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Modeling a cylindrical permanent magnet with a surface charge of magnetic monopoles 

 

Let us begin somewhere else – with Newton’s Laws.  I have illustrated Newton’s Third Law for a rigid 

body in the following graph. 

 

 

 

 

 

 

 

 

 

The horizontal axis is the force applied to the rigid body.  The vertical axis is the body’s response.  It 

accelerates.  The magnitude of the acceleration is proportional to the magnitude of the applied force, and 

the constant of proportionality is equal to , where  is the body’s mass. 

 

Something similar occurs when a “magnetic” force is applied to any material.  The material may respond 

by generating its own magnetic field, which will be in addition to the applied magnetic field.  The 

response curve in this case is called a “magnetization curve” and looks something like this. 

 

 

 

 

 

 

 

 

  

 

There are several things to note: 

1. The “magnetic” force is also called the “magnetomotive” force.  It is commonly represented by 

the symbol .  In the SI system,  is measured in - .  Amperes and turns are 

quantities one uses when thinking about solenoids.  This is, in fact, the historical origin of this 

usage.  Early investigators used solenoids to apply the -field and, when it came time to 

standardize units of measurement, their practice was adopted. 

2. This relationship applies to “any material” as distinct from a “body”.  A magnetization curve 

applies to a specific kind of substance, and does not depend on the size or shape of the sample.  

On the other hand, the sample cannot be microscopic.  The  relationship is a statistical 

average of the response of all the electrons in the sample.  While it arises because of the response 

of the individual bound and free electrons in the sample, it is not a useful relationship for 

examining the behavior of individual electrons. 

3. It is assumed that the material is capable of responding to external magnetic forces.  Non-

magnetic materials, like wood, simply do not respond. 

4. The response of the material is commonly represented by the symbol .  In the SI system,  is 

measured in , where .  That the denominator is an area tells us 

something about  – it is the density of something per unit area.  The something in this case are 

the lines of magnetic flux.  In a strong magnetic field, there are lots of lines of magnetic flux per 

unit area.  For this reason,  is also referred to as the “magnetic flux density”. 
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Let us look at a typical magnetization curve, as shown in the following graph.  The arrows show the state 

of the material as the -field is changed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At the outset, before any external magnetic field is applied, the material is in the state labeled  in the 

figure.  When an external magnetic field is applied, a magnetic flux density is induced in the material.  As 

the strength of the external field is increased, the induced magnetic flux density increases as well.  The 

state of the material moves from the origin  towards the upper right.  Often, there is a range where the 

induced magnetic flux density increases almost linearly with the applied field strength.  If this is so, the 

constant of proportionality  in the relationship  is called the “permeability” of the material.  If 

the relationship is not linear, the slope of the  curve at the origin  is called the “initial” 

permeability and is often represented by the symbol . 

 

For all materials, the increase in  per unit increase in  will eventually begin to decrease.  The slope of 

the curve falls off as  is increased without bound.  By considering the material at the microscopic scale, 

it is easy to see why this must be the case.  The induced flux density  is a macroscopic quantity which 

arises from the velocities and spins of huge numbers of electrons in the material.  Some of the electrons 

may be “free”, by which we mean that they are so loosely bound to their mother atoms that they are able 

to move about in response to the applied magnetic field .  The force exerted by a magnetic field on a 

charged particle (like an electron) acts in a direction which is perpendicular to its velocity.  Such a force 

will cause the electron to travel in a circle whose central axis is aligned which the local direction of the 

applied field.  However, an electron traveling in a circle is like a current flowing through a circular loop – 

both generate a magnetic field whose direction is aligned with the central axis of the circle.  Each orbiting 

electron will generate its own little magnetic field.  As the strength of the applied magnetic field is 

increased, an increasing number of electrons will become free from their mother atoms and be able to 

orbit.  The orbits of the free electrons will become tighter and tighter and the magnetic fields each of them 

generates will increase.  Furthermore, their orbits will become increasingly aligned with the external 

magnetic field.  All of these factors contribute to the increase in the magnetic flux density. 

 

A second factor is at work, too.  The atomic spins of the electrons, both free and bound, are magnetic 

quantities.  They, too, can and do respond to the external magnetic field.  As  is increased, the spin axes 

of more electrons will become aligned with the local direction.   

 

There comes a point when the electrons in the material have responded as much as they are able.  Further 

increases in the strength of the applied magnetic field do not increase the strength of the induced magnetic 

flux density any further.  At this point, the material is said to be fully “saturated”.  This state corresponds 

to the vertex at the upper-right of the  curve. 
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From this saturation point, let us now begin to reduce the strength of the applied magnetic field.  All 

magnetic materials exhibit some degree of “hysteresis”.  Hysteresis means that the material will not 

retrace its path back to the origin .  As the external field is reduced, the free electrons will retain some 

characteristics of the motion which they adopted when the external field was first applied and then 

increased.  This will cause the induced flux density  to be greater at each particular value of  than it 

was on “the way up”.  Geometrically, this places the  curve on “the way down” above the curve on 

the way up. 

 

Even when the external field strength is reduced to zero, corresponding to the vertical axis in the graph 

above, the material will retain some magnetic flux density.  This is the state labeled  in the figure 

above, where the subscript  stands for residual.   

 

In fact, in order to reduce the magnetic flux density to zero, it is necessary to reverse the direction of the 

external field.  The value of the -field needed to reduce the -field to zero is called the “coercive” force 

and is represented by the symbol .  When the magnetic flux density is forced to zero, the material is in 

the state labeled  in the figure above.   is sometimes also called the “critical magnetizing force”. 

 

Of course, there will be some value of the externally-applied reverse magnetizing force at which the 

magnetic flux density in the reverse direction cannot be increased further.  This state corresponds to the 

vertex at the lower-left of the  curve.  If the material is isotropic, that is, if its physical properties 

are the same in all directions, then the vertex at the lower-left will be symmetric through the origin  with 

the vertex at the upper-right. 

 

Applying an external magnetizing force is a popular way to make a piece of steel into a permanent 

magnet.  A permanent magnet “operates” in the upper-left quadrant of its  curve.  The part of the 

magnetization curve from point  to point  is called the “operating region” of a permanent magnet.  

When one holds the magnet in the hand, away from other metals, it has a magnetic flux density of .  

The maximum magnetizing force it can exert when placed on the surface of a magnetic material is . 

 

In recent years, “rare-earth” magnets have become very popular.  They are called “rare-earth” because 

they are manufactured from alloys of the Lanthanide group of elements in the periodic table, which were 

historically called the rare-earths.  The two most common elements in the Lanthanide group are 

neodymium (Nd) and samarium (Sm).  They are usually alloyed with iron, boron or cobalt to manage 

other characteristics such as brittleness, temperature resistance or corrosion resistance. 

 

Rare-earth magnets have replaced ceramic (ferrite) magnets and Alnico (aluminum + nickel + cobalt) 

magnets in many consumer applications because they are small and handy and, most importantly, 

“strong”.  They are ideal for refrigerator, filing cabinet and cubicle use.  They are often sold as little 

cylinders, which makes them easier to remove from refrigerator, filing cabinet or cubicle frame. 

 

Two parameters are usually specified to describe the “strength” of a permanent magnet.  They are , 

which we have already seen, and , which we have not.   is the “Maximum Energy Product”.  

It is a measure of the material from which the magnet is made and is not related to the size or shape of the 

magnet.  For this reason, the Maximum Energy Product is often called the “grade” of a permanent 

magnet.  The Maximum Energy Product has a geometrical interpretation.  It is the maximum of the 

products of  and  along all the points on the  curve between points  and .  In other words, it 

is the maximum area of all rectangles of the type shown shaded in the following figure. 
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A company called Forcefield sells a small NdFeB (neodymium + iron + boron) rod magnet, ¼-inch in 

diameter and ¼-inch in length.  Its specification sheet reports  and .  

The unit  is a mega - , or one million - .  This is not a metric or SI unit, 

but is used too often to quibble.  A magnetic material with this strength would be referred to as a “grade 

” material.  Since , the Maximum Energy product of this material would be 

expressed in SI units as . 

 

Magnetization 

 

The microscopic interactions I described above give rise to the “magnetization” of the material.  The 

magnetization is the counterpart of the “polarization” talked about for electric fields.  The magnetization 

arises from many small circulations of electron “current”, all circulating in the same sense about the 

direction of the externally applied magnetic field.  In many cases, a greater proportion of the material’s 

response comes from alignment of the electrons’ spins rather than their motion in orbits aligned with the 

external field. 

 

Let us consider the case when a body is immersed in a uniform applied magnetic field.  Let us consider 

two small elements of volume somewhere inside the body and which are adjacent.  We can think of the 

electrons’ response as being a circulation of current around the outer surface of each volume element, in a 

direction which is perpendicular to the local direction of the applied magnetic field.  Since both volume 

elements consist of the same material, the response of the electrons will be the same inside them both and 

the circulation of current will be the same around the outer surfaces of them both.  Since the two volume 

elements are adjacent, they share a common boundary.  On the common boundary, the current around one 

volume element will be offset by an equal and opposite current around the other.  The currents will cancel 

each other out on the boundary between any two neighbouring volume elements. 

 

Therefore, at any point in the interior of the body, there is no net current in any plane perpendicular to the 

applied magnetic field.  Only on the surface of the material, where there is no cancellation of current 

flowing on the “outside” boundaries of the volume elements on the surface, will there be any net flow of 

current.  The net current in the case of a macroscopic body will flow on the surface. 

 

If the body is a cylinder, and if the magnetization is aligned with the longitudinal axis of the cylinder, 

then the net current will flow only on the curved surface of the cylinder.  There will be no net current 

flowing on the end faces, which are assumed to be flat and to be perpendicular to the direction of the 

applied field / magnetization. Furthermore, the net current flowing on the curved surface will, in fact, be 

in circles which are perpendicular to the longitudinal axis, since this is the direction which is 
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perpendicular to the applied field / magnetization.  Geometrically, the net current will be the same as it is 

in a cylindrical solenoid.  This is, of course, one approach to making a mathematical model of a 

cylindrical magnet. 

 

Let us return to the body immersed in an applied magnetic field, the -field.  The total magnetic flux 

density  at any point in the body is the sum of two things: (i) the applied magnetic field, which 

exists whether the body is present or not, plus (ii) the additional magnetic field generated by the material 

in response to the external field.  This additional magnetic field is called the “induced” field.  We can 

write the magnetic flux density at any point as follows: 

 

 

 

We can find  by removing the body from the scene.  When the point in question is in free space, 

or in air, the flux density of the -field is given by: 

 

 

 

where  is the permeability of free space, being - - .  The units I 

have given for  are consistent with the units of measurement described above for  and .  But, these 

units can be expressed in other ways using other derived units.  For example, an - -  is 

the same as one - - , one , one , one -

 or one - . 

 

Now, let us bring the body back.  It is convenient to define vector  as the magnetic moment per unit 

volume at any point in the material.  The magnetic flux density  induced by the applied field is 

related to the magnetization  in a straightforward way: 

 

 
 

Therefore, the total magnetic field  can be written as: 

 

 
 

For materials where  and  are relatively small (that is, do not make good permanent magnets), the 

magnetization  is proportional to the -field, and can be expressed as: 

 

 
 

where  is called the magnetic susceptibility of the material.  Then, substituting successively from above, 

we get: 

  

 

 
The relative permeability  of the material is defined to be equal to , so that: 
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For these materials, one can calculate  merely by multiplying  by .  It is important to 

understand that the material “amplifies” the strength of the applied magnetic field, but does not change its 

direction.  At any point in the material, the electrons’ response is aligned with the external field at that 

point, and the additional contribution to the magnetic field from the electrons’ response is also aligned 

with the external field at that point, with the result that the total magnetic field has a greater magnitude 

but the same direction as the applied field. 

 

A perennial source of difficulty is that  is not a constant.  It depends on the strength of the -field.  For 

relatively small external fields, the relative permeability may be constant or nearly so.  As the strength of 

the external field increases, the relative permeability will decrease.  Eventually, after the material 

becomes fully saturated, there is no further increase in , and  increases as  only.  In 

fact, for many materials, there is a so-called “saturation density”  (which is not necessarily the 

same as the fully-saturated vertex described above) for which one can write: 

 

 
 

Equation  applies only when the applied field is relatively strong.  It is a linear approximation of the 

 curve which is illustrated in the following graph. 

 

 

 

 

 

 

 

 

 

 

A perennial source of confusion when a  is given, is to sort out whether the quantity includes the 

contribution of the external field (and, so, is really ) or does not include the applied field (and, so, is 

really ).  Similar confusion can arise when a permeability  is given – is it  or ? 

 

Typical parameters of a permanent magnet 

 

We saw above that, for a cylindrical rod of material, with the external magnetic field aligned along the 

longitudinal axis, the magnetization is identical to that produced by a solenoid.  If the turns of the 

solenoid are ideally thin, then the current flowing through the succession of turns of wire is the same as 

the sheet of current circulating around the surface of the cylindrical magnet. 

 

In the paper titled The magnetic field in and around a finite cylindrical air-core solenoid, we calculated 

that the magnetic flux density at the geometric center of a solenoid is approximately equal to: 

 

 

 

In this expression, the -axis is the longitudinal axis of the solenoid,  and  are the number of 

turns and layers, respectively, carrying current  and  is the length of the solenoid.  The 

permeability  is the permeability of the material which occupies the geometric center of the solenoid. 
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This expression applies when the solenoid is long compared to its radius.  The approximation gets better 

as the coil becomes longer and thinner, and becomes exact for an infinitely-long solenoid.  If we let  be 

the current per unit length of the solenoid, then: 

 

 

 

and the flux density can be written as: 

 

 

 

The question now arises: how do we find out the “magnetization” of a permanent cylindrical magnet so 

that we can calculate the equivalent current density?   

 

The following table sets out some parameters of common permanent magnet material. The material and 

grade are self-explanatory.  ,  and  are the parameters from the  curve described above.  

In the table,  and  are given in cgs units, as  and , respectively.   is one 

manufacturer’s recommended maximum practical operating temperature, in degrees centigrade.   

 

Material Grade      
NdFeB 39H 12,800 12,300 21,000 40 150 

SmCo 26 10,500 9,200 10,000 26 300 

NdFeB B10N 6,800 5,780 10,300 10 150 

Alnico 5 12,500 640 640 5.5 540 

Ceramic 8 3,900 3,200 3,250 3.5 300 

Flexible 1 1,600 1,370 1,380 0.6 100 

 

 arises in the following way.  We have already seen that the total magnetic field  at any point in a 

magnetic material is equal to the sum of the applied field  and the induced field  produced by the 

intrinsic ability of the material to amplify magnetic flux.  Then, , or .  Under 

normal operating conditions, no external magnetizing field is present, and the permanent magnet operates 

in the second quadrant, where  has a negative value.  A negative value is inconvenient for some 

purposes.  Accordingly, practitioners prefer to use a positive value of  so, for them, .  One 

can plot a  curve using these values of .  If this is done, then  is the ordinate where the curve 

crosses the -axis.  (Note that it is possible to derive the  curve from the  curve, and vice 

versa.)  High values of  are an indicator of inherent stability of the magnet material. 

 

The residual flux density at the center of a solenoid used to model a cylindrical permanent magnet, if 

made from one of these materials, should be equal to the residual flux density  in the table above.  For a 

solenoid which produces the same magnetic field as a grade 39H rare-earth magnet, then: 

 

 

 

That is a lot of current. 
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Source models for a cylindrical permanent magnet 

 

A “source” model is a mathematical model from which one can make calculations.  Since the magnet is 

an electromagnetic object, one would expect that its relevant characteristics could be related to more 

fundamental electromagnetic concepts like charge and current.  The goal of this paper is to find out what 

these relationships are.  It turns out that there are two mathematical models one can use. 

 

Let us assume that the magnet has a uniform axial magnetization .  The length and radius of the magnet 

are given by  and , respectively.  The following figure shows the physical magnet and its two 

equivalent source models.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the left is a thin-wall solenoid with length  and radius , and having current density .  It produces 

exactly the same magnetic field as the permanent magnet if and only if: 

 

 

 

On the right are two ideal circular plates with radius , separated by distance , and having magnetic 

monopole “charge densities” of  and  on their surfaces.  It produces exactly the same magnetic 

field as the permanent magnet if and only if: 

 

 

 

where  is the unit vector normal to the plates.  

 

The representation on the left can be approximated using physical components, like a solenoid.  Because 

there are no such things as magnetic monopoles, the one on the right cannot.  Even so, it produces the 

same magnetic field as the permanent magnet.  While both representations produce the same result, they 

are processed quite differently from a mathematical point-of-view.  It happens, therefore, that a given 

physical configuration might be solved more easily using one model rather than the other. 
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The current sheet model 

 

Consider the representation on the left in the figure above, where the permanent magnet is represented by 

a current sheet.  The current sheet is ideally thin and coincident with the curved surface of the magnet. 

 

Messrs. Biot and Savart were the first to describe rigorously the magnetic flux density  generated by a 

very small straight length of current-carrying wire at some point removed by vector  from the center of 

the current element.  They found that: 

 

 

 

where the multiplication of vectors in the numerator is the vector cross-product.  The following figure 

shows how we will divide the current sheet around the cylinder into small length elements to which we 

can apply Biot-Savart’s Law. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The origin  of the co-ordinate frame of reference is located at the geometric center of the cylinder.  The 

-axis is coincident with the longitudinal axis of the cylinder.  Without any loss of generality, we can 

select a radial axis  so that the -  plane includes the point of interest , at which we want to calculate 

the magnetic field.  The location of point  is specified by its co-ordinates  along the two axes.  

We could call the third axis, which will be perpendicular to other two, the -axis.  I have not shown the -

axis in the figure.  It will point from the origin directly into the page. 

 

We are going to look at very small elements of area on the surface of the cylinder.  Since all such 

elements lie on the surface, they are all a distance  from the -axis.  A typical small element is identified 

by the distance  above the -  plane and by the angle  by which is rotated around the -axis in the 

right-hand direction.  The particular element of area shown on the surface in the figure above is located 

somewhere along the negative -axis, so its -co-ordinate is algebraically negative.  Its angle  is about 

. 

 

The small elements of area we will consider are small rectangular arc sections of the cylinder.  They have 

a height of  and an arc length of , where angle  is the angle subtended by the element when it is 

viewed from the -axis.  As the dimensions of the element of area are made smaller and smaller, its 

curvature in the circumferential direction becomes less and less significant.  Eventually, when it has small 
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enough dimensions, we can consider the element to be a flat rectangle, with height  and length .  

The current flows along the length, parallel to the -direction.  In essence, the element of area is a small 

straight piece of wire, with length .  Suppose we also assign a direction to the rectangle, being 

the direction in which the current flows along it.  Then,  is a vector with length  and a direction which 

is tangent to the surface of the cylinder (at the center of the rectangle) and oriented circumferentially. 

 

The area of the small element of area, or rectangle, is given by: 

 

 

 

In the co-ordinate frame being used, the components of the tangential vector  can be written as: 

 

 
 

We have now defined almost enough symbols for us to apply Biot-Savart’s Law in Equation .  Let us 

define  as the “current density” flowing around the cylinder.  This is the amount of current (in Amperes) 

flowing per unit length (in meters) along the axis of the cylinder.  The amount of current flowing through 

the element of area is then given by: 

 

 

 

One thing remains, and that is to find the vector , which points from the center of the element of area to 

the point of interest .  We can derive  using vector subtraction.  In the co-ordinate frame being used, 

the components of point  can be written as: 

 

 

 

Then, let vector  point from the origin  to the center of the current element.  The components of vector 

 can be written as: 

 

 
 

Using vector subtraction, the vector  from the center of the current element to the point of interest is: 

 

 
 

The square of the length of  is given by: 

 

 

 

To apply Biot-Savart’s Law, we need to calculate the vector cross-product .  It can be found by 

evaluating the following determinant: 
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Let us use the symbol  for the total magnetic flux density generated by this element of area.  For this 

element, Equation  becomes: 

 

 

 

Each small element of area into which we divide the surface of the cylinder generates a small flux density 

at point , in the amount of  in Equation .  To find the total flux density  at point , one adds up 

the contributions made by all the small elements of area on the surface of the cylinder.  The sum can be 

written as follows: 

 

 

 

In the limit as the dimensions of the elements of area become small enough to be treated as differentials 

 and , instead of differences  and , the summation can be written as the following integral: 

 

 

 

A trigonometric identity can be used to simplify the denominator, leaving: 

 

 

 

Now, it turns out that the component of  in the -direction vanishes.  Consider the traverse from  

to  for those elements of area which have some constant displacement  along the -axis.  In other 

words, consider the integral over  when  is held fixed.  The denominator of the integrand is symmetric 

in , because .  But, the -term in the numerator is asymmetric, because 

.  The contributions to  made by two diametrically-opposed current elements will 

cancel each other out.  This reduces the expression for  to: 
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I have identified this magnetic field with a subscript  to note that it is the result from a 

mathematical model of a current sheet.  This will distinguish it from the result found using the magnetic 

monopoles, or charges, for which we will use the subscript . 

 

The magnetic monopole model 

 

Now, let us consider the other mathematical model for a cylindrical permanent magnet, which was 

illustrated on the right-hand side of a figure some pages past.  In this model, the magnet is represented by  

two circular and parallel plates charged with magnetic monopoles.  The two plates are ideally thin and, 

physically, are coincident with the end-faces of the cylindrical magnet. 

 

Messr. Coulomb was the first to describe rigorously the electric field  generated by a single point charge 

having charge .  At a point of interest located by vector  from the charge, the electric field is given by: 

 

 

  

where  is the permittivity of free space.  Messr. Coulomb’s electric field satisfies one of Maxwell’s 

Equations, namely: 

 

 
 

Messr. Dirac was the first to extend this treatment of electric charges to magnetic monopoles.  Although 

magnetic monopoles did not exist in Dirac’s day, and have still not been found experimentally, his insight 

was extremely useful.  He imagined a magnetic monopole with magnetic charge  and proposed that the 

magnetic field generated by this single point monopole at a point of interest located by vector  away, 

would be given by: 

 

 

  

where  is the permeability of free space.  (Curious readers may wonder why the constant  is not in 

the denominator, where we could have left it, so that Equations  and  have exactly the same 

logical form.  All that is really important is that the units of , ,  and  all be consistent for their 

positions in these equations.  Well, it turns out that  and  are related to the square of the speed of light 

by , so we can simplify the units of  if we put its constant in a location where it “opposes” 

.)  Now, Messr. Dirac’s magnetic field satisfies the equation: 

 

 
 

This is not the traditional Maxwell Equation, which is , based on the presumption that magnetic 

monopoles do not exist.  To be precise, both Equations  and  should be understood to apply 

everywhere except “within” the point charge or magnetic monopole itself. 
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area  

detail of charge element 

Whether or not magnetic monopoles exist, the magnetic field  in Equation  can be manipulated in 

exactly the same way as the electric field  in Equation . 

 

The following figure shows the monopole source model which represents the cylindrical magnet.  The co-

ordinate frame of reference is the same as that used above, with the origin  now located at the geometric 

center of the two circular plates and the -  plane passing through the point of interest .  The “top” plate 

is located a distance  above the -  and the “bottom” plate is located a distance  below.  Of course, 

the radii of both plates is the same as the radius of the magnet, . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Once again, we are going to look at very small element of area.  But, this time, the elements of area are 

located on the two plates.  The two distances we need to locate the center of any element of area are its 

distance  from the -axis and the angle  by which it is rotated around the -axis in the right-hand 

direction.  Each element of area on the top plate has a corresponding element of area, with the same size, 

shape and location, on the bottom plate.  We will examine the elements paired in this way. 

 

The small elements of area are segments of annulus.  The annulus in question has an inner radius of  and 

an outer radius of , where  is the radial thickness of the annulus.  The elements of the annulus 

are defined by the angle  they subtend when viewed from the -axis.  A detail of a typical small 

element of area is shown in the figure above. 

 

The area  of a small element of area is given by: 

 

 

 

We have now defined almost enough symbols for us to apply Dirac’s Equation .  Let us define  as 

the density, per unit area, of the magnetic monopoles on the each plate.  Then, the total magnetic charge 

on each small element of area is given by: 
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As I said, we will be looking at the small elements of area in pairs, with the one on the top plate matched 

by a corresponding one on the bottom plate.  The figure shows that vector  points from the origin to the 

small element of area on the bottom plate.  To avoid cluttering the figure, the corresponding vector  

from the origin to the small element of area on the top plate is not shown.  

 

Now, vector  points from the small element of area on the bottom plate to the point of interest.  The 

corresponding vector  from the small element of area on the top plate to the point of interest is not 

shown in the figure.  As before, we will calculate these two vectors using vector subtraction. 

 

The location of point  is the same as it was before, namely: 

 

 

 

The components of the vectors  and  are given by: 

 

 

 

Using vector subtraction, the vectors  and  are given by: 

 

 

 

The square of the lengths of  and  are given by: 

 

 

 

Let us use the symbol  for the magnetic flux density generated by the element of area in the top plate.  

For this element, Equation  becomes: 
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In a similar way, the magnetic field  generated by the corresponding element of area in the bottom 

plate is given by (remembering that the magnetic charge on the bottom plate is algebraically negative): 

 

 

 

The total flux density  at the point of interest  is found by adding up the contributions made by all the 

small elements of area in both the top and bottom plates.  In the limit as the element of area is defined by 

distances small enough to be differentials, the summation becomes the following integral: 

 

 

 

The denominators can be expanded and a trigonometric identity used to re-write this expression as: 

 

 

 

The -component in each integral vanishes.  Consider the traverse from  to  for those 

elements of area which are a constant distance  from the -axis.  The denominators are symmetric in , 

because .  The -term in the numerators is asymmetric, because .  

The contributions to  from diametrically-opposing elements of area in a plate cancel each other out, with 

the result that the expression for  reduces to: 
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sing Special Case #1 to determine the surface monopole density  

 

The expressions for the magnetic flux density found using the current model and the charge model are 

repeated here for comparison. 

 

 

 

Our objective is to show that these two expressions are equivalent.  It would be very useful if the integrals 

could be taken in closed-form.  While some progress can be made on the linear integrals in distances  

and , neither expression can be completely integrated in closed-form except in certain special cases.  So, 

let us consider such a special case.  In fact, we are going to use this special case to calculate the value of 

 which makes the results identical.  (The alert reader may notice that I have just stated an implicit 

conclusion: that the surface monopole charge density  is constant across the faces.  We used this as an 

implicit assumption in the derivation above in order to take  outside of the summation / integral.) 

 

The special case we will consider are points along the longitudinal axis of the magnet, being the -axis.  

For these points, we can set , which reduces the two integrals to: 

 

 

 

In both cases, the radial component of  vanishes.  The radial component of each integrand has a -

dependence of .  For any particular value of , the integral of  around a complete circle is zero.  

The axial integrands do not depend on angle  at all, so their integrals around the circle for any given 

value of  yields a factor of .  With the integral over  dealt with in this way,  and  in 

this special case reduce to the following single integrals: 
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Both of these integrals can be taken in closed-form.  They can be solved using the following standard 

integrals and solutions, which are confirmed in Appendix “E”: 

 

 

 

Using Equation , we can write the integral for the current model as: 

 

 

 

Similarly, using Equation  allows us to write the integral for the charge model as 
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Conclusion 

 

The surface monopole model of a cylindrical permanent magnet gives the same magnetic flux 

density as the current sheet model if the charge density  is set equal to the current sheet density . 

Note that the terms in the square brackets are the same.  Then, the two equations are identical if we set the 

value of  as follows: 

 

 

 

One additional thing to note is this: nothing in the mathematics above depends on the particular value of 

.  Physically, this means that nothing depends on the location of the point of interest along the 

longitudinal axis.  In particular, the points of interest, at which the magnetic flux densities were calculated 

and compared, can be “inside” the magnet.  Of course, in this special case, we have shown equivalence of 

the source models only on the longitudinal axis. 

 

Special case #2: The far-field approximation 

 

As a second special case, let us restrict our attention to points of interest  which are far away from 

the magnet.  Because the point of interest is far away from the magnet, the approximate solutions for the 

magnetic flux density which result are called the “far-field” approximations.  We can state this condition 

mathematically by saying that  is much greater than both the integration variables  and , or: 

 

 

 

These assumptions simplify the denominators in the integrands of  and .  Three 

denominators are involved, one in Equation  for  and two in Equation  for .  All 

three denominators have the following generic form: 
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The assumptions in Equation  mean that .  In fact, the terms in  and  are an order even 

smaller than the terms in  and .  The MacLauren series expansion which can help us simplify this 

expression is: 

 

 

 

When  is very small, Equation  can be approximated by truncating the expansion and only keeping 

the desired number of terms.  If we keep only one term, then: 

 

 

 

Applying this approximation to Equation  gives: 

 

 

 

Using Equation , Equation  for  can be approximated as follows: 

 

 

 

The numerators of the integrands include factors of  and .  Collecting like terms gives: 

 

 

 

The terms whose -dependence is  will vanish upon integration around the circle from  to 

.  Foreseeing this, we can simplify Equation  to: 
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The two dependencies on  which remain are easily integrated.  When the integrand is a constant with 

respect to , the integral will be equal to .  When the integrand depends on , the integral over  

will be equal to .  Equation  then becomes: 

 

 

 

The remaining integrals, over , are easily taken. 

 

 

 

I have some comments to make about this but, before I do, let us process  under the far field 

assumptions and show that it comes out the same.  Equation  for  has two denominators with 

the generic form in Equation , one with the value of  fixed at  and the other with the value 

of  fixed at .  We can therefore approximate Equation  as follows: 
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A great many of the terms in the curly brackets cancel each other out.  When the algebra is finished, what 

remains is: 

 

 

 

Two of the terms in the numerator have  as a factor.  That is their only dependence on .  When we 

integrate around the circle from  to , these two terms will vanish.  Foreseeing this, we can 

simplify Equation  to: 

 

 

 

The integrand has no further dependence on variable , so the integral around the circle can be taken first, 

to give: 

 

 

 

Because the fraction is a constant with respect to the integration variable , it can be taken outside the 

integral and the integration completed as follows: 
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magnet 

point of interest 

 

 

So, we have shown that, as one gets further and further from the magnet, the magnetic flux densities 

predicted by the two models get closer and closer.  (This is not to say that the two models make different 

predictions near the magnet – in fact, they do – only that our mathematical proof in this section is limited 

to points of interest which are suitably far away.) 

 

The term in square brackets can be interpreted geometrically, as shown in the following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The plane shown is any radial plane which includes the axis of the magnet.  The magnet itself is shown in 

cross-section as the rectangle centered on the origin.  The point of interest, which is highlighted by the 

heavy dot, is a relatively long distance away compared with the dimensions of the magnet.  It is 

customary to define the angle  as the angle between the axis of the magnet (as defined by the vector 

from the north face to the south face) and the ray to the point of interest.  The co-ordinates of the point of 

interest are related to this angle by: 

 

 

 

A bit of algebra can be used to show that: 

 

 

 

If we use the symbol  for the distance from the origin to the point of interest, being , then the 

far field approximation for the magnetic flux density can be written as: 
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This is the common expression for the far field, when expressed in cylindrical co-ordinates.  The 

expression is frequently written in spherical co-ordinates as well.  The axes for spherical co-ordinates are 

shown in the following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Just so there is no confusion between the -  cylindrical co-ordinate frame in which we have been 

working, and the new spherical frame, I have labeled the axes  and  in the latter.  The components of 

the magnetic field intensity are readily transformed.  For the radial component in spherical co-ordinates, 

we have: 

 

 

 

and, for the polar angle component, we have:  

 

 

 

In its complete spherical form, the magnetic flux density is: 
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Special case #3: The central plane 

 

As a third special case, let us restrict our attention to points of interest  which are located on the 

plane which bisects the magnet in the longitudinal direction.  This plane passes through the geometric 

center of the magnet.  For these points,  and Equations  and  reduce to: 

 

 

 

Note that, for the charge model, the radial component of the flux density vanishes immediately.  It should 

be the case, therefore, that the radial component for the current model is also zero.  To see that it is, let us 

take the integral in the -direction first.  When  is held fixed, the pertinent integral is: 

 

 

 

So, the two source models agree that the radial component of the flux density is zero on the central plane.  

That leaves us to deal with the axial component.  The axial component of both of Equations  can be 

integrated over their linear variables,  in the case of  and  in the case of 

.  In fact, we can do better than this.  Even in the general cases of Equations  and 

, for  and , both the radial and axial components can be integrated over their linear 

variables.  There are four integrals, which are described in Appendices “A” through “D” attached hereto.  

Because of the complexity of the integrals, I will not repeat the results here.  The interested reader can 

consult the appendices to find: 
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Appendix “A” Radial component of  

Appendix “B” Radial component of  

Appendix “C” Axial component of  

Appendix “D” Axial component of  

 

For the special case at hand, being the central plane, we have already shown that there is no radial 

component in either model.  Taking the general result from Appendices “C” and “D”, and substituting 

 for this special case, we have: 

 

 

 

Note that the two integrals are single integrals, over the angle  around a circle.  It is certainly not 

obvious that the two integrals are the same.  It is not even obvious that the integrands have the same 

values for corresponding values of .  Indeed, they do not.  In order to show this, let us consider a 

numerical example using a magnet which is two centimeters long  and one centimeter in 

diameter .  The particular values of  and  do not really matter so long as .  For 

the graph plotted, I used .  I used a point of interest which is in the central plane and two 

millimeters from the surface, that is,  and .  The following graph shows the 

magnitude of the integrands [including the constant factor which is outside of the integral in Equations 

 and ] for values of  around a circle. 
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Do not fuss too much about the physical interpretation of this graph, because they really is not any.  What 

is shown is the value of the integrands with respect to the variable of integration .  All that is physically 

realizable is the evaluated integral, being the area under the two curves.  Both integrals have the same 

value: .  The minus sign indicates that the magnetic flux at this point points in the 

minus -direction, which is entirely consistent with having positively-charged magnetic monopoles on the 

top face and negatively-charged magnetic monopoles on the bottom face.  It is also entirely consistent 

with the direction chosen for the current, which gives rise to flux density inside the magnet which points 

in the positive -direction. 

 

One thing which the graph makes instantly clear is that the integrands in Equations  and  are 

not the same for the same values of .  It follows that a direct attack – trying to show equality of the two 

integrals by showing equality of the integrands – will fail.  Furthermore, the graphs shows that both 

curves, and the difference between them, are symmetric around the variable of integration.  Integrating 

the difference between the curves from  to  will give a zero result if the integrals of the 

separate curves are the same but, because of the symmetry, we cannot rely on the cancellation of terms to 

help us through the integration. 

 

In fact, neither Equations  and  nor any combination of them can be integrated in closed form.  

They are forms of elliptic integrals, which come in different kinds, all of them intractable. Remember, 

too, that I announced this section as a “special case”.  The central plane is indeed a special case but we 

cannot prove equally between the two source models even for it. 

 

Graphically showing the equality for a particular magnet 

 

For arbitrary points of interest, located at  and , there is no prospect of closed-form solutions to 

Equations  and  and no prospect of mathematically showing that they produce the same values 

for the magnetic flux density.  The two equations can, however, be easily plotted for any given permanent 

magnet.  The following graphs are plots of the flux density of a cylindrical permanent magnet which is 

two centimeters long and one centimeter in diameter, with a lineal current density of .   

 

The first plot shows the radial component of the flux density inside and around the magnet, as calculated 

using the current sheet source model.  The horizontal axis pointing towards the left represents the central 

axis of the magnet.  Off-axis distances increase towards the right.  What is shown is the flux density in a 

radial plane on only one side of the magnet. 
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The radial component reaches its peak at the “rims” of the magnet, along the circles where the end-faces 

intersect the cylindrical sides.  This is where the lines of flux emanating from the face “turn the corner”, if 

you will, to begin their traverse towards the opposing face.  The closer the lines of flux are to the rims, the 

more sharply the turn the corner. 

 

The next plot shows the axial component of the flux density produced by the current sheet source model.  

Once again, the flux density is shown inside the magnet as well as outside.  I will have something to say 

below about the meanings of these values inside the magnet. 

 

The axial component reaches its maximum value at the center of the magnet and decreases through the 

faces.  In the region outside the curved surface of the magnet, the axial component is algebraically 

negative.  It is in this region that the lines of flux close their path from one face to the other.  The magnet 

being examined here is not very long compared with its diameter.  If its length-to-diameter ratio was 

bigger, we would notice that the axial component of the flux density was quite uniform inside the magnet, 

both along its axis and across its diameters.      

 

Of course, the interior of a permanent magnet is not physically accessible, so the magnetic flux density 

there is not really relevant.  However, the interior is accessible and relevant in a wire-wound solenoid.  In 

circumstances where one models a wire-wound solenoid as a current sheet, the values shown obtain. 

 

The following plot shows the radial component of the magnetic flux density calculated using the surface 

charge model, both outside and inside the permanent magnet.  It is identical to the plot calculated using 

the current sheet model.  Despite some authoritative assertions to the contrary, the charge model does 

correctly predict the radial component of the field in the interior of a solenoid. 
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But, the authorities are correct about the axial component of the flux density produced by the charge 

model – the charge model does not give the same flux density as the current sheet model at points inside 

the magnet.  Outside the magnet, it does.  The following plot shows the axial component from the charge 

model, for the outside of the magnet only. 

It is not very easy to see that this plot is exactly the same as the plot for the axial component of the current 

sheet model, in the region outside the magnet.  To make that clear, the following plot shows the current 

sheet’s plot once again, but with the interior of the magnet zeroed out. 
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These plots were produced using a short Visual basic program, whose code is listed in Appendix “F” 

attached hereto. 

 

We can make the practical conclusion, even through we cannot prove it mathematically, that the current 

sheet source model and the surface monopole charge source model predict the same magnetic flux density 

at all points outside of a cylindrical permanent magnet with uniform magnetization along its axis.  The 

two representations are the same if we set the monopole charge density on the end faces equal to the 

current sheet current density around the curved surface.  Equations  and  are the expressions to 

use to calculate the flux densities of the current model and the charge model, respectively. 

 

What I have not done in this paper is move on to the next step to show how the source models can be 

used.  Interested readers can follow up on this topic in the paper titled Forces and torques between 

cylindrical magnets and ideal solenoids.  

 

     

 

Jim Hawley 

November 2012 

 

An e-mail setting out errors and omissions would be appreciated. 
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Appendix “A” 

 

Integrating the radial component of  in the axial direction 

 

The magnetic field described by the current source model is: 

 

 

 

The radial component is: 

 

 

 

 can be integrated with respect to the variable  using the following standard integral, which is confirmed in 

Appendix “E”: 

 

 

 

Then: 

 

 

 

so that: 
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Appendix “B” 

 

Integrating the radial component of  in the radial direction 

 

The magnetic field described by the surface charge model is: 

 

 

 

The radial component is: 

 

 

 

 has exactly the same form of dependence on  as does , so the same form of solution will obtain.   can be 

integrated with respect to the variable  using the following two standard integrals, which are confirmed in 

Appendix “E”: 

: 

 

 

Then: 

 

 

 

and, continuing, 
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so that: 
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Appendix “C” 

 

Integrating the axial component of  in the axial direction 

 

The magnetic field described by the current source model is: 

 

 

 

The axial component is: 

 

 

 

 can be integrated with respect to the variable  using the following standard integral, which is confirmed in 

Appendix “E”: 

 

 

 

Then: 

 

 

 

so that: 
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Appendix ”D” 

 

Integrating the axial component of  in the radial direction 

 

The magnetic field described by the surface charge model is as follows: 

 

 

 

The axial component is: 

 

 

 

 has exactly the same form of dependence on  as does , so the same form of solution will obtain.   can be 

integrated with respect to the variable  using the following standard integral, which is confirmed in Appendix “E”: 

 

 

 

Then: 

 

 

 

so that: 
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Appendix “E” 

 

Selected elliptic integrals in standard form 

 (where ,  and  are real constants) 

 

 

 

Confirmation of 1. 
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Confirmation of 2. 

 

 

 

Confirmation of 3. 

 

 

 

Confirmation of 4. 

 

 

 

Confirmation of 5. 
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Confirmation of 6. 

 

 

 

Confirmation of 7. 

 

 

 

Confirmation of 8. 
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and, continuing, 
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Appendix “F” 

 

Listing of the Visual Basic program 

 

The program was developed in Visual Basic 2010 Express.  It has a single Form and no GUI.  Parameters 

are specified in the code.  The results are written to an Excel file where they can be plotted. 

 
Option Strict On 
Option Explicit On 
 
' Permanent Magnet - Summation1  
' Calculates the components of the magnetic field around a cylindrical magnet, using 
' both the current sheet model and the surface charge model. 
 
Public Class Form1 
    Inherits System.Windows.Forms.Form 
 
    ' Dimensions of the magnet. 
    Public Lmagnet As Double = 0.02 
    Public Rmagnet As Double = 0.005 
 
    ' Physical properties. 
    Public Mu0 As Double = 4 * Math.PI * 0.0000001 
    Public J As Double = 100000 
    Public Sigma As Double = J 
 
    ' The point of interest (Pr, Pz). 
    Public Pz As Double 
    Public PZstart As Double = -0.03 
    Public PZstop As Double = +0.03 
    Public NumPZ As Int32 = 61 
    Public DelPZ As Double = (PZstop - PZstart) / (NumPZ - 1) 
    Public Pr As Double 
    Public PRstart As Double = 0 
    Public PRstop As Double = +0.02 
    Public NumPR As Int32 = 21 
    Public DelPR As Double = (PRstop - PRstart) / (NumPR - 1) 
 
    ' Integration variables. 
    Public Z As Double 
    Public NumZ As Int32 = 1000 
    Public DelZ As Double = Lmagnet / 1000 
    Public Psi As Double 
    Public NumPsi As Int32 = 1000 
    Public DelPsi As Double = 2 * Math.PI / NumPsi 
    Public R As Double 
    Public NumR As Int32 = 1000 
    Public DelR As Double = Rmagnet / 1000 
 
    ' Magnetic field contributions from a single volume or current element. 
    Public Br1E As Double 
    Public Bz1E As Double 
 
    ' Total magnetic field at the point of interest. 
    Public Br As Double 
    Public Bz As Double 
    Public Btotal As Double 
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    ' Variables relating to the Excel file. 
    ' Add COM object "Microsoft Excel 12.0 Object Library" to project references. 
    Public objExcel As Microsoft.Office.Interop.Excel.Application 
    Public objExcelWB As Microsoft.Office.Interop.Excel.Workbook 
    Public objExcelWS As Microsoft.Office.Interop.Excel.Worksheet 
    Public ExcelFileName As String = "C:\MagnetSummation1.xlsx" 
 
    Public Sub New() 
        InitializeComponent() 
        With Me 
            Name = "" 
            Text = "Permanent Magnet - Summation #1" 
            FormBorderStyle = Windows.Forms.FormBorderStyle.FixedSingle 
            Size = New Drawing.Size(800, 720) 
            CenterToScreen() 
            Visible = True 
            Controls.Add(labelDisplay) : labelDisplay.BringToFront() 
            Controls.Add(buttonExit) : buttonExit.BringToFront() 
            Controls.Add(buttonStartExecution) : buttonStartExecution.BringToFront() 
            PerformLayout() 
        End With 
    End Sub 
 
    ' Controls and handlers. 
 
    Public labelDisplay As New Windows.Forms.Label With _ 
        {.Size = New Drawing.Size(200, 600), _ 
         .Location = New Drawing.Point(5, 40), _ 
         .Text = "", .TextAlign = ContentAlignment.TopLeft} 
 
    Public WithEvents buttonExit As New Windows.Forms.Button With _ 
    {.Size = New Drawing.Size(200, 30), _ 
     .Location = New Drawing.Point(210, 5), _ 
     .Text = "Quit and exit", .TextAlign = ContentAlignment.MiddleCenter} 
 
    Public Sub buttonExit_Click() Handles buttonExit.MouseClick 
        Application.Exit() 
    End Sub 
 
    Public WithEvents buttonStartExecution As New Windows.Forms.Button With _ 
        {.Size = New Drawing.Size(200, 30), _ 
         .Location = New Drawing.Point(5, 5), _ 
         .Text = "Start execution", .TextAlign = ContentAlignment.MiddleCenter} 
 
    Public Sub buttonStartExecution_Click() Handles buttonStartExecution.MouseClick 
        RunProgram() 
    End Sub 
 
    Public Sub RunProgram() 
        ' 
        ' Open the Excel file for output. 
        Try 
            objExcel = CType(CreateObject("Excel.Application"),  _ 
                Microsoft.Office.Interop.Excel.Application) 
            objExcel.Visible = False 
            objExcelWB = CType(objExcel.Workbooks.Open(ExcelFileName),  _ 
                Microsoft.Office.Interop.Excel.Workbook) 



~ 42 ~ 

 

            objExcelWS = CType(objExcelWB.Sheets("Sheet1"),  _ 
                Microsoft.Office.Interop.Excel.Worksheet) 
        Catch ex As Exception 
            Cursor.Current = Cursors.Default 
            MsgBox("Could not open the Excel file.", vbOKOnly) 
            Exit Sub 
        End Try 
        ' 
        ' Write the run information to the Excel file. 
        With objExcelWS 
            objExcelWS.Cells(1, 1) = "Permanent Magnet - Summation #1" 
            objExcelWS.Cells(2, 1) = "Lmagnet = " & Trim(Str(Lmagnet)) & "m" 
            objExcelWS.Cells(3, 1) = "Rmagnet = " & Trim(Str(Rmagnet)) & "m" 
            objExcelWS.Cells(4, 1) = "PZstart = " & Trim(Str(PZstart)) & "m" 
            objExcelWS.Cells(5, 1) = "PZstop = " & Trim(Str(PZstop)) & "m" 
            objExcelWS.Cells(6, 1) = "DelPZ = " & Trim(Str(DelPZ)) & "m" 
            objExcelWS.Cells(7, 1) = "NumPZ = " & Trim(Str(NumPZ)) 
            objExcelWS.Cells(8, 1) = "PRstart = " & Trim(Str(PRstart)) & "m" 
            objExcelWS.Cells(9, 1) = "PRstop = " & Trim(Str(PRstop)) & "m" 
            objExcelWS.Cells(10, 1) = "DelPR = " & Trim(Str(DelPR)) & "m" 
            objExcelWS.Cells(11, 1) = "NumPR = " & Trim(Str(NumPR)) 
            objExcelWS.Cells(12, 1) = "NumZ = " & Trim(Str(NumZ)) 
            objExcelWS.Cells(13, 1) = "NumPsi = " & Trim(Str(NumPsi)) 
 
            objExcelWS.Cells(15, 1) = "r-component of B - Current Model" 
            objExcelWS.Cells(16, 1) = "Pr (m)->" 
            objExcelWS.Cells(17, 1) = "Pz (m)" 
            objExcelWS.Cells(15 + 5 + NumPZ, 1) = "z-component of B - Current Model" 
            objExcelWS.Cells(16 + 5 + NumPZ, 1) = "Pr (m)->" 
            objExcelWS.Cells(17 + 5 + NumPZ, 1) = "Pz (m)" 
 
            objExcelWS.Cells(15, 1 + 3 + NumPR) = "r-component of B - Charge Model" 
            objExcelWS.Cells(16, 1 + 3 + NumPR) = "Pr (m)->" 
            objExcelWS.Cells(17, 1 + 3 + NumPR) = "Pz (m)" 
            objExcelWS.Cells(15 + 5 + NumPZ, 1 + 3 + NumPR) = _ 
                "z component of B - Charge Model" 
            objExcelWS.Cells(16 + 5 + NumPZ, 1 + 3 + NumPR) = "Pr (m)->" 
            objExcelWS.Cells(17 + 5 + NumPZ, 1 + 3 + NumPR) = "Pz (m)" 
        End With 
        ' 
        '///////////////////////////////////////////////////// 
        '// Current Model 
        '///////////////////////////////////////////////////// 
        ' 
        ' Main loop to step through the vertical displacements Pz. 
        For IPz As Int32 = 1 To NumPZ Step 1 
            Pz = PZstart + ((IPz - 1) * DelPZ) 
            ' 
            ' Write the Pz headers for two tables. 
            objExcelWS.Cells(17 + IPz, 1) = Trim(Str(Pz)) 
            objExcelWS.Cells(17 + 5 + NumPZ + IPz, 1) = Trim(Str(Pz)) 
            ' 
            ' Main loop to step through the radial displacements Pr. 
            For IPr As Int32 = 1 To NumPR Step 1 
                Pr = PRstart + ((IPr - 1) * DelPR) 
                ' 
                ' Write the Pr headers for two tables. 
                objExcelWS.Cells(16, 1 + IPr) = Trim(Str(Pr)) 
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                objExcelWS.Cells(16 + 5 + NumPZ, 1 + IPr) = Trim(Str(Pr)) 
                ' 
                ' Set up for the integration. 
                Br = 0 
                Bz = 0 
                '  
                ' Sub-loop to integrate around the circle. 
                Dim CosPsi As Double 
                Dim Temp1 As Double 
                Dim Temp2 As Double 
                Dim Temp3 As Double 
                For Ipsi As Int32 = 1 To NumPsi Step 1 
                    Psi = (Ipsi - 0.5) * DelPsi 
                    CosPsi = Math.Cos(Psi) 
                    ' 
                    ' Sub-loop to integrate up the length. 
                    For Iz As Int32 = 1 To NumZ Step 1 
                        Z = (-Lmagnet / 2) + ((Iz - 0.5) * DelZ) 
                        ' 
                        ' Do the calculations. 
                        Temp1 = Pz - Z 
                        Temp2 = (Pr * Pr) + (Rmagnet * Rmagnet) + (Temp1 * Temp1) + _ 
                            (-2 * Rmagnet * Pr * CosPsi) 
                        Temp2 = Temp2 ^ 1.5 
                        Temp3 = Rmagnet - (Pr * CosPsi) 
                        Br1E = Temp1 * CosPsi / Temp2 
                        Bz1E = Temp3 / Temp2 
                        Br = Br + Br1E 
                        Bz = Bz + Bz1E 
                    Next Iz 
                Next Ipsi 
                Br = Mu0 * J * Rmagnet * Br * DelPsi * DelZ / (4 * Math.PI) 
                Bz = Mu0 * J * Rmagnet * Bz * DelPsi * DelZ / (4 * Math.PI) 
                ' 
                ' Write the magnetic field components for the Current Model. 
                objExcelWS.Cells(17 + IPz, 1 + IPr) = Trim(Str(Br)) 
                objExcelWS.Cells(17 + 5 + NumPZ + IPz, 1 + IPr) = Trim(Str(Bz)) 
                ' 
                ' Display progress on the monitor. 
                labelDisplay.Text = "Now calculating Current Model:" & vbCrLf & _ 
                    "Pr = " & Trim(Str(Pr)) & " m" & vbCrLf & _ 
                    "Pz = " & Trim(Str(Pz)) & " m" 
                labelDisplay.Refresh() 
                ' Give other processes a chance to work. 
                Application.DoEvents() 
            Next IPr 
        Next IPz 
        ' 
        '///////////////////////////////////////////////////// 
        '// Charge Model 
        '///////////////////////////////////////////////////// 
        ' 
        ' Main loop to step through the vertical displacements Pz. 
        For IPz As Int32 = 1 To NumPZ Step 1 
            Pz = PZstart + ((IPz - 1) * DelPZ) 
            ' 
            ' Write the Pz headers for two tables. 
            objExcelWS.Cells(17 + IPz, 1 + 3 + NumPR) = Trim(Str(Pz)) 
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            objExcelWS.Cells(17 + 5 + NumPZ + IPz, 1 + 3 + NumPR) = Trim(Str(Pz)) 
            ' 
            ' Main loop to step through the radial displacements Pr. 
            For IPr As Int32 = 1 To NumPR Step 1 
                Pr = PRstart + ((IPr - 1) * DelPR) 
                ' 
                ' Write the Pr headers for two tables. 
                objExcelWS.Cells(16, 1 + 3 + NumPR + IPr) = Trim(Str(Pr)) 
                objExcelWS.Cells(16 + 5 + NumPZ, 1 + 3 + NumPR + IPr) = Trim(Str(Pr)) 
                ' 
                ' Set up for the integration. 
                Br = 0 
                Bz = 0 
                '  
                ' Sub-loop to integrate around the circle. 
                Dim CosPsi As Double 
                Dim Temp1 As Double 
                Dim Temp2 As Double 
                Dim Temp3 As Double 
                Dim Temp4 As Double 
                Dim Temp5 As Double 
                For Ipsi As Int32 = 1 To NumPsi Step 1 
                    Psi = (Ipsi - 0.5) * DelPsi 
                    CosPsi = Math.Cos(Psi) 
                    ' 
                    ' Sub-loop to integrate out the radius. 
                    Dim DelArea As Double 
                    Dim Rinner As Double 
                    Dim Router As Double 
                    For Ir As Int32 = 1 To NumR Step 1 
                        Rinner = (Ir - 1) * DelR 
                        Router = Ir * DelR 
                        DelArea = 0.5 * ((Router * Router) - (Rinner * Rinner)) * DelPsi 
                        If (Ir = 1) Then 
                            R = 0 
                        Else 
                            R = ((Ir - 0.5) * DelR) 
                        End If 
                        ' 
                        ' Do the calculations. 
                        Temp1 = Pr - (R * CosPsi) 
                        Temp2 = Pz - (Lmagnet / 2) 
                        Temp3 = Pz + (Lmagnet / 2) 
                        Temp4 = (Pr * Pr) + (R * R) + (Temp2 * Temp2) + _ 
                            (-2 * Pr * R * CosPsi) 
                        Temp4 = Temp4 ^ 1.5 
                        Temp5 = (Pr * Pr) + (R * R) + (Temp3 * Temp3) + _ 
                            (-2 * Pr * R * CosPsi) 
                        Temp5 = Temp5 ^ 1.5 
                        Br1E = (Temp1 / Temp4) - (Temp1 / Temp5) 
                        Bz1E = (Temp2 / Temp4) - (Temp3 / Temp5) 
                        Br1E = Br1E * DelArea 
                        Bz1E = Bz1E * DelArea 
                        Br = Br + Br1E 
                        Bz = Bz + Bz1E 
                    Next Ir 
                Next Ipsi 
                Br = Mu0 * Sigma * Br / (4 * Math.PI) 
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                Bz = Mu0 * Sigma * Bz / (4 * Math.PI) 
                ' 
                ' Write the magnetic field components for the Charge Model. 
                objExcelWS.Cells(17 + IPz, 1 + 3 + NumPR + IPr) = Trim(Str(Br)) 
                objExcelWS.Cells(17 + 5 + NumPZ + IPz, 1 + 3 + NumPR + IPr) = _ 
                    Trim(Str(Bz)) 
                ' 
                ' Display progress on the monitor. 
                labelDisplay.Text = "Now calculating Charge Model:" & vbCrLf & _ 
                    "Pr = " & Trim(Str(Pr)) & " m" & vbCrLf & _ 
                    "Pz = " & Trim(Str(Pz)) & " m" 
                labelDisplay.Refresh() 
                ' Give other processes a chance to work. 
                Application.DoEvents() 
            Next IPr 
        Next IPz 
        ' Save the Excel file. 
        objExcelWB.Save() 
        objExcelWB.Close() 
        MsgBox("All done.") 
    End Sub 
 
End Class 

 


