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Frequency response of a general purpose single-sided OpAmp amplifier 

 

One configuration for a general purpose amplifier using an operational amplifier is the following. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The circuit is characterized by: 

 the op amp is powered by a single dc voltage, hence, single-sided; 

 the non-inverting terminal, labeled with a “ ” sign, is wired to a voltage divider which provides 

one-half the dc power supply voltage; 

 the signal voltage is the sum of a constant “average” voltage  and a variable “small-signal” 

voltage ; 

 the output voltage consists of a variable voltage  only; 

 the input circuit leading to the inverting terminal, labeled with a “ “ sign, consists of capacitor  

in series with resistor ; and 

 feedback is through capacitor  in parallel with resistor .  

 

The four principal assumptions are: 

 The input impedance of the op amp is infinite.  That is, the resistance between the inverting and 

non-inverting terminals of the op amp is sufficiently high that the two terminals can be 

considered to be unconnected.  This is a good assumption for modern op amps, whose input 

impedance is usually Ω or more; 

 Neither the inverting terminal nor the non-inverting terminal sink or source any current.  This is a 

good assumption for modern op amps, whose leakage currents are usually 10pA or less; 

 The open-loop gain  is infinite.  The voltage at the output terminal of an ideal op amp is the 

open-loop gain multiplied by the difference in voltage between the inverting and non-inverting 

terminals.  This is a pretty good assumption for modern op amps, whose open-loop gain is usually 

100dB or more.   
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__________________________________________________________ 

(Aside: Decibels) 

 

When a number is expressed in dB (decibels), it is a ratio of two similar quantities – 

usually, but not always, voltages.  The open-loop gain measures the ratio of the output 

voltage divided by the difference between the voltages at the two input terminals, as 

shown in the following formula: 

 

 

 

An open-loop gain of 100dB is equivalent to amplification by a factor of 100,000.  To see 

this, follow: 

 

 

__________________________________________________________ 

 

 The open-loop gain applies to any difference in voltage between the inverting and non-inverting 

terminals, no matter how small.  This assumption is not so good, even for modern op amps.  In 

practice, a small voltage difference between the inverting and non-inverting terminals will not be 

sensed by an op amp.  This small voltage difference is called the “input offset voltage”.  A typical 

input offset voltage is , but special purpose op amps are available with smaller offsets.   

 

 

The dc analysis 

 

It is useful to divide the analysis of the circuit into two parts: (i) the condition of the circuit when the 

driving voltage is constant (in which case, ; and (ii) the variation from analysis (i) as the circuit 

responds to a small amplitude single frequency sinusoidal voltage.  Many circuits, including this one, are 

“linear” in the sense that the two responses can be added together.  The first analysis is called the “dc 

analysis” and the solution it gives is called the “operating point” of the circuit.  The second analysis is 

called the “ac analysis”.   

 

In many cases, including this one, the objective is to amplify only the varying part of the input signal.  In 

the specified circuit, two resistor-capacitor pairs have been introduced in order that certain frequencies in 

the input signal are treated differently. 

 

When power is initially applied to the specified circuit, there will be a number of short-lived, or 

“transient” currents, while the capacitors charge up and the internal circuitry of the op amp stabilizes.  It 

is likely that the input voltages  and  are produced by other circuitry which will also require some 

amount of time to reach a steady, non-changing condition.  If there is no varying component in the input 

voltage waveform, then, once the circuit stabilizes, the voltages at all points in the circuit will be constant 
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and, if any currents flow, they will be constant and consistent with the constant voltages.  These dc 

voltages and currents can be written down by inspection, as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The two  resistors divide the  power supply voltage in half.  Since negligible current flows into 

the non-inverting terminal of the op amp, the two  resistors form a perfect voltage-divider.  The  

capacitor guards this reference voltage against rapid changes in the supply voltage, but serves no useful 

purpose in the dc case.   

 

The use of  for the power supply is for illustration only and does not limit the generality of the 

analysis.  Nor is there any magic to using  resistors.  Other values can be used, so long as: (i) they are 

equal; and (ii) they are neither so small nor so large that the current which does flow into the non-

inverting terminal (albeit very small) cannot be ignored. 

 

When power is first applied to the circuit, the op amp conducts for a short period, and charges up 

capacitor .  After that short burst of current, no further current flows.  Capacitor  is charged up to a 

voltage equal to 2.  less the dc component  of the input voltage waveform.   

 

Since the inverting and non-inverting terminals have the same voltage (2.5V), the op amp does not 

perform any “amplification” per se.  It simply maintains the voltage at its output terminal at 2. .  If there 

is a load attached to the output terminal, the op amp will deliver into the load whatever current is needed 

to keep the output voltage at 2. . 

 

One could ask: why is the output voltage not zero?  After all, since the difference between the voltages at 

the two input terminals is zero, and since the op amp “multiplies” this difference, the output voltage 

should also be zero, right?   

 

No.  The “multiplier” of the op amp is its open-loop gain.  Open-loop means that nothing is connected 

between the output terminal and the two input terminals.  In our case, there is a connection, by means of 

resistor  and capacitor .  
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Imagine for a moment that the output voltage was higher than the voltage at the inverting terminal.  

Current would flow through resistor .  Since the inverting terminal neither sources nor sinks any 

current, this current would have nowhere to go except through resistor  and, then, into capacitor .  

The voltage over capacitor  would increase.  The net effect is that the voltage at the inverting terminal 

would rise.  There would then be a difference in voltage between the two input terminals.  The op amp 

would react to the voltage difference.  Because this connection is at the inverting terminal (and not the 

non-inverting terminal), the op amp would react by lowering the voltage at its output terminal.  The 

feedback is negative, in the direction that will reduce the voltage at the inverting terminal.  The higher the 

open-loop gain of the op amp, the more strongly / quickly this correction would take place. 

 

The only condition which is stable is the one where all three terminals of the op amp are at the same 

voltage potential. 

 

In this condition, no current flows through the feedback resistor .  The voltage drops over both  and 

the feedback capacitor  are zero. 

 

 

The ac circuit 

 

We can call the voltages and currents in the dc analysis the “operating point” of the circuit.  Now, let us 

set aside these steady voltages and currents and consider only variations from them which arise when the 

varying component  of the input voltage waveform is non-zero.   

 

The ac circuit is as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The op amp has been replaced by two components: (i) its inverting terminal, labeled ; and (ii) a voltage 

source at its output terminal.  The output voltage of that voltage source is  which is therefore equal to 

the voltage over the load.  The objective of the ac analysis is to determine the output voltage waveform  

as a function of the signal input voltage waveform . 

 

Note that the details of the op amp’s voltage source have not been specified.  It is enough for our purposes 

to assume that the op amp will respond strongly / quickly enough that the following characteristic of the 

inverting terminal holds true. 

 

The inverting terminal is a “virtual ground”.  When the op amp is in operation, it will produce whatever 

output voltage  is required to keep the voltage at the inverting terminal equal to zero.  In this sense, the 

inverting terminal is at ground potential.  However, no current flows into or out of the inverting terminal, 

so it is not a “galvanic” ground.  
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It is the phrase “produce whatever” that allows us to avoid inquiring into the details of the op amp’s 

circuitry.  In reality, the op amp’s response is neither instantaneous nor unlimited.  Both of these practical 

limitations mean that the voltage at the inverting terminal will likely never be exactly at ground potential.  

If this lag at the inverting terminal becomes important to the performance of the circuit, then a more 

complicated model of the op amp’s output voltage source would be needed.  We will not delve into this. 

 

Because the inverting terminal is at ground potential, the voltage and current on the input side of the op 

amp are related by Ohm’s Law, which we can write as follows: 

 

 
 

Similarly, the voltage and current in the feedback branch around the op amp are also related by Ohm’s 

Law, as follows: 

 

 

 

Because the inverting terminal is a virtual ground, neither taking nor supplying current, the currents in the 

two branches must be equal and opposite: 

 

 
 

We can combine the three previous equations into one: 

 

 

 

__________________________________________________________ 

(Aside: Capacitive reactance as a differential equation) 

 

The expressions “ ” and “ ” need to be interpreted in terms of 

reactance and, specifically, capacitive reactance.  With the right adjustments, Ohm’s Law can be extended 

to apply to capacitors as well as resistors. 

 

Resistors  and  impede, or resist, the flow of current in a way which is directly and proportionally 

related to the voltage over them.  Capacitors  and  also resist the flow of current, but in a more 

complicated way.  Their resistance to the flow of current, or “reactance”, differs from the resistors’ 

resistance in two important respects: (i) it depends on frequency; and (ii) it is “out-of-phase” with the 

applied voltage.   

 

At any instant in time, the charge  stored in a capacitor is equal to its capacitance  (which is assumed in 

this analysis to be constant) multiplied by the voltage difference  between its plates.  That is: 

 

 
 

By definition, the current  flowing into the capacitor is the amount of charge which flows per unit of 

time.  If the flow of charge is not constant, then the current changes with time and should be written as the 

derivative of the charge, thus: 
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If the capacitance  is constant, then the instantaneous current can be written in terms of the 

instantaneous voltage as: 

 

 

 

This is the customary form for the instantaneous voltage-current characteristic of a capacitor.  Note that 

there is an implied sign convention here, in which the current  is taken to be positive when it is 

flowing into the capacitor, making the voltage  more positive.  Also note that this equation applies to 

all arbitrary waveforms, and not just to direct current or to sinusoidal waveforms at a single frequency. 

 

As stated, this is a general equation.  Nevertheless, it is useful to examine this equation for a very special 

case, where the voltage waveform is a sinusoid at some single frequency, say, , and having amplitude .  

In this special case, the voltage can be written using the imaginary number  as: 

 

 
     

Taking the derivative, we get: 

 

 

 

The ratio of the instantaneous voltage to the instantaneous current is therefore equal to: 

 

 

 

This ratio is a constant for any given frequency .  Furthermore, the ratio of voltage to current is what 

Ohm’s Law equates to the resistance of a resistor.  A resistor’s resistance  is comparable to a capacitor’s 

reactance .  The two quantities can be combined in series or in parallel, using imaginary 

numbers, in the same way as one combines resistors in series or in parallel.  It is the imaginary number  

which keeps track of the “phase” between the voltage waveform and the current waveform. 

 

Of course, this handy relationship only applies when the voltage and the current can be expressed as 

single-frequency sinusoidal waveforms.  Fortunately, things can very often be arranged so that this 

condition is met.  

 

1. All practical waveforms can be written as the sum of sine and cosine waveforms, all of which are 

at multiples of some fundamental frequency , in the following manner: 

     

 

 

It is therefore possible to separate an arbitrary waveform into its sine and cosine components and 

then to examine each component separately.  Dividing an arbitrary waveform up into its 

components is a “Fourier” analysis.  This is particularly useful when the arbitrary waveform is 

periodic, and repeats itself over and over.   
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2. All practical circuits will show a “transient” response when there is any change in the driving 

voltage or current.  Often, the magnitude of the transient will eventually decrease to zero, leaving 

a periodic, or “steady-state”, component.  This is not to say that the transient will die out quickly 

(how quickly it dies out, if at all, depends on the circuit and its components) or that the transient 

is not important (lots of circuits are designed to take advantage of the transient or fail if an 

unexpected transient persists).  In many cases, the interesting activity of the circuit is what it does 

after the transient has died out.   

 

 

The steady-state ac analysis 

 

The transfer function  in Equation  lends itself to a steady-state analysis.  Let us assume: (i) that 

the input voltage waveform  is a simple sinusoid at frequency , say, with amplitude ; and (ii) that the 

transient response has died out.  (Is it easy to assume that all transients eventually die out, but it is an 

assumption that must be confirmed before a circuit can be safely used.  An unexpected transient response 

can cause unacceptable feedback or worse.) 

 

The reactance “ ” can be written using the same formula which combines two 

resistors in parallel, namely: 

 

 

 

The reactance “ ” can be written using the same formula which combines two resistors 

in series, namely: 

 

 

 

Then, the transfer function in Equation  can be expanded as: 
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Multiplying the numerator and denominator of each term by the conjugate of the denominator reduces the 

denominators to strictly real numbers.  We get: 

 

 

 

The transfer function has been written as an imaginary number in standard form, that is, as , where 

both  and  are strictly real numbers.  This form can be converted into exponential form, as: 

 

 

 

where 

 

 

 

and 

 

 

 

Note that both  and  are negative numbers.  The minus signs in the argument in Equation  have not 

been cancelled out.  Why they have not been cancelled out is explained in the next section.   
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Physical interpretation of the transfer function 

 

The quantity  is the magnitude of the ratio .  If the input voltage waveform  is a 

sinusoid at frequency  then, after any transient has died out, the output voltage waveform will be a 

sinusoid at the same frequency but with an amplitude  times that of the input voltage waveform. 

 

The quantity  is an angle.  It is the angle by which the output voltage waveform leads the 

input voltage waveform.  The angle is expressed in radians, which can be converted to degrees by 

recalling that  radians is equal to .  There is no mathematical restriction on the angle, which can fall 

anywhere in the circle.  The following figure shows a sample transfer function plotted on the imaginary 

plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When calculating the inverse tangent function, it is necessary to check the algebraic sign of  and  to 

determine exactly which quadrant the angle falls in.  If the angle formed by  and  falls in quadrants I or 

II, then the angle is in the range from  to .  If the angle formed by  and  falls in quadrants III or 

IV, then the angle is in the range from 18  to .  The algebraic signs of  and  are important 

because the tangent function is not unique for all angles. 

 

It is customary to express the phase angle in the range from   to , and then to say that the 

output voltage waveform “leads” the input voltage waveform when the angle is positive and “lags” the 

input voltage waveform when the angle is negative.  I do not like this custom.  It is not physically 

possible for the output to anticipate the input and so to “lead” it.  The output waveform can only follow 

the input waveform.  My preference is always to express the angle as a negative number, which better 

describes how far the output voltage waveform is behind the input voltage waveform.   

 

The period of the waveform (in seconds) at frequency  (in Hertz) is .  If the phase angle of the 

transfer function at this frequency is  (in the range from  to ), then the output voltage waveform 

is delayed with respect to the input voltage waveform by a time interval of  seconds. 
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 A>0, B>0 

Quadrant II 

 A<0, B>0 

Quadrant III 

 A<0, B<0 

Quadrant IV 

 A>0, B<0 

 

  

length=magnitude 
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The magnitude of the transfer function at extreme values of frequency 

 

Before proceeding, it is useful to examine the magnitude of the transfer function at very low and very 

high frequencies. 

 

For very small frequencies, when  and , the denominator of the 

magnitude  approaches unity and the magnitude itself approaches .  As the frequency 

gets even smaller, the numerator will also get smaller, reaching zero as the frequency reaches direct 

current.  Physically, the series capacitor  blocks the input waveform at low frequencies. 

 

On the other hand, for frequencies high enough that  and , the 

denominator of the magnitude  approaches  and the magnitude itself 

approaches .  As the frequency continues to rise, the magnitude will continue to fall, 

eventually reaching zero.  Physically, the parallel capacitor  negatively feeds high frequencies back into 

the op amp’s input terminals, cancelling out the input waveform.  

 

 

The Bode plot 
 

It is difficult to grapple with the magnitude of the transfer function as it is expressed in Equation .  It is 

useful to follow in the footsteps of Messr. Bode, whose first recognized that taking the logarithm of both 

sides of Equation  provided useful insight.  Recalling the identities that , that 

 and that , we can re-arrange Equation  as: 

 

 

  

It does not matter in what “base” the logarithms are taken; the relationship is the same in all bases.  It is 

traditional in electronic work to use base ten.  It is also traditional to multiply the logarithm of a ratio of 

voltages by a factor of 20 and to multiply the logarithm of a ratio of (electrical) powers by a factor of ten.  

Messr. Bode did both, but it is not necessary. 

 

For frequencies which are low enough that both  and , this can be 

approximated as: 

 

 

 

At these low frequencies, there is a linear relationship between  and .  If these two 

logarithms are plotted, the line will be straight with a slope of . 
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For frequencies which are high enough that both  and , the logarithm of 

the transfer function can be approximated as: 

 

 

 

At these high frequencies, there is once again a linear relationship between  and .  If 

these two logarithms are plotted, the line will be straight, but this time, with a slope of . 

 

Now, suppose that there is some intermediate frequency or range of frequencies for which 

 but .  In this case, the logarithm of the transfer function can be 

approximated as: 

 

 

 

At these intermediate frequencies,  is a constant with no dependence on frequency. 

 

Based on these approximations, we can make a rough sketch of the magnitude of the logarithm of the 

transfer function as a function of the logarithm of the “angular frequency” , as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This figure identifies two frequencies  and  at the two points which divide the three linear 

regions of the curve.  One says that the components of the input voltage waveform  which are at 

frequencies above  are “attenuated” to a greater extent that frequencies in the range where the 

.  By attenuated, we mean that those higher frequencies are not passed through into the output 

voltage waveform .  Furthermore, the extent to which the higher frequency components are blocked 

increases as the frequency increases above .   
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Similarly, components of the input voltage waveform which are at frequencies below  are attenuated 

relative to those in the “pass band” and the degree of attenuation increases as the frequency decreases 

below .  As a whole, components of the input voltage waveform which have frequencies between 

 and  are selected and passed through to the output. 

 

The low cutoff frequency  is the “midpoint” of the low frequency transition region (shown as a 

dashed curve in the figure).  Among the candidates which could be used to designate this specific 

frequency, it is customary to select as  the frequency defined by: 

 

 

 

Similarly, the “midpoint” of the high frequency transition region (also shown as a dashed curve in the 

figure) can be defined by: 

 

 

 

In a similar way, we could select a frequency  to represent the “midpoint” of the pass band 

between  and .  We could use the average of the logarithms, in the sense that: 

 

 

 

Now, let’s look at the (exact) value of the magnitude of the transfer function at these three frequencies: 
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So, the magnitude of the transfer function is the same at both cutoff frequencies  and .  At the 

midband frequency: 

 

 

 

 

The phase angle at extreme values of frequency 

 

For very small frequencies, when , the numerator in Equation  approaches minus 

one and the phase angle approaches .  As the frequency gets even 

smaller, the argument of the inverse tangent function will increase without bound, and the phase angle 

will asymptotically approach , corresponding to .  For these small frequencies, 

therefore, the output voltage waveform will lag the input voltage waveform by one-quarter of a period. 

 

On the other hand, for frequencies high enough that , the numerator in Equation  

approaches , and the argument of the inverse tangent function approaches 

.  As the frequency continues to increase, the phase angle will 

asymptotically approach , corresponding to .  For these high frequencies, 

therefore, the output voltage waveform will lag the input voltage waveform by three-quarters of a period. 
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It is also useful to look at the phase angle at the midband frequency.  Equation  becomes: 

 

 

 

At the midband frequency, the output voltage waveform lags the input voltage waveform by one-half 

period. 

 

 

Specifying the midband “gain” 
 

Let’s consider typical design objectives.  Usually, a circuit like that shown at the outset of this document 

would be used when it is desirable to exclude certain low frequencies and certain high frequencies from 

the input voltage waveform.  Stated differently, it is desirable to pass only a certain range of frequencies.  

These two goals help us pick the cutoff frequencies  and .  It should be noted from Equations 

 and  above, that the magnitude of the transfer function is the same at both of these 

frequencies. 

 

Once the cutoff frequencies  and  have been chosen, the relationship between the resistors and 

their associated capacitors are no longer arbitrary.  The sole remaining arbitrary parameter is the product 

.  To see this, observe that, once  and  have been chosen, the transfer functions at the three 

key frequencies are: 

 

 

 

and 
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The only parameter in Equations  and  is the product . 

 

Usually, a separate design objective is to set the “gain” at the midband frequency.  The gain is the ratio of 

the amplitude of the output voltage waveform to the amplitude of the input voltage waveform.  Let us use 

the symbol  for the desired midband gain.  If , then the input and output amplitudes will be the 

same.  If , then the output amplitude will be greater than the input amplitude and the op amp will 

act as an amplifier.  In any event, if  is the desired midband gain, then we must have from Equation 

: 

 

 

 

 

Specifying the input impedance 
 

There are four unknown component values in the circuit: , ,  and .  So far, we have looked at 

three design objectives – ,  and  – which relate these component values.  Sometimes, but not 

always, a fourth design objective is specified.  If there is no fourth design objective, then the designer 

may be free to pick one of the components as a starting point.   

 

On the other hand, it is sometimes important that the input impedance be a certain value.  This could be 

the case, for example, if the input voltage waveform is produced by a microphone or other sensor which 

operates most effectively if the circuit it drives has a given input impedance. We will use the symbol  

for the input impedance.   

 

We have already looked at the ac circuit and seen that the input impedance is the series combination of 

resistor  and capacitor .  The input impedance has already been expressed in Equation  as: 

 

 

 

The magnitude of the impedance is therefore equal to: 
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The input impedance will usually be specified for the midband frequency, so that: 

 

 

 

Substituting the low cutoff frequency, we get: 

 

 

 

 

A numerical example 
 

Let’s consider an audio amplifier with the following design objectives. 

 

 

 

Step 1: The midband frequency  is calculated from Equation  as: 
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Step 2: The series capacitor’s value  is calculated from Equation  as: 

 

 

 

Step 3: The series resistor’s value  is calculated from Equation  as: 

 

 

 

Step 4: The parallel resistor’s value  is calculated from Equation  as: 

 

 

 

Step 5: The parallel capacitor’s value  is calculated from Equation  as: 

 

 

 

None of these components is a standard value.  Usually, the designer would iterate these calculations 

using standard component values to determine which combination best meets the design criteria.  For our 

purposes, it will be sufficient to use the following standard values: 

 

 

   

 

 

 

 



~ 18 ~ 

 

Plots of the transfer function with respect to frequency 
 

Using these standard component values, the magnitude of the transfer function [Equation )] becomes: 

 

 

 

and the phase angle by which the output voltage waveform lags the input voltage waveform 

[Equation )] becomes: 

 

 

 

The following two plots show the magnitude and phase, respectively, of the transfer function.  In both 

plots, the horizontal axis is the base-10 logarithm of the frequency.  For example, the abscissa 2 

corresponds to a frequency of  and the abscissa 4 corresponds to a frequency of  

.  The two squares shown in the magnitude plot are the two cutoff frequencies:  

and . 

 

The vertical scale in the magnitude plot is the base-10 logarithm of the magnitude of the transfer function.  

For example, the ordinate 0 corresponds to an amplification of  and the ordinate 1 corresponds to 

an amplification of .  The squares shown at the cutoff frequencies have an ordinate of about 

1.25, corresponding to an amplification of .  At midband, the ordinate is about 1.4, 

corresponding to an amplification of .    
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