities, we get:

We also need to calculate in order to use Biot-Savart’s equation. Since the square of the length of a

vector is the sum of the squares of its components, , we can write down by inspection:

This can be simplified using the two trigonometric identities once more, to:

In the case of , there is one further simplification we can make. Three of its terms are the square of a

sum. Sorting that out leaves:

~ 6 ~

Now, we are ready to use the Biot-Savart equation. Substitution Equations and gives:

As explained above, is the total magnetic field at point generated by the direct current flowing

through the small piece of wire whose geometric center is at point and whose centerline is . The total

magnetic field set up by the magnet as a whole at point can be calculated by adding up the contributions

from all the small pieces of wire which comprise the
th
 turn of the

th
 layer, and then adding up the

similar contributions from all of the turns. Doing these sums gives the three

components of the magnetic field at point as:

There are three things to note about these equations.

1. The outer summation over the layers in the winding (using counter) and the middle summation

over the turns in the layers (using counter) have the physical meanings already described. The

third, inner, summation has not yet been completely described. The intention, of course, is to

divide the circle representing one turn of wire into small arcs, each arc having a subtended angle

of , and then to add up the contributions to the magnetic field from all the arcs around the

circle, from angle to angle = . How many arcs the circle should be

divided into is up to you and the speed of your computer. My experience has been that 1000 arcs

is sufficient – the increased accuracy from using more arcs is minor.

2. There is a symmetry between the first two components, and , there being a in the

former and a in the latter. The symmetry has a physical implication and a computational

implication. If each term in the summation for is compared with the corresponding term in the

summation for , the term divided by the term will always be equal to , or

. Since the azimuth angle for that particular term is , it follows that the resultant of the

and components has the same direction as the ray from the solenoid’s centerline (the -axis) to

the current element. Physically, this means that the magnetic field will be radially symmetric

around the centerline of the coil. In each plane containing the -axis, the magnetic field will

appear the same. The computational implication is this. In some applications, it may be enough

to do the summations for a single value of , say, . describes a radial plane (that is,

Equations to calculate the magnetic field at point

~ 7 ~

it contains the -axis) and will be zero everywhere in it. The components calculated for

this plane are, in fact, the radial components of the field. and can then be found for other

values of by multiplying the appropriate radial component by the appropriate and

factors.

3. In the days before computers, much effort was spent trying to obtain closed-form solutions for

these equations. Imagining thinner and thinner wires, so that becomes extremely large,

enables the middle summation to be approximated by an integral over the axial length of the coil.

Imagining thinner wires also enables either of two assumptions: (i) that the winding can be

replaced by a thin “sheet” of current, removing the outermost summation entirely, or (ii) that the

winding can be modeled by a torus with a rectangular cross-section and a uniform current density,

so the outermost summation can be approximated by an integral operating radially from the inner

radius to the outer radius of the coil. Similarly, the innermost summation can be approximated by

an integral around the circle. Only a very few special geometries surrendered to this effort. As

always, though, it is useful to benchmark your numerical procedure against one or more of those

special geometries.

__

(Sample calculation)

Let us wind a coil using gauge enameled copper wire. This wire has an outside diameter, including

insulation, of and a resistance of . A coil long will just accommodate

turns. Let the inner radius of the winding be and wind layers. Finally, let us power the coil

with dc.

The winding is layers, or thick, so the average radius of all the turns is . The

length of wire in the coil is the total number of turns multiplied by the average circumference, or

, or . The resistance of the coil as a whole is , or

. Ohm’s Law gives the current through the coil as .

I have calculated the and components of the magnetic field at certain points above the top turn of

the solenoid. These components are shown in the following two graphs. Each component is shown for

points from on one side of the centerline to on the other side of the centerline. The field

strength is shown for three elevations: above the top turn of the magnet, above and

above. The strength of the magnetic field is expressed in units of Gauss.

-1.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

-200 -160 -120 -80 -40 0 40 80 120 160 200

B
z

fi
e

ld
 s

tr
e

n
gt

h
 (

G
au

ss
)

Distance from centerline (mm)

Bz (Gauss) vs. radial displacement (mm)
(various axial displacements)

10 mm

20 mm

30 mm

Distance
above

top turn

~ 8 ~

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

-200 -160 -120 -80 -40 0 40 80 120 160 200

B
r

fi
e

ld
 s

tr
e

n
gt

h
 (

G
au

ss
)

Distance from centerline (mm)

Br (Gauss) vs. radial displacement (mm)
(various axial displacements)

10 mm

20 mm

30 mm

Distance
above

top turn

The algebraic signs of the components of the magnetic field are as expected and are consistent with the

right-hand rule. The component is positive, meaning that it “points” upwards in the region above the

solenoid. The component is positive at points to the right of the centerline, where it “points” away

from the centerline, and it is negative to the left of the centerline, where it also “points” away from the

centerline. Of course, both components show symmetry about the centerline.

To get some feeling for the horizontal dimension, note that the inner diameter of the coil is , one-

half of the spacing of the vertical gridlines in the graphs. It is apparent that the component has its

maximum values right above the wires in the winding. The component has its maximum value right

on the centerline.

To get some feeling for the vertical scale, note that the strength of the Earth’s magnetic field is about one-

half Gauss at mid-latitudes.

The subroutine used to calculate these values is listed below.

__

(An aside for a benchmark solution)

I mentioned above the importance of benchmarking your numerical procedure against a known solution.

That is so important that it is useful to have ready at hand such a known solution. One obvious point to

use for this purpose is the geometric center of the coil. That is the point where we placed the origin of our

co-ordinate system. Let us calculate the magnetic field here. At this handy spot, both and are zero

so the three summations reduce to:

~ 9 ~

Before swimming into deeper waters, look at the terms in the innermost summation. The innermost

summation is a summation over angles, during which , and are constant. These

constant factors can be taken outside the summation. The term, for example, can be re-written as:

It can be seen by inspection that the innermost summation vanishes. For every value of , there is a

corresponding value on the “other” side of the circle, having a negative cosine with the same magnitude.

Take small enough arcs, and the innermost summation becomes the integral of around a circle. In a

similar way, also vanishes. From a physical point-of-view, this means that the magnetic field has no

radial component at the center of the coil. This is true whether the coil is long or short compared with its

radius. It is true whether the wire is fat or skinny. (The only assumption still in effect is that each turn of

wire falls wholly in a plane perpendicular to the longitudinal axis.)

The term does not vanish, but does become easier to deal with. Removing constant factors from the

innermost summation for gives:

The sum of the angles of arc around a circle is , so this simplifies immediately to:

Up until now, we have assumed that the current flows along the centerlines of discrete

circular turns. What we are going to do now is to “smooth out” that total current uniformly over the

cross-sectional area of the winding. A cross-section of the coil is shown in the following figure.

~ 10 ~

 by

One wire shown

Cross-section of

winding is hatched

centerline

Coil cross-section

-axis

The cross-sectional area of the winding is . The total

current flowing through this area (into the page on one side and out of the page on the other) is

. We can define the current density as the current flowing per unit area of the

cross-section. Then:

So, the current flowing through a small rectangle wide and high, as shown in the figure, would be

equal to .

Now, we can replace the summation over layers with a summation over bits of from the inner radius of

the core to the outer radius of the winding . We can replace the

summation over turns with a summation over bits of from the bottom turn of the coil, at

, to the top turn of the coil, at . And, of course, the current flowing through

each rectangular bit is . Making these substitutions gives the following expression for :

In the limit, as we pick and extremely small, we can replace the summations with integrals.

~ 11 ~

Withdrawing constants, and dividing both the numerator and the denominator by , we can re-write this

expression as:

We divided through by so that the integral in the square brackets would appear in a more digestible

form. In indefinite form, it is:

This can be integrated easily, starting by adding and subtracting to the numerator, and then using the

product rule:

Applying this result to the expression for , we get:

The integrand is symmetric about , so we can evaluate at the endpoints to obtain:

~ 12 ~

Now, making a few adjustments to clarify the dependence on the remaining variable , we get:

If, for the moment, we introduce the constant , then the interesting part can be processed as

follows:

Applying this result to the equation for , we get:

Recalling that the difference between two logarithms is the logarithm of their ratio, this can be evaluated

as:

~ 13 ~

This may be unwieldy, but it is a closed-form result. Most often, simplifying assumptions are now made.

It is here that the traditional “coil is much longer than its radius” assumption is made. If the coil is much

longer than its radius, then the square root terms can be expanded into their Taylor series and the terms

greater than the first order ignored. For example:

Applying this approximation to the expression for gives:

Extracting from both the numerator and denominator of the logarithm’s argument leaves:

The numerator and denominator each contain three terms: unity, a first-order term in

and a second-order term in . Having already assumed that the coil is much longer than its

radius, the second-order term will be much smaller than the first-order term. If we ignore the second-

order terms, the expression reduces to:

Since , we can make good use of another Taylor series expansion and truncation:

~ 14 ~

Applying this approximation to the expression for gives:

If the coil is much longer than its radius, it should be the case the coil is also much longer than the

thickness of its winding, . Therefore, we can use a third Taylor series expansion, that

, and approximate the series with its first term, , with the following

result:

Remember that the height of the coil is related to the wire diameter by the number of turns

per layer through the relationship . Eliminating using this

relationship gives the classical result for the magnetic field at the center of a long solenoid:

The factor is called the “ampere-turns” of the coil. It is one measure of the coil’s

strength. Note that the magnetic field strength does not depend on the radius of the coil, so long as it is

much less than the length.

~ 15 ~

As a numerical example, consider a coil long (about four inches) wound with total turns

carrying 1 ampere. The magnetic field at this coil’s center is axial and, if it has an air-core, has a

magnitude equal to:

 is the Tesla, the SI unit of magnetic field strength. One Tesla equals Gauss, so this field

strength can also be expressed as 126 Gauss. I have already pointed out that the Earth’s magnetic field

has a strength of about one-half Gauss. By way of comparison, the magnetic field strength at the face of a

rare earth magnet can be Gauss or more.

__

(A second aside for a second benchmark solution)

The magnetic field at the geometric center of a solenoid is sometimes less useful to know than the

magnetic field strength at the center of one “face” of the coil. Fortunately, this is very easy to calculate.

Like many scalar and vector fields in nature, magnetic fields can be added by superposition. Two

identical cylindrical air-core solenoids brought together end-to-end generate exactly the same magnetic

field as one similar solenoid twice as long. In reverse, imagine a cylindrical solenoid being cut at its

middle and the two halves separated. The magnetic field at the center of the two faces which were in

proximity must add up to the magnetic field at the geometric center of the original solenoid. Since the

two sub-solenoids are identical, each of the two faces must have contributed the same amount to the

original field. One face is now a “north” pole and its counterpart is now a “south” pole. When added, the

field lines add constructively. The magnetic field at the center of a face must be one-half of the strength

of a solenoid twice as long:

__

(Computational procedure)

The following listing is a Visual Basic subroutine which calculates the components of the magnetic field

at any given point in or around a cylindrical air-core solenoid. The co-ordinate frame is as used above –

centered at the coil’s center with the -axis axial. The variable names used in the subroutine match those

used above. The ByVal arguments passed to the subroutine are the input parameters; the ByRef

arguments are the magnetic field components returned by the subroutine. The subroutine also returns a

string, which is either “SUCCESS” or an error message.

'//
'// Generalized subroutine to calculate the components of the magnetic field at any
'// arbitrary point in or around a cylindrical air-core solenoid.
'// Nturns = number of turns of wire in each layer
'// Nlayers = number of layers of wire in the winding
'// I = current flow, in amperes
'// Rcore = inner radius of the winding, in meters
'// Hcoil = height of winding, in meters
'// *** Note that Dwire, the diameter of the wire, is calculated from Hcoil / Nturns ***
'// U = permeability of the medium, in T/mA
'// Ntheta = number of arcs into which each turn is divided (1000 is good)
'// Pz = axial displacement from center of coil to point P, in meters
'// Pr = radial displacement from centerline of coil to point P, in meters
'// Pphi = angular displacement of point P from the x-axis, in radians

~ 16 ~

'// Bx, By, Bz = components of the magnetic field at vector P, in Telsa
'// ReturnString = "SUCCESS" or an appropriate error message
Public Sub MagneticFieldAroundCoil(_
 ByVal Nturns As Int32, _
 ByVal Nlayers As Int32, _
 ByVal I As Double, _
 ByVal Rcore As Double, _
 ByVal Hcoil As Double, _
 ByVal U As Double, _
 ByVal Ntheta As Int32, _
 ByVal Pz As Double, _
 ByVal Pr As Double, _
 ByVal Pphi As Double, _
 ByRef Bx As Double, _
 ByRef By As Double, _
 ByRef Bz As Double, _
 ByRef ReturnString As String)
 Dim PI As Double = 3.141592654
 Dim Dwire As Double ' Diameter of the wire, in meters
 Dim zNthturn As Double ' Height of the Nth turn from center of coil, in meters
 Dim rMthlayer As Double ' Radius of Mth layer from centerline of coil, in meters
 Dim Theta As Double ' Azimuth of current element from x-axis
 Dim CosTheta As Double ' Cosine of angle Theta
 Dim SinTheta As Double ' Sine of angle Theta
 Dim CosThetaPhi As Double ' Cosine of differential angle Theta - Pphi
 Dim Denominator1 As Double ' Temporary variable
 Dim Denominator2 As Double ' Temporary variable
 Dim dBx As Double
 Dim dBy As Double
 Dim dBz As Double
 ' Validate the incoming arguments.
 If (Nturns < 1) Then
 ReturnString = "Error -- number of turns must be positive"
 Exit Sub
 End If
 If (Nlayers < 1) Then
 ReturnString = "Error -- number of layers must be positive"
 Exit Sub
 End If
 If (Ntheta <= 100) Then
 ReturnString = "Error -- number of elements per turn must exceed 100"
 Exit Sub
 End If
 If (Rcore < 0) Then
 ReturnString = "Error -- inner radius of coil must be positive"
 Exit Sub
 End If
 If (Hcoil < 0) Then
 ReturnString = "Error -- height of coil must be positive"
 End If
 Try
 Bx = 0 : By = 0 : Bz = 0
 Dwire = Hcoil / Nturns
 ' Loop which steps through the layers of the winding
 For M As Int32 = 1 To Nlayers Step 1
 rMthlayer = Rcore + (Dwire * (M - 0.5))
 ' Loop which steps through the turns in each layer
 For N As Int32 = 1 To Nturns Step 1

~ 17 ~

 zNthturn = Dwire * (N - 0.5 - (Nturns / 2))
 Denominator1 = (Pr * Pr) + _
 ((Pz - zNthturn) * (Pz - zNthturn)) + _
 (rMthlayer * rMthlayer)
 ' Loop which steps around a single turn
 For Itheta As Int32 = 1 To Ntheta Step 1
 Theta = 2 * PI * (Itheta - 0.5) / Ntheta
 CosTheta = Math.Cos(Theta)
 SinTheta = Math.Sin(Theta)
 CosThetaPhi = Math.Cos(Theta - Pphi)
 Denominator2 = Denominator1 - (2 * Pr * rMthlayer * CosThetaPhi)
 Denominator2 = Denominator2 * Math.Sqrt(Denominator2)
 Denominator2 = rMthlayer * (2 * PI / Ntheta) / Denominator2
 dBx = (Pz - zNthturn) * CosTheta * Denominator2
 dBy = (Pz - zNthturn) * SinTheta * Denominator2
 dBz = (rMthlayer - (Pr * CosThetaPhi)) * Denominator2
 Bx = Bx + dBx
 By = By + dBy
 Bz = Bz + dBz
 Next Itheta
 Next N
 Next M
 Bx = I * U * Bx / (4 * PI)
 By = I * U * By / (4 * PI)
 Bz = I * U * Bz / (4 * PI)
 ReturnString = "SUCCESS"
 Catch e As Exception
 ReturnString = "Error -- " & e.ToString
 End Try
End Sub

One further bit of information will be needed by the practitioner of coil winding: the diameters of

standard enameled copper wire. The following table sets out the diameter, in millimeters, for a range of

common AWG wire gauges. To be useful, the table also gives the resistance per unit length. And,

finally, the table is expressed as a Visual Basic subroutine, with which these properties can be looked up

programmatically.

'//
'// Generalized subroutine which returns the diameter and lineal resistance of common
'// enameled copper wire.
'// Gauge = AWG solid enameled copper wire gauge
'// Diameter = wire diameter, including coating, in millimeters
'// Resistance = resistance per unit length, in Ohms per meters
'// ReturnString = "SUCCESS" or an appropriate error message
Public Sub GetWireProperties(_
 ByVal Gauge As Int32, _
 ByRef Diameter As Double, _
 ByRef Resistance As Double, _
 ByRef ReturnString As String)
 ReturnString = "SUCCESS"
 Select Case Gauge
 Case 14 : Diameter = 1.69 : Resistance = 0.00844
 Case 15 : Diameter = 1.51 : Resistance = 0.0106
 Case 16 : Diameter = 1.34 : Resistance = 0.0134
 Case 17 : Diameter = 1.2 : Resistance = 0.0169
 Case 18 : Diameter = 1.08 : Resistance = 0.0213
 Case 19 : Diameter = 0.962 : Resistance = 0.027

~ 18 ~

 Case 20 : Diameter = 0.864 : Resistance = 0.0339
 Case 21 : Diameter = 0.767 : Resistance = 0.0428
 Case 22 : Diameter = 0.686 : Resistance = 0.054
 Case 23 : Diameter = 0.615 : Resistance = 0.0681
 Case 24 : Diameter = 0.549 : Resistance = 0.0858
 Case 25 : Diameter = 0.491 : Resistance = 0.108
 Case 26 : Diameter = 0.438 : Resistance = 0.136
 Case 27 : Diameter = 0.391 : Resistance = 0.172
 Case 28 : Diameter = 0.349 : Resistance = 0.217
 Case 29 : Diameter = 0.311 : Resistance = 0.274
 Case 30 : Diameter = 0.281 : Resistance = 0.345
 Case 31 : Diameter = 0.251 : Resistance = 0.435
 Case 32 : Diameter = 0.225 : Resistance = 0.549
 Case 33 : Diameter = 0.2 : Resistance = 0.692
 Case 34 : Diameter = 0.178 : Resistance = 0.872
 Case 35 : Diameter = 0.161 : Resistance = 1.1
 Case 36 : Diameter = 0.145 : Resistance = 1.39
 Case 37 : Diameter = 0.128 : Resistance = 1.75
 Case 38 : Diameter = 0.113 : Resistance = 2.21
 Case 39 : Diameter = 0.102 : Resistance = 2.78
 Case 40 : Diameter = 0.09 : Resistance = 3.51
 Case Else : ReturnString = "Error -- unknown wire gauge"
 End Select
End Sub

(A procedure to approximate the magnetic field strength by interpolation)

Above, we developed general equations (summations, but not closed-form) which can be used to calculate

the magnetic field vector at any point inside or around a cylindrical air-core solenoid. The computational

procedure which implements the summation is straightforward but time-consuming. If the coil has ten

layers and three hundred turns per layer, and one divides the turns into 5000 discrete arcs, the procedure

can take two or three seconds or more on a typical PC. This is not a problem if one only wants to

calculate the magnetic field at a few dozen or hundred spots.

Usually, there is a greater goal. If one wanted to calculate the force this solenoid exerts on a nearby

magnet, for example, the magnetic field would need to be calculated at each point in the whole region of

space occupied by the magnet. Even if one took advantage of rotational symmetry, and calculated the

magnetic field strength in a grid 1000 points wide and 1000 points high, the procedure would need to be

repeated a million times. For ready reference, the three million seconds the calculation would take is

equal to 35 days. Something else needs to be done if calculating the magnetic field is part of a bigger

procedure.

We will start by taking advantage of the radial nature of the magnetic field inside and around the

cylindrical solenoid, which has already been described. Using the notation from above, we can focus our

attention on a single radial plane, which is the same as all other radial planes. For convenience, we will

pick the radial plane which is defined by in our general equations. When the co-ordinate frame is

specified in this way, we need only concern ourselves with the axial -co-ordinate and the radial -co-

ordinate. The general equations reduce to:

~ 19 ~

-axis

-axis

winding

-axis (axial)

-axis (radial)

Suppose, for our greater purpose, that we want to calculate the magnetic field in some rectangular region

inside or outside the solenoid (but not including any part of the winding). The rectangles shown in

the following diagram are samples of three regions which might be of interest to us.

What we will do is this: we will impose a grid of modest size on region , perhaps a grid 100 points

wide and 100 points high. We will calculate the magnetic field components and , and a couple of

other variables, at each of these 10,000 grid points. That would take several hours, but less than a day.

Then, we will devise a strategy to interpolate the values of the magnetic field components at any arbitrary

location within the grid and between grid points.

Let us impose a rectangular grid on whatever region is of interest. The following figure shows a

rudimentary grid.

~ 20 ~

-axis (radial)

I have shown region as being divided into a grid, with grid points, but a useful grid

would likely be divided much more finely than this. Neither the region nor the grid need be square, but

they do need to be rectangular, and the grid points must be equally-spaced in their respective directions. I

have shaded in grey one of the rectangles in the grid and labeled its four corners. The order of the points

will be important during the analysis – points 3 and 4 are immediately above points 1 and 2, respectively,

and points 2 and 4 are immediately to the right of points 1 and 3, respectively.

We are going to try to approximate a function within this grid rectangle based on what we know at the

four corners. Consider points 1 and 2, which have the same -value. Consider also an arbitrary function

of the radial distance , , as shown in the following figure:

Suppose we happened to know the value of the function, and , at the two points and the value

of the first derivative, and , there as well. With these four bits of information, we could find

the four constants in the following cubic polynomial which approximates the function:

A cubic polynomial is not a bad choice – it has exactly one point of inflection, just like the magnetic field

components which we are interested in.

If we now consider points 1 and 3, which have the same -value, and repeat the process, we could find the

four constants in the following cubic polynomial which approximates the function (in the -direction):

We can combine the two strategies, and look for a polynomial of the following form, to approximate the

function over the - surface (within this grid rectangle, at least):

In fact, we can aim higher than this. A more general form of cubic polynomial in two dimensions is the

following:

This more general polynomial includes all combinations of powers of the independent variables of three

or less. There are ten constants. However, we seem to have twelve pieces of information from which to

find them: the value of the function at the four corners, the first derivative of the function in the

-direction at the four corners and the first derivative of the function in the -direction at the four corners.

This is unusual, but let us proceed in the customary way.

The proposed polynomial has the following first partial derivatives:

~ 21 ~

We can write down the boundary conditions at the four corners as follows:

These equations can be written in matrix form. For now, let us look at the eight derivative conditions

only. In matrix form, they are:

~ 22 ~

However, recall that we chose the four points which define the grid rectangle so that , ,

 and , in which case these equations can be re-written, with the components of the vector on

the left-hand side defined by position, as:

We can take linear combinations of the rows without affecting the equality. Let us subtract the first row

from the third row, the second row from the fourth row, the fifth row from the sixth row, and the seventh

from the eighth row. The four difference equations are:

~ 23 ~

Oh, dear! Here we have four equations which depend on only three variables: , and . This is

telling us that these eight boundary conditions are not independent from each other. Knowing seven of

the derivatives, we can calculate the eighth. In order for our boundary conditions to be independent, we

must drop one of them. Which one we drop does not matter. For convenience, let us eliminate the last

boundary condition, for .

In a similar way, let us now look at only the four function-value conditions. In matrix form, they are:

As we did before, we can substitute the equalities for the grid rectangle: , , and

. Focusing only on the right-hand side of the equation, we get:

Subtracting the first row from the third row, and the second row from the fourth row, we get the following

two difference equations:

We can repeat our new trick, and subtract the first row from the second row, giving one final difference

equation:

~ 24 ~

Here, we have another equation which depends only on the same three variables: , and . So, we

still have one more boundary condition that we need. We can drop another of the boundary conditions.

For convenience, let us drop the other derivative at point 4, for , from further consideration.

Now have ten equations in ten unknowns. These ten equations should be independent. Defining

quantities on the left-hand side using in order to simplify the appearance of the equations, we get:

I have already substituted the equalities of the grid rectangle, that and so on. We now take linear

combinations of rows which look similar. Defining and , we get:

~ 25 ~

If we re-order the equations, then the matrix becomes block-upper-triangular with three blocks.

Block #1 consists of the fourth, seventh and ninth equations, for which:

Block #2 consists of the third, eighth and tenth equations, for which:

Block #3 consists of the first, second, fifth and sixth equations, for which:

We can solve the three blocks separately. We can solve Block #1 for , and as follows:

Noting that and similarly that , this

simplifies to:

~ 26 ~

Withdrawing the common factor leaves:

 can be found directly from the first equation in this block. Knowing , then can be found from the

last equation. Finally, knowing both and , can be found from the middle equation.

Having now calculated , and , we turn to Block #2. We can solve this block for three more

constants, as follows:

Substituting and , this simplifies to:

 can be found directly from the first equation in this block. Knowing , then can be found from the

last equation. Finally, knowing both and , can be found from the middle equation.

Having now calculated six of the ten constants, we can attack Block #1 to calculate the remaining four.

~ 27 ~

Subtracting multiplied by the third equation from the second equation, and substituting expressions for

the difference of squares and cubes, this becomes:

 can be found directly from the second equation in this block. Knowing , then can be found from

the last equation. Then, knowing both and , can be found directly from the third equation.

Finally, can be found from the first equation.

There are three things to note.

1. When reducing the ten equations above, no division was done.

2. All of the leading coefficients in the ten reduced equations are either 1, powers of or powers

of . So long as the grid is not degenerate, and and , none of the leading

coefficients will be zero.

3. The implication of the first two observations is that there will always be a solution to the ten

equations as long as the grid is not degenerate.

~ 28 ~

We still have not talked about calculating the partial derivatives at each point. The method I have found

successful is based on evaluating the function at two other points around and very near each point in the

grid, as shown in the following diagram:

One can pick and small, but not so small that dividing by small numbers causes computational

errors. It should be understood that and are not the same as the grid spacing and . Picking

them to be 1% of the size of their respective grid sizes would be a good starting point. The

approximations for the partial derivatives at point are then given by:

This procedure requires that the function be calculated at three points – remember that the value at point

 itself is also needed – for each grid point in region . If the region of interest was divided into 25

elements across and 100 down, then 2 calculations of the function would be needed.

(In our Visual Basic subroutine listed above, both components of the magnetic field are calculated at the

same time.)

__

(Sample calculation #1)

Let us consider again the coil described above, with height and core radius . Let us

calculate the constants which will enable us to approximate and in a rectangular region to the upper

right of the coil. The following figure shows the region we will investigate.

130 mm

-axis
E(150 mm, 180 mm)

130 mm

D(20 mm, 55 mm)

-axis 100 mm

20 mm

~ 29 ~

Region happens to be a 130 mm square. (I selected this region for a purpose. In a following paper, I

want to calculate the forces this solenoid exerts on a similar one. I plan to put a solenoid of a similar size

at various points in region to see what happens. Region is big enough to allow the new solenoid

to be located at various relative positions.)

Region is divided into 2 mm squares, with 65 squares bordering each edge. Stated differently, 66

points were equally-spaced along each edge of region and a grid drawn between opposing points.

The subroutine listed below, named PolynomialApproximationInRegion(), was executed.

 pairs of sets of constants were calculated. Each set consists of the ten constants for use in Equation

. Note that a pair of sets is needed for each grid point, one for component and another for

component . This subroutine needed to call subroutine MagneticFieldAroundCoil() three times for

each point in the grid, for a total of times. On my 2 GHz laptop, the calculation

took a few minutes less than 24 hours.

Let us look at the result in a sample grid square, say, the square whose lower left corner is at

and . The constants for this grid square, in all their glorious precision, are:

These constants must be used with the same units of measurement in which they were calculated. The

units used in this case were Gauss and millimeters.

Subroutine PolynomialApproximationInRegion() does not scale lengths (as it could be revised to do) to,

say, the and values at the principal corner. In exchange for this simplicity, one must be vigilant to

ensure that the constants do not represent an exploding function. The following table shows the

contribution of each term in the polynomials to the total magnetic field strengths.

~ 30 ~

The totals, and , are the components of the

magnetic field at the point and . Because this point is a grid point, these

components are exactly equal to the exact values. For any other point within this grid square, which

occupies and , the ten components of and would being

calculated and added up in the same way.

It would seem that all ten components of the polynomials contribute in roughly equal measures to the

totals. That is good. On the other hand, the totals are the sums and differences of some very big

numbers. That is bad. In addition, the contributions from the , and terms do not diminish with

increasing order as well as could be hoped. Neither do the terms from increasing orders of . This means

that the lower-order terms in the polynomials are not natural representations of the underlying functions.

But, we already knew that. What saves us from the problems of a poorly-matched polynomial is double

precision arithmetic and a small grid size.

Before indiscriminately using the polynomial approximations, it is wise to get some understanding for the

errors involved. Since the approximation is derived using values at the four corners, intuition tells us that

the maximum error will be near the center of each grid square, equidistant from the corners. Furthermore,

recall that less information was used for the upper-right corner of each grid cell (both derivatives at point

4 were dropped), so the location of maximum error will probably lie slightly off center, in the direction

towards point 4.

As a start towards understanding the errors, I calculated the exact values of and at the center of each

grid square in region , and compared these with the values given by the polynomials. Both the

absolute error and the percentage error are of interest.

The five worst absolute errors in are between 0.019 Gauss and 0.034 Gauss. The five worst

percentage errors in are between and . The locations at which these errors occur are all

located in the lower-left of region , where is less than and is less than . This is the

area in region in which changes most quickly.

The five worst absolute errors in are between 0.008 Gauss and 0.010 Gauss. These absolute errors

also occur in the lower-left of region .

The five worst percentage errors in are between 31% and 127%. The locations at which these

percentage errors occur fall roughly along a line passing diagonally through region , from the lower

left to the upper right. At these points, is very close to zero and the concept of percentage error begins

to fail. For example, the worst percentage error in occurs where is only 0.000013 Gauss.

Errors of this magnitude were acceptable for my purpose. If your work requires more precision, then the

easiest change would be to reduce the grid size. Generally, reducing the grid size by a factor of two

should reduce the absolute errors by a factor of four. If there are areas in your region where or are

zero or very close to zero, the percentage errors should be interpreted accordingly.

__

(Sample calculation #2)

Sample calculation #1 looked at a region outside of a solenoid. The methodology works just as well for a

region inside a solenoid. (The methodology fails for locations inside the winding.) Sample calculation

#2 looks at a very wide solenoid. It has a core radius of (about 4¾ inches) and a height of only

 (about ⅜ inch). It is shaped more like a loop than a traditional coil. Like the solenoid above, it is

wound with layers of enameled wire. This winding uses meters of wire. When powered by

~ 31 ~

-axis

-axis

E(119 mm, 66 mm)

D(-119 mm, -66 mm)

10 mm

120 mm

a dc supply, it draws . This is a magnet. (Comparison: the solenoid in

Sample calculation #1 used meters of wire, which drew at . It had .)

This solenoid, for Sample calculation #2, was chosen to be as different as possible from the one for

Sample calculation #1. The solenoid in Sample calculation #1 may be useful for moving things around

outside itself; the solenoid in Sample calculation #2 would be more useful for moving things around

inside its bounds.

The following figure shows the region in which the constants for the polynomials were calculated.

In this case, the region was divided into squares. There are points in the grid.

Although there are more grid points in this sample calculation than in Sample calculation #1, there are

also fewer turns in the winding. As a result, the calculations of the magnetic field at the grid points run

more quickly. Overall, calculating the constants took about seven hours. Of course, virtually all of this

time was spent calculating the exact values of and , and their derivatives, at the grid points.

Calculating the constants took four times longer than it could have taken. Region is centered in the

- plane so there is symmetry among the four quadrants of the region. I could have calculated the

constants only in the first quadrant, for example. I did not do this. Not knowing what references would

be made to this region in subsequent work, I did not want to complicate all subsequent references by

requiring that they sort out the relevant symmetries.

It should be noted that, although the magnetic field is symmetric among the quadrants, the constants

themselves are not symmetric. The constants are derived from squares in which the order of the corners

is important. In Quadrant 1, the lower-left point of each grid point (point 1) is the one closest to the

origin. In Quadrant 3, point 1 is the one farthest from the origin. This asymmetry means that the

constants for any particular grid square are not necessarily related to the constants for the corresponding

grid square in the other quadrants.

For interest’s sake, the following figure shows the axial component () of the magnetic field across a

diameter of this solenoid. is shown for an equatorial diameter (and at the top (and

bottom (of the winding. takes the shape of a well, with a minimum at the center and

rising towards the winding. The rise at the edges is quite steep. The curves across the top and bottom of

the coil are identical. Because this magnet is very wide compared to its height, the shape of the field is

very much like that of a single circular loop.

~ 32 ~

0

2

4

6

8

10

12

14

-120 -90 -60 -30 0 30 60 90 120

B
z

fi
e

ld
 s

tr
e

n
gt

h
 (

G
au

ss
)

Distance from centerline (mm)

Bz (Gauss) vs. radial displacement (mm)
(various axial displacements)

z=0

z=+5mm

z=-5mm

-8

-6

-4

-2

0

2

4

6

8

-120 -90 -60 -30 0 30 60 90 120

B
r

fi
e

ld
 s

tr
e

n
gt

h
 (

G
au

ss
)

Distance from centerline (mm)

Br (Gauss) vs. radial displacement (mm)
(various axial displacements)

z=+5mm

z=0

z=-5mm

The following figure shows the radial component () of the magnetic field across the diameters at the

same three axial displacements.

The radial component is zero or very small throughout most of the central area, but rises very steeply near

the winding. The radial component is asymmetric.

As before, it is necessary to take a look at the errors involved in the polynomial approximations before

putting them to work. I calculated the absolute and percentage errors at the centers of all the grid points

~ 33 ~

in the upper-right quadrant of region . The errors vary across the region and are best understood in

“bands” of the radial displacement .

The errors in the first three bands (close to the centerline) occur far above and below the solenoid (at

, where the magnetic field strength is lowest. The errors in the last three bands (nearing

the winding) occur near the central plane of the solenoid, where the change in field strength with distance

is greatest.

__

(Computational procedure)

The following listing is a Visual Basic subroutine which evaluates the constants of the two polynomials

for and in a rectangular region. As always, the ByVal variables should be treated as arguments

passed to the subroutine and the ByRef variables as those which the subroutine calculates and returns.

The procedure saves the constants, as well as all intermediate calculations, to a text file.

'//
'// Generalized subroutine to calculate the 20 coefficients of the two 3rd-order
'// polynomials which approximate both components of the magnetic field in a region of
'// space from D=(Rstart,Zstart) to E=(Rend,Zend) divided into a grid with N points in
'// the r-direction and M points in the z-direction. Region DE must not intersect the
'// windings, but the subroutine does not check for this.
'//
'// Each grid square has a polynomial of form: Br(r,z) = C(0) + C(1)r + C(2)r^2 + ...
'// C(3)r^3 + C(4)z + C(5)z^2 + C(6)z^3 + C(7)rz + C(8)rz^2 + C(9)r^2z and a similar
'// polynomial for Bz(r,z).
'//
'// Results are saved to a file on disk named C:\MagFieldRegionApproximation.txt.
'// The saved file has three parts:
'// Part A: For each of N*M points, there are three lines of text:
'// Line 1 contains r, z, Br and Bz at (r,z)
'// Line 2 contains r+delr, z, Br and Bz at (r+delr,z)
'// Line 3 contains r, z+delz, Br and Bz at (r,z+delz)
'// Part B: For each of N*M points, there are three lines of text:
'// Line 1 contains r, z, Br and Bz at (r,z)
'// Line 2 contains dBr/dr and dBr/dz at (r,z)
'// Line 3 contains dBz/dr and dBz/dz at (r,z)
'// Part C: For each of N*M points, there are eleven lines of text:
'// Line 1 contains r and z
'// Line 2 contains BrC(0) and BzC(0) at (r,z)
'// Line 3 contains BrC(1) and BzC(1) at (r,z)
'// ...
'// Line 11 contains BrC(9) and BzC(9) at (r,z)
'//
'// The increments delR and delZ used to estimate the partial derivatives are set
'// to 1% of the grid spacing.
'//

~ 34 ~

'// Nturns = number of turns of wire in each layer
'// Nlayers = number of layers of wire in the winding
'// Current = current flow, in amperes
'// Rcore = inner radius of the winding, in meters
'// Hcoil = height of windings, in meters
'// Rstart, Zstart = lower left corner of the region DE, in millimeters
'// Rend, Zend = upper right corner of the region DE, in millimeters
'// N = number of grid points in the r-direction
'// M = number of grid points in the z-direction
'// ReturnString = "SUCCESS" or an appropriate error message
Public Sub PolynomialApproximationInRegion(_
 ByVal Nturns As Int32, _
 ByVal Nlayers As Int32, _
 ByVal Current As Double, _
 ByVal Rcore As Double, _
 ByVal Hcoil As Double, _
 ByVal Rstart As Double, _
 ByVal Rend As Double, _
 ByVal Zstart As Double, _
 ByVal Zend As Double, _
 ByVal N As Int32, _
 ByVal M As Int32, _
 ByRef ReturnString As String)
 Dim OutStream As System.IO.StreamWriter ' Writer for text file
 Dim InStream As System.IO.StreamReader ' Reader for text file
 Dim TempString As String
 Dim U As Double = 4 * PI * 0.0000001 ' Permeability
 Dim NumDelTheta As Int32 = 5000 ' Number of elements in a current loop
 ' Validate the incoming arguments.
 If (Nturns < 1) Then
 ReturnString = "Error -- number of turns must be positive"
 Exit Sub
 End If
 If (Nlayers < 1) Then
 ReturnString = "Error -- number of layers must be positive"
 Exit Sub
 End If
 If (Rcore < 0) Then
 ReturnString = "Error -- inner radius of coil must be positive"
 Exit Sub
 End If
 If (Hcoil < 0) Then
 ReturnString = "Error -- height of coil must be positive"
 Exit Sub
 End If
 If (Rend <= Rstart) Then
 ReturnString = "Error -- Rend must be greater than Rstart"
 Exit Sub
 End If
 If (Zend <= Zstart) Then
 ReturnString = "Error -- Zend must be greater than Zstart"
 Exit Sub
 End If
 If (N < 2) Then
 ReturnString = "Error -- horizontal grid N must be greater than 1"
 Exit Sub
 End If
 If (M < 2) Then

~ 35 ~

 ReturnString = "Error -- vertical grid M must be greater than 1"
 Exit Sub
 End If
 ' Calculate delR and delZ for the purpose of calculating derivatives.
 Dim delR As Double
 Dim delZ As Double
 delR = (Rend - Rstart) / (100 * (N - 1))
 delZ = (Zend - Zstart) / (100 * (M - 1))
 ' Allow the user to skip the evaluations of the magnetic field.
 If (System.IO.File.Exists("C:\MagFieldRegionApproximation.txt")) Then
 Dim MsgBoxResult As MsgBoxResult
 MsgBoxResult = MsgBox("File already exists. Repeat function evaluations?", _
 vbYesNo, "Repeat function evaluations?")
 If (MsgBoxResult = vbNo) Then
 GoTo StartPartB
 End If
 End If
 ' Open the file to save Part A: function evaluations.
 OutStream = New System.IO.StreamWriter("C:\MagFieldRegionApproximation.txt", False)
 If (OutStream Is Nothing) Then
 ReturnString = "Error -- Could not open output file"
 Exit Sub
 End If
 ' Write coil and region information as a header for the file.
 TempString = "Approximating the magnetic field components in a region:" & vbCrLf
 TempString = TempString & "Rcore (mm) = " & Trim(Str(Rcore)) & vbCrLf
 TempString = TempString & "Hcoil (mm) =" & Trim(Str(Hcoil)) & vbCrLf
 TempString = TempString & "Nturns = " & Trim(Str(Nturns)) & vbCrLf
 TempString = TempString & "Nlayers = " & Trim(Str(Nlayers)) & vbCrLf
 TempString = TempString & "Current (A) =" & Trim(Str(Current)) & vbCrLf
 TempString = TempString & "Rstart (mm) =" & Trim(Str(Rstart)) & vbCrLf
 TempString = TempString & "Rend (mm) =" & Trim(Str(Rend)) & vbCrLf
 TempString = TempString & "Zstart (mm) =" & Trim(Str(Zstart)) & vbCrLf
 TempString = TempString & "Zend (mm) =" & Trim(Str(Zend)) & vbCrLf
 TempString = TempString & "N = " & Trim(Str(N)) & vbCrLf
 TempString = TempString & "M = " & Trim(Str(M)) & vbCrLf & vbCrLf
 TempString = TempString & "Part A: Evaluations of the magnetic fields:" & vbCrLf
 OutStream.Write(TempString)
 'Part A
 Dim R As Double
 Dim Z As Double
 Dim Bx As Double
 Dim By As Double
 Dim Bz As Double
 ' Main loop in the r-direction
 For I As Int32 = 1 To N Step 1
 R = Rstart + ((Rend - Rstart) * (I - 1) / (N - 1))
 ' Main loop in the z-direction
 For J As Int32 = 1 To M Step 1
 Z = Zstart + ((Zend - Zstart) * (J - 1) / (M - 1))
 TempString = "r(mm)=" & Trim(FormatNumber(R, 3))
 TempString = TempString & " z(mm)=" & Trim(FormatNumber(Z, 3))
 MagneticFieldAroundCoil(Nturns, Nlayers, Current, _

 Rcore / 1000, Hcoil / 1000, _
 U, NumDelTheta, Z / 1000, R / 1000, 0, Bx, By, Bz, ReturnString)

 If (ReturnString <> "SUCCESS") Then
 ReturnString = "Error -- " & ReturnString
 Exit Sub

~ 36 ~

 End If
 TempString = TempString & " Br(G)=" & Trim(Str(Bx * 10000))
 TempString = TempString & " Bz(G)=" & Trim(Str(Bz * 10000)) & vbCrLf
 TempString = TempString & "r+delr(mm)=" & Trim(FormatNumber(R + delR, 3))
 TempString = TempString & " z(mm)=" & Trim(FormatNumber(Z, 3))
 MagneticFieldAroundCoil(Nturns, Nlayers, Current, _

 Rcore / 1000, Hcoil / 1000, _
 U, NumDelTheta, (R + delR) / 1000, Z / 1000, 0, Bx, By, Bz, ReturnString)

 If (ReturnString <> "SUCCESS") Then
 ReturnString = "Error -- " & ReturnString
 Exit Sub
 End If
 TempString = TempString & " Br(G)=" & Trim(Str(Bx * 10000))
 TempString = TempString & " Bz(G)=" & Trim(Str(Bz * 10000)) & vbCrLf
 TempString = TempString & "r(mm)=" & Trim(FormatNumber(R, 3))
 TempString = TempString & " z+delz(mm)=" & Trim(FormatNumber(Z + delZ, 3))
 MagneticFieldAroundCoil(Nturns, Nlayers, Current, _
 Rcore / 1000, Hcoil / 1000, _
 U, NumDelTheta, R / 1000, (Z + delZ) / 1000, 0, Bx, By, Bz, ReturnString)
 If (ReturnString <> "SUCCESS") Then
 ReturnString = "Error -- " & ReturnString
 Exit Sub
 End If
 TempString = TempString & " Br(G)=" & Trim(Str(Bx * 10000))
 TempString = TempString & " Bz(G)=" & Trim(Str(Bz * 10000)) & vbCrLf
 OutStream.Write(TempString)
 labelResultsC.Text = "R=" & Trim(Str(R)) & " Z=" & Trim(Str(Z))
 Me.Refresh()
 Threading.Thread.Sleep(1000)
 Next J
 Next I
 ' Close the output file.
 OutStream.Close()
StartPartB:
 Dim Q(N, M, 12) As Double ' Q(i,j,1)=r, Q(i,j,2)=z, ...
 ' ' Q(i,j,3)=Br(r,z), Q(i,j,4)=Bz(r,z), ...
 ' ' Q(i,j,5)=Br(r+delr,z), Q(i,j,6)=Bz(r+delr,z), ...
 ' ' Q(i,j,7)=Br(r,z+delz), Q(i,j,8)=Bz(r,z+delz), ...
 ' ' Q(i,j,9)=dBr(r,z)/dr, Q(i,j,10)=dBz(r,z)/dr, ...
 ' ' Q(i,j,11)=dBr(r,z)/dz, Q(i,j,12)=dBz(x,y)/dz
 ' Open the file for input.
 Try
 InStream = New System.IO.StreamReader("C:\MagFieldRegionApproximation.txt")
 If (InStream Is Nothing) Then
 ReturnString = "Error -- Could not open the file"
 Exit Sub
 End If
 ' Find the last row of the header.
 Dim FoundLastLine As Boolean = False
 For I As Int32 = 1 To 100
 TempString = InStream.ReadLine
 If (Strings.Left(TempString, 6) = "Part A") Then
 FoundLastLine = True
 Exit For
 End If
 Next I
 If (FoundLastLine = False) Then
 InStream.Close()

~ 37 ~

 ReturnString = "Error -- Could not find last line of header"
 Exit Sub
 End If
 Catch e As Exception
 ReturnString = "Error -- Problem opening file: " & e.ToString
 Exit Sub
 End Try
 ' Read the rows and calculate the derivatives.
 For Ir As Int32 = 1 To N Step 1
 For Iz As Int32 = 1 To M Step 1
 Dim Position As Int32
 If (InStream.EndOfStream) Then
 InStream.Close()
 ReturnString = "Error -- Data ended at (Ir, Iz) = " & _
 Trim(Str(Ir)) & ", " & Trim(Str(Iz))
 Exit Sub
 End If
 Try
 TempString = InStream.ReadLine
 Position = Strings.InStr(TempString, "=")
 TempString = Strings.Right(TempString, Len(TempString) - Position)
 Position = Strings.InStr(TempString, " ")
 Q(Ir, Iz, 1) = Val(Strings.Left(TempString, Position))
 TempString = Strings.Right(TempString, Len(TempString) - Position)
 Position = Strings.InStr(TempString, "=")
 TempString = Strings.Right(TempString, Len(TempString) - Position)
 Position = Strings.InStr(TempString, " ")
 Q(Ir, Iz, 2) = Val(Strings.Left(TempString, Position))
 TempString = Strings.Right(TempString, Len(TempString) - Position)
 Position = Strings.InStr(TempString, "=")
 TempString = Strings.Right(TempString, Len(TempString) - Position)
 Position = Strings.InStr(TempString, " ")
 Q(Ir, Iz, 3) = Val(Strings.Left(TempString, Position))
 TempString = Strings.Right(TempString, Len(TempString) - Position)
 Position = Strings.InStr(TempString, "=")
 TempString = Strings.Right(TempString, Len(TempString) - Position)
 Q(Ir, Iz, 4) = Val(TempString)
 Catch e As Exception
 ReturnString = "Error -- Problem reading line#1 for (Ir, Iz) = " & _
 Trim(Str(Ir)) & ", " & Trim(Str(Iz)) & ": " & e.ToString
 InStream.Close()
 Exit Sub
 End Try
 Try
 TempString = InStream.ReadLine
 Position = Strings.InStr(TempString, "=")
 TempString = Strings.Right(TempString, Len(TempString) - Position)
 Position = Strings.InStr(TempString, " ")
 TempString = Strings.Right(TempString, Len(TempString) - Position)
 Position = Strings.InStr(TempString, "=")
 TempString = Strings.Right(TempString, Len(TempString) - Position)
 Position = Strings.InStr(TempString, " ")
 TempString = Strings.Right(TempString, Len(TempString) - Position)
 Position = Strings.InStr(TempString, "=")
 TempString = Strings.Right(TempString, Len(TempString) - Position)
 Position = Strings.InStr(TempString, " ")
 Q(Ir, Iz, 5) = Val(Strings.Left(TempString, Position))
 TempString = Strings.Right(TempString, Len(TempString) - Position)

~ 38 ~

 Position = Strings.InStr(TempString, "=")
 TempString = Strings.Right(TempString, Len(TempString) - Position)
 Q(Ir, Iz, 6) = Val(TempString)
 Catch e As Exception
 ReturnString = "Error -- Problem reading line#2 for (Ir, Iz) = " & _
 Trim(Str(Ir)) & ", " & Trim(Str(Iz)) & ": " & e.ToString
 InStream.Close()
 End Try
 Try
 TempString = InStream.ReadLine
 Position = Strings.InStr(TempString, "=")
 TempString = Strings.Right(TempString, Len(TempString) - Position)
 Position = Strings.InStr(TempString, " ")
 TempString = Strings.Right(TempString, Len(TempString) - Position)
 Position = Strings.InStr(TempString, "=")
 TempString = Strings.Right(TempString, Len(TempString) - Position)
 Position = Strings.InStr(TempString, " ")
 TempString = Strings.Right(TempString, Len(TempString) - Position)
 Position = Strings.InStr(TempString, "=")
 TempString = Strings.Right(TempString, Len(TempString) - Position)
 Position = Strings.InStr(TempString, " ")
 Q(Ir, Iz, 7) = Val(Strings.Left(TempString, Position))
 TempString = Strings.Right(TempString, Len(TempString) - Position)
 Position = Strings.InStr(TempString, "=")
 TempString = Strings.Right(TempString, Len(TempString) - Position)
 Q(Ir, Iz, 8) = Val(TempString)
 Catch e As Exception
 ReturnString = "Error -- Problem reading line#3 for (Ir, Iz) = " & _
 Trim(Str(Ir)) & ", " & Trim(Str(Iz)) & ": " & e.ToString
 InStream.Close()
 Exit Sub
 End Try
 Next Iz
 Next Ir
 InStream.Close()
 ' Calculate the partial derivatives.
 For Ir As Int32 = 1 To N Step 1
 For Iz As Int32 = 1 To M Step 1
 Try
 Q(Ir, Iz, 9) = (Q(Ir, Iz, 5) - Q(Ir, Iz, 3)) / delR
 Q(Ir, Iz, 10) = (Q(Ir, Iz, 6) - Q(Ir, Iz, 4)) / delR
 Q(Ir, Iz, 11) = (Q(Ir, Iz, 7) - Q(Ir, Iz, 3)) / delZ
 Q(Ir, Iz, 12) = (Q(Ir, Iz, 8) - Q(Ir, Iz, 4)) / delZ
 Catch e As Exception
 ReturnString = "Error -- Problem calculating derivatives at " & _

 vbCrLf & "(Ir, Iz)=(" & Trim(Str(Ir)) & ", " & Trim(Str(Iz)) & _
 ")" & vbCrLf & e.ToString

 Exit Sub
 End Try
 Next Iz
 Next Ir
 ' Open the file to append Part B: partial derivatives.
 OutStream = New System.IO.StreamWriter("C:\MagFieldRegionApproximation.txt", True)
 If (OutStream Is Nothing) Then
 ReturnString = "Error -- Could not open output file"
 Exit Sub
 End If
 ' Write the partial derivatives to the file for safe-keeping.

~ 39 ~

 TempString = " " & vbCrLf & "Part B: Partial derivatives" & vbCrLf
 OutStream.Write(TempString)
 For Ir As Int32 = 1 To N Step 1
 For Iz As Int32 = 1 To M Step 1
 TempString = "r(mm)=" & Trim(FormatNumber(Q(Ir, Iz, 1))) & _
 " z(mm)=" & Trim(FormatNumber(Q(Ir, Iz, 2))) & _
 " Br(G)=" & Trim(Str(Q(Ir, Iz, 3))) & _
 " Bz(G)=" & Trim(Str(Q(Ir, Iz, 4))) & vbCrLf & _
 "dBr/dr=" & Trim(Str(Q(Ir, Iz, 9))) & _
 " dBr/dz=" & Trim(Str(Q(Ir, Iz, 11))) & vbCrLf & _
 "dBz/dr=" & Trim(Str(Q(Ir, Iz, 10))) & _
 " dBz/dz=" & Trim(Str(Q(Ir, Iz, 12))) & vbCrLf
 OutStream.Write(TempString)
 Next Iz
 Next Ir
StartPartC:
 Dim BrC(N, M, 9) As Double ' Coefficients of Br polynomial. BrC(*,*,0) is used.
 Dim BzC(N, M, 9) As Double ' Coefficients of Bz polynomial. BzC(*,*,0) is used.
 For Ir As Int32 = 1 To N - 1 Step 1
 For Iz As Int32 = 1 To M - 1 Step 1
 ' Calculate delR and delZ for the purpose of solving the constants.
 delR = (Rend - Rstart) / (N - 1)
 delZ = (Zend - Zstart) / (M - 1)
 ' Calculate the coefficients of the Br component from the bottom left point
 ' of region DE to the top right point less 1 (that is, N-1 and M-1)
 ' Set up the co-ordinates
 Dim R1, R2, Z1, Z3 As Double
 R1 = Q(Ir, Iz, 1) ' Q(*,*,1) is r
 R2 = Q(Ir + 1, Iz, 1) ' Ir + 1 is one grid point to the right of (Ir, Iz)
 Z1 = Q(Ir, Iz, 2) ' Q(*,*,2) is z
 Z3 = Q(Ir, Iz + 1, 2) ' Iz + 1 is one grid point above (Ir, Iz)
 ' Set up vector H(10)
 Dim H1, H2, H3, H4, H5, H6, H7, H8, H9, H10 As Double
 H1 = Q(Ir, Iz, 3) ' Q(*,*,3) is Br at Point 1 in the rectangle
 H2 = Q(Ir + 1, Iz, 3) ' Point 2 in the rectangle
 H3 = Q(Ir, Iz + 1, 3) ' Point 3 in the rectangle
 H4 = Q(Ir + 1, Iz + 1, 3) ' Point 4 in the rectangle
 H5 = Q(Ir, Iz, 9) ' Q(*,*,9) is dBr/dr at Point 1 in the rectangle
 H6 = Q(Ir + 1, Iz, 9) ' Point 2 in the rectangle
 H7 = Q(Ir, Iz + 1, 9) ' Point 3 in the rectangle
 H8 = Q(Ir, Iz, 11) ' Q(*,*,11) is dBr/dz at Point 1 in the rectangle
 H9 = Q(Ir + 1, Iz, 11) ' Point 2 in the rectangle
 H10 = Q(Ir, Iz + 1, 11) ' Point 3 in the rectangle
 ' Set up vector J(10)
 Dim J1, J2, J3, J4, J5, J6, J7, J8, J9, J10 As Double
 J1 = H1
 J2 = H2 - H1
 J3 = H5
 J4 = H6 - H5
 J5 = H3 - H1
 J6 = H8
 J7 = H10 - H8
 J8 = H1 - H2 - H3 + H4
 J9 = H7 - H5
 J10 = H9 - H8
 ' Modify the vector J(10) into JJ(10)
 Dim JJ1, JJ2, JJ3, JJ4, JJ5, JJ6, JJ7, JJ8, JJ9, JJ10 As Double
 JJ1 = J1

~ 40 ~

 JJ2 = J2 - (delR * J3) - (0.5 * delR * J4)
 JJ3 = J3
 JJ4 = J4
 JJ5 = J5 - (delZ * J6) - (0.5 * delZ * J7)
 JJ6 = J6
 JJ7 = J7
 JJ8 = J8 - (delZ * J10)
 JJ9 = J9
 JJ10 = (delZ * J10) - (delR * J9)
 ' Solve for constants
 Dim C0, C1, C2, C3, C4, C5, C6, C7, C8, C9 As Double
 Dim RHS As Double
 ' First block
 C8 = (JJ8 / delZ) / (delR * delZ)
 RHS = -delR * delZ * C8
 C9 = ((JJ10 / delZ) - RHS) / (delR * delR)
 RHS = (((2 * Z1) + delZ) * C8) + (2 * R1 * C9)
 C7 = (JJ9 / delZ) - RHS
 ' Second block
 C6 = -JJ5 / (0.5 * delZ * delZ * delZ)
 RHS = 2 * R1 * delZ * C8
 RHS = RHS + ((6 * Z1 * delZ + 3 * delZ * delZ) * C6)
 C5 = (JJ7 - RHS) / (2 * delZ)
 RHS = (R1 * C7) + (2 * R1 * Z1 * C8) + (R1 * R1 * C9)
 RHS = RHS + (2 * Z1 * C5) + (3 * Z1 * Z1 * C6)
 C4 = JJ6 - RHS
 ' Third block
 C3 = JJ2 / (-0.5 * delR * delR * delR)
 RHS = 2 * Z1 * delR * C9
 RHS = RHS + (((6 * R1 * delR) + (3 * delR * delR)) * C3)
 C2 = (JJ4 - RHS) / (2 * delR)
 RHS = (Z1 * C7) + (Z1 * Z1 * C8) + (2 * R1 * Z1 * C9)
 RHS = RHS + (2 * R1 * C2) + (3 * R1 * R1 * C3)
 C1 = JJ3 - RHS
 RHS = (Z1 * C4) + (Z1 * Z1 * C5) + (Z1 * Z1 * Z1 * C6)
 RHS = RHS + (R1 * Z1 * C7) + (R1 * Z1 * Z1 * C8) + (R1 * R1 * Z1 * C9)
 RHS = RHS + (R1 * C1) + (R1 * R1 * C2) + (R1 * R1 * R1 * C3)
 C0 = JJ1 - RHS
 ' Store the constants
 BrC(Ir, Iz, 0) = C0
 BrC(Ir, Iz, 1) = C1
 BrC(Ir, Iz, 2) = C2
 BrC(Ir, Iz, 3) = C3
 BrC(Ir, Iz, 4) = C4
 BrC(Ir, Iz, 5) = C5
 BrC(Ir, Iz, 6) = C6
 BrC(Ir, Iz, 7) = C7
 BrC(Ir, Iz, 8) = C8
 BrC(Ir, Iz, 9) = C9
 '
 ' Calculate the coefficients of the Bz component from the bottom left point
 ' of region DE to the top right point less 1 (that is, N-1 and M-1)
 ' Set up vector H(10)
 H1 = Q(Ir, Iz, 4) ' Q(*,*,4) is Bz at Point 1 in the rectangle
 H2 = Q(Ir + 1, Iz, 4) ' Point 2 in the rectangle
 H3 = Q(Ir, Iz + 1, 4) ' Point 3 in the rectangle
 H4 = Q(Ir + 1, Iz + 1, 4) ' Point 4 in the rectangle
 H5 = Q(Ir, Iz, 10) ' Q(*,*,10) is dBz/dr at Point 1 in the rectangle

~ 41 ~

 H6 = Q(Ir + 1, Iz, 10) ' Point 2 in the rectangle
 H7 = Q(Ir, Iz + 1, 10) ' Point 3 in the rectangle
 H8 = Q(Ir, Iz, 12) ' Q(*,*,12) is dBz/dz at Point 1 in the rectangle
 H9 = Q(Ir + 1, Iz, 12) ' Point 2 in the rectangle
 H10 = Q(Ir, Iz + 1, 12) ' Point 3 in the rectangle
 ' Set up vector J(10)
 J1 = H1
 J2 = H2 - H1
 J3 = H5
 J4 = H6 - H5
 J5 = H3 - H1
 J6 = H8
 J7 = H10 - H8
 J8 = H1 - H2 - H3 + H4
 J9 = H7 - H5
 J10 = H9 - H8
 ' Modify the vector J(10)
 JJ1 = J1
 JJ2 = J2 - (delR * J3) - (0.5 * delR * J4)
 JJ3 = J3
 JJ4 = J4
 JJ5 = J5 - (delZ * J6) - (0.5 * delZ * J7)
 JJ6 = J6
 JJ7 = J7
 JJ8 = J8 - (delZ * J10)
 JJ9 = J9
 JJ10 = (delZ * J10) - (delR * J9)
 ' Solve for constants
 ' First block
 C8 = (JJ8 / delZ) / (delR * delZ)
 RHS = -delR * delZ * C8
 C9 = ((JJ10 / delZ) - RHS) / (delR * delR)
 RHS = (((2 * Z1) + delZ) * C8) + (2 * R1 * C9)
 C7 = (JJ9 / delZ) - RHS
 ' Second block
 C6 = -JJ5 / (0.5 * delZ * delZ * delZ)
 RHS = 2 * R1 * delZ * C8
 RHS = RHS + ((6 * Z1 * delZ + 3 * delZ * delZ) * C6)
 C5 = (JJ7 - RHS) / (2 * delZ)
 RHS = (R1 * C7) + (2 * R1 * Z1 * C8) + (R1 * R1 * C9)
 RHS = RHS + (2 * Z1 * C5) + (3 * Z1 * Z1 * C6)
 C4 = JJ6 - RHS
 ' Third block
 C3 = JJ2 / (-0.5 * delR * delR * delR)
 RHS = 2 * Z1 * delR * C9
 RHS = RHS + (((6 * R1 * delR) + (3 * delR * delR)) * C3)
 C2 = (JJ4 - RHS) / (2 * delR)
 RHS = (Z1 * C7) + (Z1 * Z1 * C8) + (2 * R1 * Z1 * C9)
 RHS = RHS + (2 * R1 * C2) + (3 * R1 * R1 * C3)
 C1 = JJ3 - RHS
 RHS = (Z1 * C4) + (Z1 * Z1 * C5) + (Z1 * Z1 * Z1 * C6)
 RHS = RHS + (R1 * Z1 * C7) + (R1 * Z1 * Z1 * C8) + (R1 * R1 * Z1 * C9)
 RHS = RHS + (R1 * C1) + (R1 * R1 * C2) + (R1 * R1 * R1 * C3)
 C0 = JJ1 - RHS
 ' Store the constants
 BzC(Ir, Iz, 0) = C0
 BzC(Ir, Iz, 1) = C1
 BzC(Ir, Iz, 2) = C2

~ 42 ~

 BzC(Ir, Iz, 3) = C3
 BzC(Ir, Iz, 4) = C4
 BzC(Ir, Iz, 5) = C5
 BzC(Ir, Iz, 6) = C6
 BzC(Ir, Iz, 7) = C7
 BzC(Ir, Iz, 8) = C8
 BzC(Ir, Iz, 9) = C9
 Next Iz
 Next Ir
 ' Write the constants for the Br and Bz polynomials to the file for safe-keeping.
 TempString = " " & vbCrLf & "Part C: C() for Br and Bz" & vbCrLf
 OutStream.Write(TempString)
 For Ir As Int32 = 1 To N Step 1
 For Iz As Int32 = 1 To M Step 1
 TempString = "r(mm)=" & Trim(FormatNumber(Q(Ir, Iz, 1))) & _
 " z(mm)=" & Trim(FormatNumber(Q(Ir, Iz, 2))) & vbCrLf & _
 "BrC(0)=" & Trim(Str(BrC(Ir, Iz, 0))) & _
 " BzC(0)=" & Trim(Str(BzC(Ir, Iz, 0))) & vbCrLf & _
 "BrC(1)=" & Trim(Str(BrC(Ir, Iz, 1))) & _
 " BzC(1)=" & Trim(Str(BzC(Ir, Iz, 1))) & vbCrLf & _
 "BrC(2)=" & Trim(Str(BrC(Ir, Iz, 2))) & _
 " BzC(2)=" & Trim(Str(BzC(Ir, Iz, 2))) & vbCrLf & _
 "BrC(3)=" & Trim(Str(BrC(Ir, Iz, 3))) & _
 " BzC(3)=" & Trim(Str(BzC(Ir, Iz, 3))) & vbCrLf & _
 "BrC(4)=" & Trim(Str(BrC(Ir, Iz, 4))) & _
 " BzC(4)=" & Trim(Str(BzC(Ir, Iz, 4))) & vbCrLf & _
 "BrC(5)=" & Trim(Str(BrC(Ir, Iz, 5))) & _
 " BzC(5)=" & Trim(Str(BzC(Ir, Iz, 5))) & vbCrLf & _
 "BrC(6)=" & Trim(Str(BrC(Ir, Iz, 6))) & _
 " BzC(6)=" & Trim(Str(BzC(Ir, Iz, 6))) & vbCrLf & _
 "BrC(7)=" & Trim(Str(BrC(Ir, Iz, 7))) & _
 " BzC(7)=" & Trim(Str(BzC(Ir, Iz, 7))) & vbCrLf & _
 "BrC(8)=" & Trim(Str(BrC(Ir, Iz, 8))) & _
 " BzC(8)=" & Trim(Str(BzC(Ir, Iz, 8))) & vbCrLf & _
 "BrC(9)=" & Trim(Str(BrC(Ir, Iz, 9))) & _
 " BzC(9)=" & Trim(Str(BzC(Ir, Iz, 9))) & vbCrLf
 OutStream.Write(TempString)
 Next Iz
 Next Ir
 ' Close the file.
 OutStream.Close()
 ReturnString = "SUCCESS"
End Sub

Jim Hawley

September 2011

An e-mail describing errors and omissions would be appreciated.

