Physics of a stern-fixed single-blade sculling oar like a yuloh

Most discussions about a yuloh jump right into blade profile, blade-to-loom angle, lanyard fixing point
and the like. Those details can obscure some of the first principles which ought to be considered, well,
first.

Propelling a boat forwards is all about accelerating water backwards. Propelling a boat forwards
efficiently is all about matching the power produced by the engine (a human) to the power absorbed by
the water.

Let's consider a traditional pair of side oars. This is a brute force way of accelerating water forwards.
The rower pulls the inboard ends of the oars towards himself; the blades on the other ends dig into the
water and push it backwards. Not all of the effort goes into pushing water backwards. Since the blades
travel in circular arcs when seen from above, water is being pushed outwards from the direction of travel
as well as backwards at the start of a stroke. At the end of the stroke, water is being pushed towards the
centerline as well as backwards. In fact, the direction in which the water is being pushed is ideal only at
the moment when the oars extend perpendicularly out from the centerline. The effort expended pushing
water outwards and inwards is wasted insofar as the goal of propulsion is concerned. Experience tells us
this waste is acceptable because the propulsion system as a whole is pretty effective.

Furthermore, the oars produce benefit during only one-half of each stroke. On the return stroke, the rower
has to lift the blades clear of the water and swing them back to their starting positions. All of the effort
and time needed for the return half of the stroke is a waste from the point-of-view of the propulsion
system. But even that waste is acceptable.

The length of the oars and the relative position of their fulcrums have to be chosen carefully. The length
of the arc through which the inboard ends travel has to be appropriate for a rower. An inboard swing of
only a foot would be useless. It would waste the potential we expect a normal-sized rower can deliver if
he is allowed to pull through three or four feet. Now, consider the other end of the oar. It would be
fantastic if the blades were the size of a 4 foot by 8 foot sheet of plywood. Huge amounts of water could
be moved. But intuition tells us that would be ineffective. Moving such large volumes of water takes a
lot of energy. It might take an Olympic rower five seconds to pull such oars through one stroke. We all
know that a more comfortable and sustainable rate for humans is a stroke every two seconds or so. The
length of the outboard ends of the oars has similar effects. Pulling a stroke on 50 foot oars would be hard,
to say nothing of the extra weight of oar which would need to be hauled.

As children, most of us saw innumerable images of side oars and their use, so we have a feeling for what
oars look like and what they do. Yulohs, not so much. Take oar length as an example. We can all reason
out, as | have just done, the factors which cause side oars to have the lengths they do. Yulohs are no
different. Certain factors affect their lengths; we just have to figure out what those factors are. Yulohs
are no more arbitrary in their design than side oars.

(In the following, 1 am going to use the words "sculling oar", "scull" and "yuloh" interchangeably.)

Analysis of a rudder-type yuloh

I am going to start by looking at the yuloh as a type of rudder, whose blade is a thin sheet of aluminum,
say, which remains at all times vertical with respect to the water surface. It is waved from side-to-side
like one would oscillate a rudder from side-to-side by pulling the tiller back and forth. The only
meaningful difference is that the center of pressure on the blade is a further distance aft of the transom
than a typical rudder. The following figure shows the situation from above and from the side.

~1~

I have put the fulcrum a little bit to port of the boat's centerline. The outboard and inboard lengths of the
yuloh, L, and L;, respectively, are not their end-to-end lengths but rather the distances from the fulcrum
to the center of pressure of the blade (C. P.) on the one hand and to the person's center-of-effort on the
other. The water exerts a net force K, on the blade when the sculler pulls with force F, on the loom. The
subscript p of the latter could stand for person, or push/pull or propulsion. The force which counteracts
the other two is the force of the fulcrum on the scull F;. All three of these forces are forces which act on
the scull. Each of them has a reaction force, which is approximately equal in magnitude.

It is the reaction to force F,, which pushes the water towards the rear (and to the side). It is the reaction to
force Fy which pushes the boat forwards (and to the side as well). And, it is the reaction to force F, which
pulls the person towards the port side and requires that he take a stance in preparation for his pull.

The directions of the forces in the figure are not very useful. It looks like the blade does a better job
pushing water towards the right (in the figure) than downstream. The force at the fulcrum looks much
more likely to yaw the boat than to push it forwards. This is exactly what happens when the scull is
swept while the is in irons. A good strong pull or push on the tiller will not do much more than move the
stern from one side to the other. It is possible to eke out some forward momentum by operating the tiller
with care: slowly moving it off-center and then yanking it straight. But that is not very effective. It is
like trying to use the rudder as a paddle.

Let's see if this system works better when the boat already has some forward speed. | will try to estimate
some realistic speeds. Assume the boat is moving forwards at one and one-half knots, which is equivalent
to 2.53 feet per second. To quantify the angular motion, assume the boat is a 16-footer and uses a yuloh
with a total length of 14 feet, of which 4 feet are inboard from the fulcrum and 10 feet are outboard. (I
will refer to the inboard end of the yuloh as the "loom™.) From these dimensions, | have estimated that
the center of pressure is 8 feet from the transom (L,) and that the inboard length is 3% feet (L;). Lastly, |
have assumed that the sculler is working 30 cycles per minute through strokes with a length of 1Y feet.

The geometry of the strokes is shown in the following figure. When the scull is at the end of a stroke, the
inboard end is % of a foot from the centerline and the center-of-pressure is 1.71 feet from the centerline.

1.71" maximum outboard deflection

arc with 8' radius -°

maximum deflection angle 6,,,,, = sin™?! 03—755 =12.4°

arc with 3%2' radius "«

~

%" maximum inboard deflection

The angle which the scull makes with respect to the centerline at the end of a stroke is 12.4°. The blade's
center of pressure does not travel in a straight line, of course, but in a circular arc. The length of the
circumference of an arc having an eight foot radius, from 12.4° on one side of the centerline to 12.4° on
the other, is given by:

o

X X o = 5.
360° 2m X 8 = 3.46 feet

arc length =

This is the distance through which the center of pressure travels during one-half of a stroke. Since there
are 30 strokes per second, the duration of a half-stroke is one second. The tangential speed of the center
of pressure during the stroke is therefore equal to:

3.46 feet

dof C.P.=
speed o T sec

= 3.46 feet per second

This is only a first approximation. It assumes that the person pulls his end of the scull through a circular
arc at a constant speed, with no diminishment at the turning points. Furthermore, this estimate applies
only to points on the blade which are eight feet from the fulcrum. Points further out on the bade will
travel faster; points closer in will move more slowly.

The significant conclusion is that the arc-speed of the center of pressure (3.46 fps) is of the same order of
magnitude as the forward speed of the boat (2.53 fps).

The following figure shows how we can use vector addition to combine the speed of the blade with the
speed of the boat. It is easiest to think of the boat being held at rest, by its painter, in a stream flowing by
at 1% knots. The dynamics of the boat in the water are the same whether the water is calm and the boat
plows through it, or whether the boat is held still and the water flows under it. It is reasonable to imagine
that bits of water which are in close proximity to the pressure-side of the blade will be accelerated to the
same speed as the approaching blade. This extra speed will be added to the speed the bits already had in
the downstream direction.

downstream speed
total water speed

yuloh-induced speed

piece of yuloh near C.P.\ Y cross-thwart line

\ yuloh

\
\

When the yuloh is at some angle 8 with respect to the boat's centerline, a piece of the yulah near the
center of pressure will induce a speed which lies at an angle 6 aft of the perpendicular to the centerline. |
have called this line, which is perpendicular to the centerline, the "cross-thwart line".

But, when the existing downstream speed of the water is added, the total speed of the water near the
center of pressure will be at angle ¥, which is greater than 8, aft of the cross-thwart line.

We have to go through two thought processes to apply this result.

1.

Firstly, we need to recall that the physics are the same however the forward speed of the boat
arises. However it arises, the angle at which water peels off the yuloh will be at angle 1, which is
greater than 6. In other words, the total angle in which the water is sent is further aft than when
the boat is at rest.

It is very difficult to work through the mechanics by which the water exerts pressure on the blade.
But it very easy to figure out the net result, if we step back for one moment and look at a larger
universe. Consider a big spot on a calm lake before the boat passes. The water is at rest; it does
not have any kinetic energy. Now consider the same calm spot after the boat passes through.
During the passage, the water received energy. Bits of water were forced to move in a direction
which was angled 1 aft of the line of the boat's passage. (Water is a viscous fluid, so that the
kinetic energy which was added by the boat was subsequently dissipated as heat, and the water
returned to its pre-passage calm.) But, the boat added energy, and momentum, to the water.
Momentum was conserved during the passage. Whatever momentum the boat added to the water
was added to the boat's momentum in the other direction. The more backwards momentum the
boat added to the water; the more forward momentum the water added to the boat. (It takes
energy to overcome the water's drag on the boat, so momentum which is added to the boat gets
used up overcoming drag. New momentum needs to be added continuously to keep the boat
moving.)

The bottom line is this: the bigger angle 1 can be made, the more forward momentum is added to the
boat. It follows that a rudder-like scull will become more effective as the boat's speed increases.

There is a second way to make a rudder-like scull more effective: by making it flexible. Consider the tip
of the flexible yuloh shown in the following figure.

~4 ~

downstream speed

total water speed)
yuloh-induced speed

_________________ cross-thwart line

1 yuloh

\
\

Because the tip bends, water near the tip is directed even more closely downstream than before. With a
flexible enough blade, one could pull the inboard end (the "loom™) past the centerline of the boat while
the tip is still deflecting water downstream.

There is an offsetting disadvantage. Consider the scull at the start of a stroke, when the angle the scull
makes with the centerline of the boat is at its maximum. When the sculler begins the stroke, the tip does
not move. During the first phase of the stroke, the energy which the sculler is putting into the system is
being stored as potential energy in the shaft of the yuloh, as it bends. Only after the internal stresses in
the bending shaft have increased to a certain point will the sculler's power begin to find its way into
moving the tip. The shaft will remain bent until the sculler releases his pull near the end of the stroke.
At this time, the potential energy in the shaft is going to be released, and cause the tip to keep moving.
Unfortunately, the potential energy is going to be wasted or, even worse, release itself at a detrimental
angle. If the sculler has pulled too far through the centerline, the tip will flick in the wrong direction,
driving water upstream.

However, it should be noted that many fish swim using exactly this mechanism. They have a natural
ability to match the side-by-side speed of their tail fin to their forward speed in such a way that the
completion of a "stroke™ is not an uncontrolled upstream flick. They have muscles along their body
which let them control the shapes of their rear ends in a way that is not possible for a fixed construction
yuloh capable only of rotation around the fulcrum.

We could try to learn from the fish, and design a yuloh in which each section, like the
red section shown in the figure, travels through the water in a sinusoidal pattern. The
stiffness of the blade would have to change continuously along its length. Even then,
the resulting scull would only be optimal for a certain combination of forward speed,

amplitude of side-to-side oscillation and stroke frequency.

Perhaps such a yuloh could be made. Or, perhaps not. The fundamental problem is
pretty simple. An oar with its long axis parallel to the boat's centerline is just the wrong
place to start if the objective is to push water in the direction of the long axis.

Analysis of an airfoil-type yuloh

Let's look at something completely different. Airplanes have a long and proven history of producing a
force in one direction (upwards, and called "lift") which is the result of motion in the perpendicular
direction (which, for an airplane, is the direction of flight). A yuloh based on the principles of flight is
shown in the following figure.

The airfoil is the blue box. It is a small wing whose long axis is vertical and points straight down into the
water. The wingspan is identified in
the lower part of the figure as the length
of the wing which is submerged. If any
part of the wing is not in the water, its
motion will not add anything to the
propulsion. In use, the airfoil moves
back and forth across the width of the
boat, as shown by the double-side
arrow in the top part of the figur,
Movement of the airfoil will
lift (hopefully) which pointy/straight in
the direction of the boat's ffavel. The

motion of
airfoil

>
lift force is identified as the red arrow AT
F, in the lower part. Thg rest of the I
yuloh is comprised of fpur straight wingspan

sticks, or bars, which afe shown in

green. They are simply structural elements whose purpose at this point is to transfer the forces exerted by
the person into side-torside motion of the airfoil. Think of the black dots as pintles, which hold the airfoil
in its vertical position|while allowing it to move sideways.

We want the airfoil tg have a symmetrical profile so that it will produce lift when it moves towards either
side. It should look spmething like the following. It is important that the curved side be facing the
direction of travel. It is important that the flat side,
or flatter side, face aft. It is the differential
curvature between the front and back sides which
causes the airfoil to produce lift. Furthermore, the
profile needs to be sharp at both edges. The Kutta
condition, on which a lot of aerodynamics rests,
shows that a sharp trailing edge is a necessary
condition for initiating the vortex which leads to
circulation around the profile. A rounded trailing
edge leads to a poorly-defined initial vortex and
reduced or unstable lift. On the other hand, a
rounded leading edge is better than a sharp one,
because it results in less drag. Since we want our
yuloh to be equally powerful and productive in both directions of a stroke, we need both edges to be the
same. Since it is more important to have a sharp trailing edge than a rounded leading edge, we are going
to have to make both edges sharp.

Travel in either ... produces lift
direction ... in this direction.

v

We want to make the most effective airfoil we can. In airplane-speak, we want the highest coefficient of
lift and the highest lift-to-drag ratio we can get for the given flight conditions. Since the fluid the airfoil
is flying through is water, some of the things we know about airplane wings may have to change. For
example, the airfoil is going to be flying at extremely low speeds compared with air travel. In the

~6~

analysis above, we encountered speeds like two and three feet per second, or between one and two miles
per hour.

The figures above suggest a striking difference from typical airplane flight: that the airfoil will be flying
at negative angles of attack. Let's look into this. Let's assume once again that the boat is moving forward
at 1% knots, or 2.53 feet per second. Let's keep the same stroke parameters we looked at before, namely,
that the center of pressure (which is now located at the center of the airfoil) travels through its circular arc
at 3.46 feet per second. (In due course, we are probably going to have to adjust the dimensions of the
yuloh, but let's not get too far ahead of ourselves yet.) We can use these two speeds to get an idea of the
direction from which water approaches the airfoil.

3.46 fps 4.29 fps
-17777 20
scull speed net speed tan 346 36
V3.462% + 2.53%2 = 4.29
36.2°
feeeooe_.____boats centerline and velocity
2.53 fps
boat speed

Water is approaching the airfoil from an angle 36.2° above the line of its flat surface. This is well and
truly outside the range of angles of attack encountered in traditional airplane flight.

This diagram applies only when the scull is aligned with the centerline of the boat. The angle of attack
will change as the yuloh sweeps through a half-stroke. The extreme angles of attack will occur when the
yuloh is at its maximum deflections from the centerline. To look at the extrema, let's once again take over
a result from the analysis of a rudder-type scull. There, we found that the extreme angular deflections of
the yuloh were +12.4°. The following figure shows pictorially the vector addition of the boat speed (the
green arrow) and the airfoil's forward speed (the red arrow) at the extremes of a scull stroke. The black
arrow in each case is the relative velocity of the water relative to the airfoil's flat surface. One can see
that the relative speed varies from 3.82 feet per second to 4.70 feet per second and the angle of attack
varies from minus 27.9° to minus 44.1°.

4.70 fps at 44.1°

4.29 fps at 36.2°

fulcrum

| 3.82 fps at 27.9°

During the return stroke, the green arrows would be unchanged, but the red and black arrows would point
generally downwards. But the magnitudes and angles of the relative "wind" would be the same.

~7 ~

These negative angles of attack are going to be a problem. There is no airfoil shape which will generate
lift when the angle of attack is negative 30° or 40°. The solution is to rotate the airfoil around its long
axis, which points vertically down into the water. It the angle of incidence is set to say, 45°, in the
previous figure, then the angles of attack would vary between 45° - 27.9° = 17.1° at the start of the stroke
to 45° - 44.1° = 0.9° at the end. Of course, this angle of incidence only works when the blade is traveling
clockwise around the fulcrum, as shown in the previous figure. On the return stroke, the rotation of the
blade would have to be reversed by 90°, so the angle of incidence is set to 45° with respect to the counter-
clockwise sweep.

If Isambard Kingdom were to attack this problem, he would say, "No problem, I can gear this thing."”
Indeed, it would be possible to set up a gearing system. It would set the angle of incidence to 45° with
respect to the long axis of the airfoil when the scull is sweeping in one direction and set it to 45° the other
way when the scull is sweeping in the other direction. (One can get creative. A small vane placed
somewhere on the blade could be introduced to measure the water direction; the gear train could be
engineered to set the angle of incidence continuously with respect to the measured water direction.
Naturally, GPS velocity-tracking of the airfoil and a fly-by-wire hydraulic system would be available as
upgrades on more advanced models.)

If these +45° angles of incidence remind one of a typical boat's propeller, it is no accident. A typical
propeller rotates around its shaft in a constant direction. It follows that the blades can be set at fixed
angles. The angle of incidence will be optimal for only one forward speed of the boat. Presumably, the
designer set the angle of incidence so the propeller would be most efficient at the speed at which the boat
normally cruises. The airfoil we have been looking at seems to be a propeller consisting of a single blade.
Furthermore, the airfoil does not always travel in the same direction, but reverses direction twice per
stroke.

The traditional yuloh is an ingenious solution to the angle of attack problem. Start by angling the airfoil.
Instead of pointing straight down, the long axis slants both downwards and rearwards from the aft deck.
In the following diagram, | have shown a yuloh mounted on the transom of a dinghy. The scull is shown
in its amidships position, with the flat rear side of the blade oriented parallel to a horizontal line across the
aft deck. The two lines AA’ are parallel. | have shown the fulcrum, or pivot point, a little bit to starboard,
to make room for the operator, who stands in the cockpit a little bit to port. With the fulcrum to starboard,
the operator would face the starboard side when sculling.

For reference in the following diagrams, | have shown a small index mark on the end of the loom. The
index mark is perpendicular to the flat side of the side.

The ingenuity of the yuloh is this: it is rotated around its long axis to produce the required angle of
incidence. The following figure shows the yuloh when the loom is being pushed to starboard, thus
pulling the blade to port. The black arrows show the directions in which the ends of the yuloh are
travelling. In addition, the Yuloh has been rotated around its long axis in the circular direction shown by
the red arrow. Rotation cause the flat rear side of the blade to tilt along line B. This gives the blade a
positive angle of attack, biting into the water, as it sweeps to port.

A

On the reverse stroke, the yuloh is rotated in the reverse direction, as the red arrow and index mark show
in the following diagram. The rear flat side of the blade is angled along line C and encounters the water
with an angle of attack (approximately) given by the angle between line AA" and line C.

A

It is true that sloping the scull aft as well as down causes a loss of effectiveness. The following figure
compares and contrasts the lift and drag forces on the vertical and slanted airfoils.

vertical airfoil vertical airfoil

slanted airfoil slanted airfoil

The two diagrams on the top row show the airfoil in a vertical orientation, with gearing of course. The lift
generated by the blade (red arrows) is horizontal to the water's surface. Seen from above, the lift acts in a
direction up the oar. Over the course of a stroke, or even a half-stroke, the average direction of the lift is
the direction of the boat's velocity. The drag force (purple arrows) is a retarding force, and acts in the
direction opposite to the airfoil's direction of travel.

The lower row in the figure is a traditional yuloh. The lift forces (red arrows, again) have a downwards
component as well. Unfortunately, the downwards component adds nothing to the forward progress of
the boat. It just tends to push the stern deeper into the water. The drag forces (purple arrows, again)
retard the progress of the airfoil in much the same way as before.

Increasing the steepness of the slant of the yuloh is a good thing. A steeper slope increases the forward
component, and reduces the downward component, of the lift generated by the airfoil. On the other hand,
making the yuloh steeper tends to raise its inboard end. The ideal height of the inboard end is (arguably)
the narrow band between the operator's sternum and the bottom of his elbows. This height allows the
operator to lean partially on the loom and to use his body weight, and not just his arms, to push the loom
during the "push™ half-stroke. Increasing the slant steepness can raise the inboard end to a height which is
uncomfortable. A solution sometimes seen is the use of a "downhaul", for lack of a better word,
something like that shown in the following figure.

I have shown the downhaul secured to an eye bolt on the loom, at a station aft of the operator, and to an
eyebolt on the keel or deck. The downhaul resists the downward component of the lift (red arrows, once
again) generated by the blade. With a downhaul deployed, the operator need not press down on the loom.
He only needs to sweep it back and forth. Use of a downhaul forces the yuloh to sweep out a section of a
cone as it moves. This will cause the tip of the blade to move in circular arcs, both as seen from above
and as seen from astern. As the blade sweeps through the water, its tip will not maintain a constant depth.
I do not know if this is useful or not.

A small stick is often added to the loom, as is shown in the following figure.
A

~10 ~

The stick is typically six or eight inches long, and projects at right angles to the loom just at the station
where the operator's aft hand grasps the loom. The stick is set into the shaft so that it is also
perpendicular to the flat rear side of the blade, and thus parallel to the index marks shown before. The
operator uses the stick to control the angle of incidence he sets on the blade. | have set up the figure so
the loom is moving to starboard, the tip of the blade is moving to port and the required angle of incidence
is set by twisting the loom angularly in the direction of the red arrow. The top of the stick needs to be
angled in the direction opposite to the direction in which the inboard end of the loom is moved. In
practice, operation of the stick comes naturally. It does not need hard pulls or shoves. Whatever the
operator does with his fore hand, he has to do a little less of that with his aft hand. If his fore hand is
pushing the loom, for example, all he needs to do is push a little less hard with his aft hand and the airfoil
will take on the appropriate set. Typically, the operator grasps the loom with his aft hand in such a way
that the stick projects up through the space between the thumb and the curled fingers. A little pressure
one way or the other is all it takes.

Another method is sometimes used to control the angle of incidence. It involves a small droop of the
inboard end of the loom, as shown in the following figure.

This figure shows the same half-stroke as the previous one, with the tip of the blade moving to port.
When the operator pushes or pulls the inboard end to starboard, the droop causes a torque to be exerted on
the loom around the axis which extends throughout its main length. Because the inboard end lies below
the main axis of the loom, the force tends to rotate the loom in the angular direction shown by the green
arrow. This is exactly the direction which will set a positive angle of incidence for this half-stroke.

The droop has a subtle, and helpful, side effect. The droop lowers the inboard end of the loom. To the
extent that it is desirable to set the height of the inboard end at a particular height on the operator's torso, a
droop allows the slant of the outboard end of the yuloh to be steepened. We saw above that such a steeper
slant will direct a greater proportion of the lift in the useful direction.

Another variation sometimes seen is an S-shaped yuloh, as is shown from the side in the following figure.
I have shown a dotted line MM’ through the central axis of the middle section of the yuloh, to which I will
refer in a moment.

--M

The S-shape is such that the slant of the blade is steeper than it otherwise would be. This is a good thing
from the point-of-view of efficiency. But, it has a consequence which can be corrected by an upward
slant, or anti-droop, at the inboard end. The following figure is a view of the scull looking down line
MM’ from the inboard end, point M.

inboard end

C

blade

As before, the airfoil itself is shown in blue. The drag forces acting on the airfoil are shown by the purple
arrows. The black arrow shows the direction in which the operator is pulling the inboard end of the loom.
The blade is, of course, moving in the opposite direction, so the drag forces act in the same direction as
the force on the inboard end of the loom. The drag forces exert a counter-clockwise torque around line
MM', in the angular direction shown by the purple semi-circle. Because of the anti-droop on the inboard
end, the force on the inboard end exerts a clockwise torque around line MM’, in the angular direction
shown by the orange semi-circle. If the amount of anti-droop is correct, the two torques will cancel each
other out, so there will be no net torque tending to change the angle of incidence.

line MM’

A mathematical expression for the angle of attack

It is useful to find a mathematical expression for the angle of attack as the blade moves through the water.
This is most easily done using a sequence of frames of reference. Let's begin with a frame of reference
which is stationary with respect to the water. 1 will call this the 1 frame of reference and define its three
axes as shown in the following figure. 1 will call the three axes the %;, ¥; and 2, axes, respectively,
where the subscripts on the axes' symbols tie them to their frames of reference. The following figure also
shows the 2 frame of reference. | will describe the relationship between these two frames of reference in
a moment.

The 1 and 2 frames of reference both have their origins at the center of the fulcrum, which is assumed to
lie on the central axis of the yuloh. The y; and ¥, axes are both perpendicular to the water surface. We
will ignore all changes in the boat's attitude -- rolling, pitching and yawing -- and assume the boat is

~12 ~

sailing straight on a calm pond. In both frames of reference, the Z-axis points due starboard. And, in both
frames of reference, the X-axis is parallel to the boat's centerline. Since the y axes are perpendicular to
the water surface, the X and Z axes define planes which are parallel to the water's surface and a constant
distance above it.

The difference between the two frames of reference arises because the boat moves at a constant speed v
out along the £; axis. The 2 frame of reference has its origin fixed to the fulcrum. It is a "boat-fixed"
frame of reference. But, the 1 frame does not move. It is fixed with respect to the water. For our
purposes, we will say that the origin of the 1 frame of reference remains located at the point the fulcrum
occupied at time t = 0, at which time we will start taking measurements.

I have defined these two frames of reference, and will define a few more below, because they are
convenient ways in which to describe the exact location of a point. For example, the operator's sternum
might be located four feet in front of the fulcrum, one and one-half feet higher and, perhaps, two feet to
port. In feet, the co-ordinates of his sternum could be written as (4, 1.5, -2), where the three numbers are
the distances in each of the three directions, given in the order x-y-z. Actually, these are the co-ordinates
of his sternum only in the boat-fixed frame of reference. From the point-of-view of the 1 frame of
reference, the operator is moving continuously down the x; axis. The x; co-ordinate of the operator's
sternum may have been four feet at time t = 0, but, as time passes, that co-ordinate increases. If the
speed of the boat v is measured in feet per second, then after ¢t seconds, the boat will have moved a
distance vt, in feet. The co-ordinates of the operator's sternum in the 1 frame of reference is (4 + vt, 1.5,
-2). As an aside, note that the co-ordinate in the Z-direction is algebraically negative, which simply
means that the distance of two feet is to be taken in the direction of the negative Z-axis, namely, to port.

In general, if the location of a particular point has the co-ordinates (x,, v,, z,) in the 2 frame of
reference, its co-ordinates expressed in the 1 frame of reference are the following:

x1=x2+vt

Vi=X2 €Y)
Z1 = Z2

The following figure shows how | will define the 3 frame of reference. Starting with the 2 frame of
reference, we will make a rotation of angle i -- the Greek letter "psi" -- around the positive 2, axis. For
the sake of clarity, | have shown the axes of the 3 frame of reference in blue and longer than their
counterparts in the 2 frame. The direction of rotation is shown by the red partially-elliptical arrow.

A~

~13~

The amount of rotation is chosen so that the X5 axis is coincident with the centerline of the yuloh when it
is positioned fore-and-aft. Angle v is therefore the angle by which the yuloh is slanted, to use the same
term | used above. Since the rotation occurs around the Z axis, it does not change the z-co-ordinate. Only
the X and y values are changed by the rotation.

The transformation which relates the co-ordinates of any particular point in these two frames of reference
is a little more complicated than for the translation which transformed the 1 frame of reference into the 2
frame. It is this:

X, = X3 COSYP — y3siny
Y2 = X3sinp +yscospr (2)
Zy :Z3

The transformation from the 3 frame of reference to the 4 frame of reference takes into account the side-
to-side sweep of the yuloh. The 3 frame of reference was defined with the yuloh held precisely fore-and-
aft. We will represent the side-to-side deflection by the angle 6 -- the Greek letter "theta" -- which the
loom makes with respect to the y; axis. The following figure shows the relationship between the 3 and 4
frames of reference. For the sake of clarity, | have shown the axes of the 4 frame of reference in orange
and shorter than their counterparts in the 3 frame. | have also omitted the airfoil from the figure. The
direction of rotation by angle 6 is shown by the red partially-elliptical arrow.

>

Va

Xy
(Lw;fs
\J

By representing the side-to-side motion of the yuloh by a rotation around the y, axis, | have made the
implicit assumption that the yuloh is constrained to lie entirely within the X5-Z5 plane. This means that
the inboard end of the scull will not remain at exactly the same height above deck. It moves in a little
hump as it crosses from one side to the other. Similarly, the tip of the blade does not remain exactly the
same distance underwater. It travels in a little trough as it moves from one side to the other. Other
assumptions could be made. For a preliminary analysis, the one | have made here is satisfactory.

The transformation which relates the co-ordinates of the 4 frame of reference to those in the 3 frame of
reference is similar to its predecessor. It is this:

X3 = x4 €080 + z,sin 60

V3 = Ya)
Zz = —X4Sinf + z4 cos O

~14 ~

Things have been defined so far in such a way that the X, axis is always coincident with the central axis
of the yuloh. In the next transformation, we will rotate the yuloh around its long axis. We will use the
symbol ¢ -- the Greek letter "phi" -- for the angle of rotation. To keep track of the direction of rotation,
we will assume that angle ¢ is algebraically positive for rotations clockwise around the £, axis. The
following figure shows the setup.

Vs

A

Z5

For the sake of clarity, | have omitted all of the yuloh, leaving behind only the fulcrum. The 5 frame of
reference is fixed to the yuloh. One should think of the ¥ axis as being perpendicular to the flat rear side
of the blade. This rotational transformation has the following form:

X4 = X5

Y4 =Y5C0SQ —Zssing, (4)
Z4 = Y5 Sin@ + Z5 cosS @

The next transformation is the last we will consider. It is a translation of the 5 frame of reference down
the shaft of the yuloh to some particular cross-section of the foil. | will use the symbol D for the distance
the frame of reference is moved. By letting D vary, we can select different sections along the airfoil. The
following figure shows the translation.

!

lll’ "u----------------------------

=
w
Il
=
)}

A

Zg
The transformation can be written algebraically as follows:

~15~

X5 =x¢ +D
V5 = Y6 } 5)

Zy = Zg

The cross-section of the blade at displacement D is highlighted in light red in the figure above. The 6
frame of reference is ideal for use in describing points on the surface of the blade. The highlighted coss-
section is shown again in the following figure. The X, axis points directly out of the page. The Zg axis is
parallel to the flat rear side of the blade and the y, axis points straight out of the flat side. It is likely that
the loom pierces the cross-section at its centroid.

3/@\\./4

Ve

v
N>
[e))

I have identified two points, 4 and B, about which | will talk some more below. These two points are the
leading and trailing edges of this cross-section of the airfoil. Neither one is strictly "leading” or "trailing";
they exchange roles every half-stroke.

For illustration, let's assume that the blade has been shaped from a piece of standard 2" by 4" lumber. The
true dimension of stock 2 x 4 are 1% inches and 3% inches, respectively. The centroid of this cross-
section will be located at the mid-point widthwise and about one-third of the distance from the bottom to
the top. In inches, the co-ordinates of point A are (0, —%,134). Point B is a mirror image and will have
co-ordinates (0, —%, —134). Expressed in feet, the co-ordinates in the 6 frame of reference of the two
points are (x¢, Y6, Z6) = (0, —0.0417,+0.146). | have chosen to express these distances in feet, because
we already used feet to measure the boat's speed and to estimate the yuloh's length.

We can express the co-ordinates of these two points in the 1 frame of reference by applying the
transformations one after the other. It is easiest to write the result as a sequence of matrix multiplications,
as follows:

X1 X2 vt
yi| =1|)2 +[0]
Z | Z2 0
[cosy —siny 0][X3 vt
=|sinyp cosy Of|V3|+]|O0
L 0 0 11123 0
[cosyy —siny O0][cosf® 0 sinfB][Xa vt
=|sinyp cosyp O 0 1 0 Val| + 0]
L 0 0 1l1l—sinf 0 cos6@l1lZs 0
[cosyp —siny O0][cosf® 0 sind][1 0 0 Xs vt
=|sinyp cosy O 0 1 0 [|0 cosep —sing||ys +[0]
L 0 0 1ll—sind 0 cos@ll0 sing cose 1125 0
[cosyp —siny 0][cos® 0 sind]fl 0 0 qJ[xst+D] vt
=|sinyy cosyp O 0 1 0 [[0 cosep —sing|| ys [+ [0] (6)
0 0 1/l—sin@ 0 cos@ll0 sing cosep Il 2z 0

~16 ~

Little is to be gained by multiplying the expression out by hand. | believe it is more informative to see
how points A and B move through time when seen from the 1 frame of reference. Recall that the 1 frame
is in a fixed position with respect to the water. Its origin is the point occupied by the fulcrum at time

t = 0. We already have the co-ordinates of the two points, which are the fixed values
(0,—0.0417,40.146) we wrote down a paragraph or two ago.

For our numerical example, we will use the same boat speed we used at the beginning of this paper: 1%
knots, so v = 2.53 feet per second. We will look at a cross-section of the blade which is a distance eight
feet down the shaft from the fulcrum. This should be near the center of the airfoil's long length. We will
substitute D = 8 feet into Equation (6).

Angle 1 is the slant angle of the Yuloh. In our mathematical model, 1 does not change with time. Let's
assume that the slope is 40°.

The remaining two variables are angles 6 and ¢. Both vary with time. 6 is the angle through which the
yuloh travels from side-to-side. In the analysis of the rudder-type yuloh, we estimated that the yuloh
moved was pushed or pulled to a maximum deflection angle of 12.4°. We also assumed the operator ran
at 30 strokes per second. We will use the same maximum deflection and frequency in this example. We
also have the opportunity to select a stroke pattern. | am going to assume that the operator moves the
inboard end with a constant angular speed, first in one direction and then the other. A constant angular
speed means that the deflection angle 8 describes a sawtooth waveform as a function of time. The
following figure shows the angle and angular speed of this stroke pattern. The angular speed is 24.8
degrees per second in one direction, followed by 24.8 degrees per second in the other.

Angle 6

A

0° > Time t

—12.4°

Angular speed 6
A

VX (Y| P ,

» Time t

—24.8°/s}------

The stroke pattern is not sinusoidal, nor is it intended to be. | believe the sawtooth waveform better
represents the constant speed of a typical operator. In fact, | believe there is an even better representation,
but one which is better left for a later analysis. A typical operator applies a constant force to the loom.
This does not necessarily result in a constant sweep speed. We saw above that the angle of attack with
which the blade meets the water is highest at the start of a half-stroke and lowest at the end. To the extent
that the drag force is proportional to the angle of attack, the loom will be hardest to move at the start of
the stroke. A constant exertion on the loom will likely cause the yuloh to start off slow and then to speed
up during the half-stroke. A more realistic stroke pattern is likely the following:

~17 ~

Angular speed 6
A

» Time t

For the numerical example, we will use the constant angular speed version, and defer any enhancements.

The last remaining variable is the loom twist angle ¢. We will assume this angle is held constant during a
half-stroke and then reversed during the following half-stroke. | proposed above that the angle of
incidence could be 45°, and that is the value | will use in the numerical example. The following figure
shows more precisely the waveform assumed for ¢ in the numerical example.

Angle ¢

A

+45°

» Time t

0° E E

—45°) --o--- ——ECEREEEEEEE e

Before proceeding, | want to make sure that angles 8 and ¢ are algebraically consistent. The graphs in
the figures show that angle ¢ is positive (or negative) when the angular speed 8 is positive (or negative).
We need to confirm that this is the correct combination. Look back at the figure which shows the rotation
of the 3 frame of reference into the 4 frame of reference. An increasing angle 6 corresponds to the tip of
the blade moving towards the starboard side. Now, look at the figure which shows the rotation of the 4
frame of reference into the 5 frame of reference. A positive angle ¢ causes the starboard edge of the
blade to descend and the port side to ascend. This is exactly what we want -- the starboard edge lower
than the port edge when the blade is moving to starboard.

The following figure is a 3,000 word essay on the trajectory which the line segment from point A to point
B makes during five half-strokes starting at time t = 0 with the tip of the blade beginning a sweep to port.
The three diagrams show the top view, the side view and the rear view. The line segment AB is rendered
in red and is shown every 0.1 seconds, or ten times every half-stroke. | have not labeled the axes with
dimensions in feet, but all three views are to the same scale.

In all cases, the two axes in the plane shown intersect at their origin. When interpreting the views,
remember that the origin of the 1 frame of reference is the location of the fulcrum at time t = 0. | have
marked this location with an orange dot in the views. This location is, of course, some distance above the
waterline. Also bear in mind that the yuloh projects aft of the transom. Notice that the line segment does
not pass through the x; = 0 datum (the starting line, if you will) until almost the end of the third half-
stroke. The view from above is sometimes called the "falling leaf" pattern, for obvious reasons.

~18 ~

View from above

\ N
ralk \ /
b \ / Y Z
7 \ / \ 7
/ \ g \ /
/ \ / >X1
7 \ / \ /
/ \ / \ /
/ \ / N /
/ N %X X
/ / /
2
1 1
»Zl xl
SONCRP e Spmdnd ROSP A TRARRAR NN VIR GRS INRRGAAS R I AR RARR GRS IR N
View from astern View from the side

The objective of the analysis at hand is not to draw pretty pictures of the blade passing through the water,
but to estimate the angle at which water attacks the blade. Fortunately, these two objectives are opposite
sides of the same coin. If we can determine the path the blade takes through the water (as we have just
done), then, from the point-of-view of the blade, the water is approaching from the opposite direction at
the same angle(s).

It should be understood that the flow of water over the blade is very complex. It has complications not
found in the preliminary analysis of an airplane's wing in cruising flight. Not only are different sections
along the blade's long axis moving through the water at different speeds, but the long axis is rotating with
respect to the water as well. It is not possible to ascribe a single angle of attack to the yuloh blade, even
at a single instant in time. If we are to make any progress at all in understanding the hydrodynamics, we
are going to have to make some rather crude space-averaged or time-averaged assumptions. Here is how
I have chosen to proceed.

I have assumed that the blade of the yuloh is five feet long and that the section AB we looked at in the
immediately preceding graphical example, at displacement D = 9 feet, was located at the mid-point of
the long axis of the blade. In other words, the blade extends from D = 6% feet to D = 11% feet down
the shaft from the fulcrum. 1 have chosen to focus on only 11 points along the long axis of the blade,
being values of D one-half foot apart from D = 6% feetto D = 11% feet, inclusive.

~19 ~

For each of these 11 cross-sections of the blade, | have chosen to look only at the relative speed with
respect to the water at the centroid of the section. For this purpose, | have assumed that the points on the
X axis lie on the cross-sectional centroids of the profile. These points have co-ordinates y, = z5 = 0.
Ironically, this means that none of the 11 points at which I will calculate the angles of attack actually lie
on the surface of the blade; they are in its interior.

For each of these 11 points, | have chosen to look at the relative speed with respect to the water at five
equally-spaced times during a single half-stroke. It makes no difference whether we consider a stroke to
port or one to starboard, since the effects we will be looking at are symmetric about the centerline.

All told, I will be calculating 55 angles of attack. To actually calculate the relative speeds, | have chosen
to use an expeditious method. Rather than apply the Calculus to Equation (6) to calculate the relative
speed in closed form, I have used computed differences. At five selected times during the half-stroke, |
calculated the positions of the 11 points. | then calculated the 11 positions again at a time one millisecond
later. The change in position, divided by the one millisecond change in time, gives the average speed
during the interval. Actually, it gives the components of the average speed along all three axes, in other
words, the velocity. If we keep track of the co-ordinates of the 55 data points at the start and end of the
0.001 second interval, we can calculate the velocity in either the 1 or 6-frame of reference. In the course
of this work, we will have to transform points from the the 1-frame of reference back to the 6-frame, in
the direction opposite to the transformation in Equation (6). The inverse of Equation (6) can be written
down by inspection, since the inverse of a rotation matrix is merely its transpose. We get:

Xe 1 0 0 J[cos®@ 0O —sinf][cosyy siny 0][x; —vt D
Ye| = [0 cos@ sing 0 1 0 [— siny cosy O yi |—=|0] (7)
Zg 0 —sing cosellsind 0 cos@ 0 0 1 Z; 0

The following graphs show the results for the same numerical values used to derive the falling leaf
pattern. The first of the graphs shows the relative speed of the blade with respect to the water in the 1-
frame of reference, which is fixed with respect to the water.

The dotted parallelogram is the outline of the blade at the start of the stroke. The red line segments have
lengths which are proportional to the relative speed with respect to the water. The small black dots
identify the locations of the 11 points along the long axis of the blade at the start of the one millisecond

~20~

interval. The red line segments apply at the start of the half-stroke when the yuloh is at its maximum
deflection (12.4°) to starboard. One-quarter second after the start of the half-stroke, the yuloh is one-
quarter of the way across its sweep, and the green line segments apply. The blue line segments apply at
the mid-point of the stroke, when the yuloh is aligned fore-and-aft. The end of the half-stroke is
represented by the violet line segments.

The x;-axis, in which direction the boat is travelling, points at a 30° towards the lower right. The 2, -axis,
directed due starboard, points at a 30° angle towards the lower left. The y;-axis is the vertical.

The next graph shows the relative speed once more, but this time in the 5-frame of reference. Both the 5-
frame and the 6-frame are fixed to the blade of the Yuloh. The only difference between them is the
distance along the long axis of the blade chosen as the origin of the latter frame of reference. The results
are more informative if the starting points of the relative speeds (the small black dots) are shown
separated along the blade in a realistic manner.

violet = end of stroke
\

red = start of stroke blade moves in this direction

tip of blade

to fulcrum

Zs
We are getting close now. The lines in this figure show the direction in which the blade is moving with
respect to the water, starting at the black dots and progressing towards the upper right. The water is
approaching the blade from the opposite directions. Information about the angles of attack is contained in
this figure, but is partly obscured by the existence of a second angle, which I will refer to as the
"streamline angle". In the standard preliminary analysis of an airplane wing, it is usually assumed that the
flow of air is perpendicular to the long axis of the wing. That is not the case here. The water approaches
the blade with a component of speed in the same direction as the long axis of the blade. The water does
not flow over the blade directly from the leading edge to the trailing edge along the shortest path, but

~21 ~

takes an oblique path over the blade. To show this, the following figure is a projection of the line
segments in the figure above onto the Xs-Zs plane. Itis a view of the situtaion as seen from above,
looking down onto the flat rear side of the blade.

water approaches from this direction

tip of blade ¥ 2

I have defined an angle o -- the Greek letter "sigma™ -- to represent the spanwise-angle at which the
streamlines approach the blade. For the numerical example being tackled, o is relatively constant along
the blade. To be particular about it, the streamline angle is a little greater at the inboard end of the blade
and decreases nearer the tip. The streamline angle is also greater at the start of a stroke (the red line
segments) and decreases as the stroke progressess to its end (the violet line segments).

The following table sets out the values of ¢ at representative places and times.

Angle g, in degrees Upper end of blade | Halfway along blade Tip of blade
Start of stroke 32.3° 26.4° 22.2°
End of stroke 27.8° 23.2° 19.9°

The following figure is a projection of the line segments in the figure above onto the y5-Z5 plane. Itisa
view of the situation as seen looking down the long axis of the blade. To avoid clutter, | have not shown
the relative speed line segments for all 11 sections along the blade. | have shown only two sets of line

segments, one at the top end of the blade and the other at the tip.

It is tempting, but incorrect, to define the angle of attack from what can be seen in the figure. To
represent the angle of attack, | will use the symbol a, which is the Greek letter "alpha". It seems natural
to use the flat rear face of the blade as the reference chord line. The angle of attack is the angle at which
the oncoming water approaches the reference chord. However, the subtended angles shown in the figure
are only approximately equal to . 1 will explain why after a brief philosophical interlude

The angles of attack shown in the figure are useful for developing lift. That is, the water approaches the
blade from the side "below" the curved surface. If we imagine the figue to be flipped top-to-bottom, the
similarity to a traditional airfoil will be apparent. | observe that the angles of attack seem to be quite large

~22 ~

compared with those encountered in airfoil work. This arises because we set the loom twist angle to 45°
in the numerical example. Perhaps this is too great an angle; we shall have to see.

water
approaches
from this
direction

tip of blade

top end of blade

Let me return now to calculating the angle of attack. The following figure shows the relative speed vector
at only one of the 55 data points. For illustration, | will consider the approach vector at the top end of the
blade and at the start of a half-stroke. The three components of the approach speed are identified in the

figure. approach velocit
—2.784 PP y

The streamline angle ¢ and the angle of attack a are readily computed using the following trigonometry:

/xé + z2
a=cos | ————=| (84)
JE+vi+ad

o =tan! (_x—ZSS) (8B)

The following table sets out the values of « at representative places and times. For the sake of

completeness, | have presented a second table as well, which sets out the relative speed between the blade
and the water at the same points in space and time.

~23~

Angle a, in degrees Upper end of blade | Halfway along blade Tip of blade
Start of stroke 11.1° 19.6° 25.1°
End of stroke 17.6° 23.7° 27.8°
Speed, in fps Upper end of blade | Halfway along blade Tip of blade
Start of stroke 3.36 fps 4.21 fps 5.14 fps
End of stroke 3.95 fps 4.86 fps 5.84 fps

The angles of attack are higher at the tip than at the root of the blade. The angles increase as the stroke

progresses. The relative speed is also higher at the tip and also increases as the stroke progresses.

We can control the angle of attack by setting different loom twist angles. For the sake of comparison, the
following two tables set out the streamline angle and angle of attack for the same numerical example,
with the exception of a loom twist angle of 35° instead of the 45° used above.

Angle g, in degrees Upper end of blade | Halfway along blade Tip of blade
Start of stroke 31.6° 25.2° 20.8°
End of stroke 26.8° 21.9° 18.5°
Angle a, in degrees Upper end of blade | Halfway along blade Tip of blade
Start of stroke 2.6° 10.6° 15.7°
End of stroke 8.7° 14.5° 18.3°

It should be noted that the streamline angles o change by less than one and one-half degrees despite the
ten degree reduction in the loom twist angle. The angles of attack «, on the other hand, are reduced by

substantially all of the reduction in the loom twist angle.

This asymmetry suggests that a useful route in which to proceed is to assume a fixed streamline angle, say

o = 22°, and to investigate a range of angles of attack.

~24 ~

A preliminary look at the hydrodynamics of the yuloh

Fixing the streamline angle, at least initially, takes care of more than just one variable among many. It
also sets the effective profile of the airfoil we will be testing. As a starting point, let's assume that the
blade is shaped from a stock 2 x 6 piece of lumber. We will leave one side flat and shape the top into a
segment of a circular cylinder. This shape is shown on the left in the following figure.

/

A piece of the blade is shown in top view beneath the profile. When a streamline of water approaches the
blade at right angles, in the direction of the red arrow, the water must flow over/under a circular "bump"
which is 1%4" high and 5%" long. On the other hand, if the streamline approaches the blade at an oblique
angle of o = 22°, as shown on the right by the green arrow, the "bump" is effectively shallower. It has
the same absolute height, of 14", but the effective length over which the bump extends is greater. It is
now 5.93". The bump still has a circular shape, though. The effective length arising from the oblique
approach was computed using the following trigonometric relationship:

5]/2"
cos22°

=593" (9)

If the blade is infinitely long and does not rotate, a case can be made that the streamline angle o is
constant all along the airfoil. A practical yuloh is not infinite in length so there are "end-effects" which
complicate the flow. Furthermore, a yuloh rotates, suggesting that the streamlines are not even straight,
but curve when viewed from above as the water passes over the blade. That everything changes with time
makes the situation even more complicated.

I will set all of these complexities aside and assume, for this preliminary analysis, that the water flows in
a steady-state over the following profile, which is assumed to be infinitely long.

Relative wind :
4 593" —

Based on the values set out in the above tables, | will look at angles of attack in the range from zero
degrees to 30°, perhaps at five-degree increments. The relative speeds in the table above range from 3.36
feet per second to 5.84 feet per second. It might be useful to select three speeds -- 2 fps, 4 fps and 6 fps --
and focus on those three. This will provide 7 x 3 = 21 different cases, more than enough for now. Note
that the angles of attack and relative speeds are not entirely uncorrelated from each other. One of the
conclusions which can be drawn from the tables is that the angles of attack and relative speed are both

~ 25 ~

higher at the tip. To some degree, higher/lower angles of attack and higher/lower relative speeds go
hand-in-hand.

For the next stage of the analysis, we are going to need, among other things, a formula from which we can
draw the upper surface of the profile. It is a symmetrical segment of a circle, whose central height and
length of base are known. One can use some geometry to figure out the equation of the circle which can
generate the top surface. | have set out the details in Appendix "A". The equation of the generating circle
for the profile just shown is the following:

Radius: R= 22 (L5 e
R “8x15 2 (10)

Equation: x2? + [y — (1.5 — R)]? = R? for — 2.965" < x < 2.965"

Here is what we are going to do. We are going to set up a virtual wind tunnel and place inside it a section
of the airfoil. Because we are assuming that the blade is infinitely long, the waterflow over every section

will be the same. We are free to select any particular length of the blade we want. | have chosen to use a

virtual wind tunnel which is only one millimeter thick. The following figure shows the apparatus, but it is
not to scale. -

| '\1 millimeter thick

I A

meters high

N

WAL

2 meters lon
- ;
The virtual wind tunnel is two meters long (measured in the direction of the waterflow), two meters high
and, as | have already said, one millimeter thick. The co-ordinate frame of reference for all our
simulations will be the X-Y-Z frame shown. | have used capital letters to identify these axes so there will
be no confusion with any of the axes we have used before. The X-Y-Z frame is positioned inside the wind
tunnel with its origin at the very geometric center of the wind tunnel. It is oriented so that the X-axis
points in exactly the same direction as the water is flowing. (As always, use of a wind tunnel assumes
that the object is held still and the fluid moves with respect to the object, rather than the other way
around.) The Z-axis points straight out of the left side of the wind tunnel, when looking upstream.

The thin piece of the airfoil will be placed in the center of the wind tunnel. We will place it so the origin

of the co-ordinate frame lies at the center of the flat bottom. We will also place it at the particular angle
of attack we want to test.

~26~

We are going to use computational fluid dynamics ("CFD") to simulate the flow of water around the
airfoil. Use of CFD requires that the fluid inside the wind tunnel be divided up into a huge number of
small bits. Its in calculations, CFD assumes that the conditions of the fluid are the same throughout each
small bit and are affected by the conditions in the neighbouring bits. The more finely the fluid is divided
up, the smaller the individual bits and the more detail can be extracted from the calculations. On the other
hand, the more finely the fluid is divided up, the more small bits there are. One can be surprised at how
quickly computer memory and processing speed are used up as the fluid is subdivided more and more
finely.

Fortunately, the fluid does not need to be divided up into an infinite number of small bits in order to get
very realistic results. Even better, there are ways to determine whether the number of bits being used is
suitable for the dynamics being simulated.

For the study at hand, I divided up the fluid using the following guidelines. The top and bottom surfaces
of the profile were each divided into 1,000 short segments, of equal length along the reference chord.
Since the arc length of the top surface is about six inches, the resulting segments have lengths of 0.006
inches, or about 0.15 millimeters. These segments will be the bases of the little triangles into which the
cross-section of the fluid in the wind tunnel is divided, at least along the surface of the airfoil.

The two-meter length of each side of the main perimeter of the wind tunnel was divided into 80 segments,
each of equal length, being 25 millimeters, or about one inch. These segments will be the sides of the
triangles in the grid which border the edge of the wind tunnel.

Because we are assuming that the waterflow is the same at each section along the long axis of the blade,
we will be simulating the flow in only two dimensions, looking at its pattern in a typical X-¥ plane. It is
not necessary that we divide the fluid along the Z-axis. In fact, the three-dimensional fluid in the wind
tunnel is going to be divided up into little triangular prisms, whose cross-sections in the X-¥ plane are the
triangles I have just described. The following figures are pictures of the grid | used for the case when the
angle of attack is set to 15°. Note that the same grid can be used for any waterflow speed. The first

picture shows the grid, also called the "mesh", in the vicinity of the leading edge.
b SUVAVASE < OSSR KRR BRRIS>™
DR R e

NS EUE S s

A
L
v

% 7 > R Ry
S R PN e LT b B A B AT
i AN e e S iy SV ATy g
TN v g AN Y AV A FosTAS Py v AV Y Kaary
VAN A‘g% .‘yﬂum R S R R A P IR R S P B oo,
/ = A (VAWATATAY Lo b AT A A e ST o B ANy T P
WATA ' e S A e D N N R e I A R A e D L T
I A B A B STy A N v
D N D e S B T T e s S Sy
NG D T S R

A

S AT I S e s

K N R e PR DR A A RO B S
N

S i 3
SRS e

S oy
N]
KOERI
iuy!YAV.b.
s
RSP
RS
S
7

5
X
A

1%
.

Y
IS

-
Al
VAV
sl
7,
i

] A N Kl

AN, v sy AWy A S g AT g AT N ST 6 o S S AT S
A VAN VA AVaVAvey Nra Y AN E VA o Vv viva iy Ao raTa Y SO AT (B s, STamii Ty

: AV VA RIATAVAYY N ATANETALS A vaTAvayay,y

DA AN AR PSSR N SA A A SAN LTSS

/ v'»‘ NV = oA TAVATLVAVSY]
1 L) %Wgﬁ%g?%f‘ £ R AR R

y .t I v

</ L7 RN KA AR v B

S O R S R R ot S S T o S

The next picture shows the grid around the profile.

LA N A
s

A picture showing the mesh across the whole wind tunnel is not informative. The size of the triangles,
which are the triangular prisms seen in cross-section in these two pictures, is just too small for them to be
resolved on a piece of paper. This mesh has about 550,000 triangles, which is not very large as these
things go. Often, meshes require ten million or more elements.

The grid was constructed using a meshing program called "GMesh". GMesh is available on the internet
as a free download. GMesh takes a text file prepared by the user and produces a three-dimensional mesh.
The text file describes the geometry of the situation. For the yuloh, | prepared the text file with the help
of a Visual Basic routine. For the sake of completeness, | have attached hereto as Appendix "D" a copy
of the Visual Basic program which writes the text file GMesh uses as its data.

Let's move on. We need to consider the properties of the fluid. There are differences between sea water,
lake water, river water, and so on. These differences are less significant than many of the other factors for
which we have made assumptions or will be making assumptions. Therefore, | have used standard values
quoted for the properties of water, which likely means fresh, pure water.

The two most important properties are the density and the viscosity. The density of water is 1,000 kg/m®.
The density is a nice round number. There is a historical reason for this. When early physicists began to
guantify the relationship between physical volumes and mass, the substance they chose to use as a
standard happened to be water. The symbol p, which is the Greek letter "rho", is usually used for density.

The most commonly used measure of viscosity is the "dynamic viscosity", usually represented by the

symbol y, the Greek letter "mu”. The following table compares the dynamic viscosity of motor oil, water
and air, all at room temperature.

~28~

Fluid Dynamic viscosity, Ns/m?

Motor oil 0.250
Water 0.001002
Air 0.0000173

Water is about 60 times more viscous than air. Motor oil is about 250 times more viscous than water.

In fluid dynamics, a variation of viscosity called the "kinematic viscosity" is frequently seen. It is defined
as the dynamic viscosity divided by the density. It is usually represented by the symbol v, the Greek
letter "nu". Since the density of water is 1,000, the kinematic viscosity of water is one-thousandth of its
dynamic viscosity. (Readers should note that, from this point on in this paper, | will be using S.I. units
rather than English units.)

Viscosity is highly dependent on temperature. The following tables sets out the viscosity of water at 5°C
and 20°C, which bound the range of water temperatures in which yulohs will likely be employed.

Temperature Dynamic viscosity u Kinematic viscosity v
5°C 0.001519 Ns/m? 1.519 X 10~ m?/s
20°C 0.001002 Ns/m? 1.004 X 10~ m?/s

Note that the viscosity varies by 50% over this quite narrow range of temperatures. Selecting the water
temperature is probably more important than specifying whether the water is sea water or fresh water.

Let's talk for a minute about the type of fluid flow we can expect to find around the yuloh. Fluid flows
around similar objects are frequently compared using their Reynolds numbers, named after the man who
discovered the usefulness of said number. Airfoils are usually compared using a Reynolds number
defined as:

Ve pVc
Re=—=—— (11)
v U

where V is the speed of the fluid, v is the kinematic viscosity of the fluid and ¢ is the length of the chord
of the airfoil. (The chord is the length of the line segment connecting the leading edge to the tailing
edge.) Before substituting values, let me say that the Reynolds number is the quotient obtained by
dividing a measure of the inertial forces exerted on an airfoil by a measure of the viscous forces exerted
on the airfoil. Inertial forces are those which affect the airfoil's momentum. Viscous forces are those
which arise from the friction between the airfoil and the fluid.

Let's consider a small private aircraft cruising at 140 (statute) miles per hour, which is equivalent to 62.6
meters per second. It's wing has a chord length of six feet, or 1.83 meters. It is flying near sea level
through air which has a dynamic viscosity of 1.73 x 10™° Nm/s? and a density of 1.225 kg/m3. The
Reynolds number in this flight condition is:

1.225 kg/m3 X 62.6 m/s x 1.83 m
e =

1.73 X 10~5 Ns/m? = 8,100,000 (12)

~29 ~

As luck would have it, all of the dimensional units cancel each other out. Actually, luck has nothing to do
with it. This was Reynolds great insight -- that dividing an inertial force by a viscous force would leave a
dimensionless number.

The Reynolds number of a 747's airfoil is larger than this, but not by as much as you might think. The
747 flies faster and has a wider wing. Both of these increases appear in the numerator of the defined
expression and cause the Reynolds number to increase. But, 747s cruise at a high altitude where the
density of the air is quite a bit lower. This decrease also appears in the numerator, and tends to offset the
other increases. The Reynolds number of a 747 is probably 10,000,000.

Now, let's turn to the yuloh. The mid-point of the range of speeds we will look at is four feet per second,
equivalent to 1.22 meters per second. The chord length is 5.93 inches, or 0.151 meters. We will assume
the water temperature is 12.5°C and use the mid-point value from the table for the kinematic viscosity,
1.26 x 107% m?/s. We can then compute the Reynolds number as:

Re — 1.22m/sx0.151m 150,000 (13
¢ T 126x105mz/s (13)

This number is significantly smaller than that of the light aircraft -- less than two percent as much. The
smaller Reynolds number merits an interpretation. The Reynolds number of the yuloh is smaller because
the viscous forces (in the denominator) are relatively more important, and thus bigger, than the inertial
forces (in the numerator). The effects of viscosity are about 50 times more important in the dynamics of a
yuloh than they are in the dynamics of a light aircraft. The greater importance of the viscosity will
manifest itself in such things as greater surface friction, more and larger vortices and so on. Not for
nothing do canoers enjoy peeling vortices off the sides of their paddles. And Yulohers, too.

Because of the importance of viscous effects, we are going to have to use a CFD model which takes them
into account. Readers should understand from this statement that users can choose CFD models which
include some effects and exclude others. The Navier-Stokes equations are the bedrock of fluid dynamics.
They are a comprehensive set of partial differential equations which account for the effects of space, time
and viscosity. There are other formulations, too, but the one presented by Messrs. Navier and Stokes
remains the most-commonly used one. The equations are virtually impossible to apply in closed form to
any but the simplest problems. The partial differential equations can be discretized, but a host of
numerical frustrations often make themselves known. Computers are not yet big or fast enough to permit
one to grasp the holy grail, known as Direct Numerical Simulation ("DNS"), in which the size of elements
in the mesh are reduced almost to the molecular level. Current computer capacity still requires the user to
give up some aspect of the problem, such as changes taking place through time, in exchange for a
sufficiently accurate representation of other aspects, such as the spatial dependence of a flow.

I have already given up two aspects of the problem, time and the third dimension. We are going to model
the water flow as if was steady and does not change with time. By assuming that the blade is infinitely
long, we also limit our attention to the two spatial dimensions in which the more interesting flow occurs.
The component of the water flow along the long axis of the blade will be ignored.

The CFD model we use must include viscosity. For the simulations of the yuloh, I chose to use the
Spalart-Allmaras model, named for the two investigators who pioneered its use. It is said to be good for
two-dimensional flows like that we are looking at. Their model uses a parameter ¥ which is stored in the
variable nuTilda. Itis related to the kinematic viscosity v but is not exactly equal to the kinematic
viscosity. The independent variables in a Spalart-Allmaras model are nuTi 1da, the pressure and the two

~30~

components of the fluid's velocity vector. OpenFoam always simulates three dimensional velocities, but
the third component can be zero, and will be zero when the geometry of the problem is so set.

The only other important parameters required to use OpenFoam are the specifications of the types of
boundaries which surround the fluid. Although it is obvious, one sometimes loses sight of the fact that
what is being simulated is the fluid in the wind tunnel, not the object. To be precise, the fluid in our wind
tunnel is not simply a rectangular parallelepiped surrounded by six sides. The parallelepiped has a hole in
it, from the left side to the right side, in the shape of the blade's profile. The fluid is bounded by 2,006
plane surfaces, where the extra 2,000 surfaces consist of 1,000 rectangles which define the top surface
and 1,000 rectangles which define the bottom surfaces. Both the top and bottom surfaces have been
discretized into 1,000 short line segments, which approximate the shape of the profile. When it is
extruded from one side of the wind tunnel to the other, each such line segment sweeps out a small
rectangle.

Specifying the types of these 2,006 boundaries is important. The right and left walls of the wind tunnel
have the type "empty". This means that the CFD routine does not do any calculations on these two
surfaces. That is what we want when we want the third dimension of the geometry -- the Z-axis -- to be
infinite and unchanging in both directions.

The upstream and downstream faces of the wind tunnel have the type "patch”. They are faces on which
we have to specify some properties of the fluid that passes through them. The upstream face is called the
"inlet". We will specify the fluid's velocity everywhere on this face. In our problem, the velocity will be
uniform across this face, at four feet per second or six feet per second, or whatever speed we select. Of
course, all quantities are expressed in S.1. units, not English units. The downstream face of the wind
tunnel is called the "outlet”. We will specify the fluid's pressure everywhere on this face. In our problem,
the pressure will be uniform across this face. Interestingly, we call set an arbitrary value for the pressure
across this face. For convenience, we will set the pressure here to zero. Let me explain why the
numerical value we select does not matter and need not be the absolute pressure one would measure there
using a manometer. The net force which the fluid exerts on the airfoil arises from differences in the
pressure on one side relative to that on the other. It is the difference in pressure from point to point along
the surface, and not the absolute pressure, which determines the force. Adding or subtracting a constant
pressure everywhere throughout the fluid does not change the differences and therefore does not change
the computation of the physical force in which we are interested. Notionally, we are simply subtracting a
fixed amount of pressure (in an unknown amount) from the pressure everywhere in the fluid so that the
pressure across the downstream outlet has the numerical value zero. The numerical procedure will do
what it has to do to ensure that the oncoming speed of the water is uniform across the inlet and that the
pressure is uniform across the outlet.

The top and bottom of the wind tunnel have the type "symmetryPlane". A symmetry plane is one across
which the properties of the fluid do not change. If the pressure has some value at a point just below the
top face of the wind tunnel, it will have the same value just above the wind tunnel at that same X-Z co-
ordinate. If the velocity of the fluid has some value at a point just above the bottom face of the wind
tunnel, it will have the same value just below the wind tunnel at that same X-Z co-ordinate. That the face
is a symmetry plane does not mean that the properties of the fluid must be the same everywhere on the
face, just that they are pointwise the same across the face. This is a sufficient boundary constraint for our
analysis even though it is less restrictive than a condition that would specifically set the velocity and
pressure everywhere on the face. The latter specification would succeed, but it is easier for the
calculations to have some flexibility.

Lastly, we have to deal with the 2,000 rectangles which define the surface of the airfoil. They have the
type "wall". As the name suggests, they are physical walls over which the fluid moves. Or not. Indeed,

~31~

the principal feature we will specify for the walls is a "no slip” condition. The water cannot slide along
the surface -- viscosity prevents that. Instead, a boundary layer will form. | have listed in Appendix "B"
the ten text files which contain the information OpenFoam was given for the base case in this analysis.
For certainty's sake, let me re-state that the base case consists of a blade carved from a stock piece of

2 x 6 lumber, at an angle of attack of 15° in water with a relative speed of four feet per second and a
temperature of 12.5°C.

The following figure shows the progress of convergence during the simulation of the base case.

X Gnuplot (window id : 0)

H P@H@@Q@Q |\ ?

Case directory is /home/jim/Desktop/Yulohl

0.16 - : : : --25
0.1 oz ol Mg sweisin e < £3
0.12 - -3.5
0.1+ N - -4
PRes (R) e ; : :
0.04 |- nuTRes (R) i --5.5
D[— Ex\ (1) _ — -6.5
Fyv (L) —— : : : : z
-0.02 | | | | | | | -7
0 1000 2000 3000 4000 5000 6000 7000 8000

Time or iteration

The procedure converged, almost monotonically, in about 7,200 iterations. By convergence, | mean that
the simulation was ended when the fractional differences in all four independent variables were less than
1 x 10™° from one iteration to the next.

The following figure is a picture of the streamlines around the airfoil in the base case.

There is some serious separation of flow at about 60% of chord. The airfoil is quite blunt. It has a
thickness ratio of 1.25"/5.93", or 21%.

The following picture shows the streamlines at an angle of attack of 5° and the same water speed: four
feet per second. There is still separation, but it does not commence until about 75% of chord. Likely,
redusing the thickness will alleviate some of the stall.

The following picture shows the streamlines at an angle of attack of 30° but a different water speed: six
feet per second. This is intended to represent the conditions near the tip of the blade.

At 30°, the blade is not really functioning as an airfoil at all. The water separates from the top surface as
soon as it is able to go straight downstream.

Conclusion: A 30° angle of attack is simply ineffective. The kinematic analysis we did above suggests
that the angle of attack at the tip of the blade is about 10° greater than the angle of attack at
the stock (the inboard end of the blade). We should probably aim for an angle of attack of
15° at the tip and 5° at the stock.

It is easy to see that the cross-section we have been using is too thick. As an alternative to carving the
blade from a stock piece of 2 x 6 lumber, let's assume instead that we shape it from a stock piece of 1 X 6
lumber. The true dimensions of 1 x 6 lumber are %" x 5%". The following picture shows the
streamlines of this thiner blade at a 5° angle of attack.

~33~

This is much more satisfactory. (However, there is more to determining the success of an airfoil than
looking at streamtracers. We have not yet looked at the quanta of the forces, which is a vital ingredient.
Even so, it is clear from this picture that this blade is more efficient than the thicker ones we looked at
above.) The following picture shows the streamlines at a 15° angle of attack. Even though this is
intended to represent the tip of the blade, I still used a water speed of four feet per second in the
simulation for the next picture.

There is still separation. Whether it is "too much™ I cannot say. It is, however, much better than the
patterns at 15° and 30° using the thicker airfoil.

Incidentally, the simulation of this thinner 1 x 6 blade at a 30° angle of attack did not converge. |
terminated the simulation after about 30,000 iterations. The residuals oscillated with a period of about
5,000 iterations. Such oscillations of the residuals are a good indication that the flow is unstable, and that
the procedure is having trouble determining whether the flow is separated or not. A quick look at the
pattern of streamlines which existed when | terminated the simulation shows that the flow separated at the
leading edge. The curved top surface of the blade was not exerting any control over the airflow. It does
not matter whether this simulation would ultimately have converged or not -- it was plain that the blade
would not be useful at a 30° angle of attack.

I next wanted to explore whether changes to the bottom of the blade, which up until this point has been
the flat rear side, might help. Since the Visual Basic program which writes the text file for GMesh
already includes the necessary code to draw a circular profile, | decided to give the bottom surface of the
blade a circular profile as well. | considered two alternatives. One alternative had the bottom surface
protruding from the blade, in other words, being a convex surface. In the second, | created a trough in the
bottom by making the circular surface concave. The following pictures show the shape of the bottom

~34 ~

surface as well as the pattern of streamlines. In both cases, | used a thickness of one-quarter inch for the
bottom surface, which made it one-third of the thickness of the top surface. In both case shown now, the
angle of attack is 15° and the water speed is four feet per second.

The following picture shows the streamlines around the blade with the convex bottom surface.

It is not immediately clear from the pictures which of the convex or concave surfaces is better, or whether
either is better than the flat surface. The following analysis suggests that the concave surface is superior.

Now, it is time to look at the magnitude of the forces. OpenFoam returns two types of forces: pressure-
induced forces and viscosity-induced forces. The former arise from the static pressure exerted by the
water on the surfaces. The latter arise from friction as water is forced to slide along the surfaces. Both
sets of forces depend only on the water conditions on the very surface of the blade. What the water does
even a small distance away from the surface is irrelevant except insofar as it affects what happens on the
actual surface itself. The total force on the airfoil is the vector sum of the two types of forces. OpenFoam
reports the magnitudes in all three spatial dimensions. In our case, since we are doing a two-dimensional
study only, the forces calculated by OpenFoam in the Z-direction, which is along the long axis of the
yuloh, are zero.

I have set out in Appendix "C" attached the detailed results. Since OpenFoam does its calculations in S.1.
units, it reports forces in units of Newtons. A Newton of force has about the same "heft" as the weight of
the paddy in a McDonald's quarter-pounder. The results | will describe in the next few paragraphs are in
pounds (of force), each one of which is 4.45 Newtons.

~ 35~

To give some idea of what we are talking about, the following table sets out the magnitudes of the forces
in the base case.

Angle | pressure forces | Viscous forces | Total forces L/D
Blade | Speed of _ _ _ _ _ _ ti

attack b ? £ ? £ p | o
2X6 4 fps 15° 4.0 33.2 0.2 0 4.4 33.2 7.5

The components of force reported in the table are per meter of span-wise length of the blade. Remember
that we set up the wind tunnel so that is was only one millimeter thick. If we multiply the forces
computed by OpenFoam by a factor of 1,000, we get the forces which would be exerted on a one-meter
long section of the blade. The viscous forces are quite small compared with the pressure forces.
Although the sliding friction is not that large, it has a vital influence on the pattern of the flow, which in
turn determines the static pressure.

OpenFoam reports components in the X- and Y-axes, which are not the same as the axes we used in the

analyses above. It is enough for our purposes to know that the X-axis is the one which points straight in
the direction in which the unaffected water far upstream is flowing. The Y-direction is perpendicular to
this, pointing towards the curved top surface.

Let me flog this point. It is important to bear in mind that the two OpenFoam axes are not the same as the
%6 and 9, axes which are fixed to the yuloh's blade. Roughly speaking, though, the X-direction forces are
the ones which retard the motion of the blade through the water. They represent the drag which the blade
must overcome, or more precisely which the operator must overcome, to cause the blade to move through
the water. We assumed above that the blade is five feet long. That is equivalent to about 1.52 meters. If
the drag force is 4.4 pounds per meter length (from the table), then the drag on the blade would be 1.52
times that, or 6.7 pounds. If the effective distance from the fulcrum to the center of pressure of the blade
is three times greater than the effective distance from the fulcrum to the center-of-effort of the operator,
then the operator will need to exert 3 X 6.7 = 20.1 pounds of force on the loom to cause the blade to
move.

Now, look at the lift force, 33.2 pounds. The lift force is 7.5 times greater than the drag force. This is the
mystery and beauty of an airfoil. The blade generates lift many multiples greater than the force required
to move it through the water. True, this lift is not all acting in the direction we would wish. Ideally, all of
the lift would act in the direction of the boat's path. Since the yuloh is angled downwards, a significant
part of the lift acts downwards instead of ahead. We assumed above that the slant angle was 40°. At that
angle, only 64% of the lift acts forwards. (Aside: sin 40° = 0.643). Furthermore, the yuloh sweeps from
side-to-side, so a component of the lift is directed off-course at all times except when the yuloh is
amidships. Fortunately, the sweep angles are not that big -- we assumed a maximum of 12.4° -- so the
component of lift lost in yawing the boat is not that large.

The ideal yuloh would have a high lift-to-drag ratio ("L/D"), which would mean it is efficient, but it also
needs to have forces with suitable magnitudes. The operator has to overcome the drag force, which
cannot be made unmanageably large. Nor can it be made too small. As a yuloh designer, we have pretty
good control over the magnitude of the forces. If we need to increase the forces, we can always make the
yuloh longer or, perhaps, make the blade wider. The blade cannot be made too long, though. The longer
we make the blade the greater the difference between the angles of attack at the tip and stock. The
expected depth of the waterway may also impose a practical limit on the length of the yuloh.

~36 ~

The following chart compares the total lift and total drag forces for the three cases in which the 2 X 6
blade was tested.

Lift (pounds)
A
75
A.A.=30°; 6 fps
50
A.A.=15°; 4 fps
s [/
A.A.=5°% 4 1ps
0 . Drag
! ' " (pounds
0 25 (p)

The steepness of the lines is proportional to the lift-to-drag ratio. A steeper line is better. As is usually
the case, the magnitudes of the forces generally increase as the angle of attack increases. (Note that a
contributor to the greater forces in the 30° case comes from the higher water speed, six feet per second
rather than only four feet per second.) Even though the flow at the 30° angle of attack results in much
bigger forces, it is much less efficient. The lift force is only about 2.5 times the drag force. Although I
derided this pattern of flow, and pointed out its early separation, it nevertheless produces a lot more lift
than do the lower angles of attack. The following chart shows the lift and drag forces which the 1 x 6
blade generates. Lift (pounds)

A

3759 A.A.=15°: concave bottom BEST
A.A.=15°; flat bottom BETTER
25 A.A.=15°; convex bottom GOOD
A.A.=5°; flat bottom Ar
12.5
0 . Drag
! ' (pounds)

0 125

The airfoil is more efficient at an angle of attack of 5° than at 15°. If we could, it would be nice just to
arrange things so the angle of attack would be 5° all along the blade. But, we cannot. The geometry of
the situation is such that the angle at the tip is going to be near 15° whether we like it or not. It looks like
the conditions at the tip are going to be the determining factor in selecting a profile.

The flat bottom, convex botton and concave bottom all have about the same efficiency. But the
magnitude of the lift generated by the concave profile is clearly the best.

Where do we go from here?

I am interested in the yuloh as propulsion for a Wayfarer and intend to make a test yuloh. The following
figure is a fairly accurate side view of the Wayfarer. In the cockpit stands a 510" man, who happens to
be the same height as me.

person 5'10" tall

1'x 1' square

21 31" 4'0") 6'0"

pivot #1 fulcrum pivot #2

To be conservative, | have left the man standing on the bottom of the boat. Anythng which would raise
him up, like floor boards, would help to steepen the yuloh, but | do not want to consider such
enhancements at this early stage.

I have marked with a green rectangle the spot on the man's torso where the loom should cross him. The
fulcrum, marked with one of the blue dots, will be mounted on the transom so the yuloh just clears the
traveler rack. These considertions establish the slope the yuloh must take. The yuloh will clear the
rudder by a good margin. It will be handy to be able to deploy the yuloh whilst leaving the rudder in its
pintles. These considerations, plus the desired length of the blade under water, also establish the total
length of the yuloh.

The horizontal object in red at the bottom of the figure is the yuloh lying flat. | am going to make the
blade six feet long, notwithstanding that the analysis was based on a five foot length. If necessary, it is
easier to cut a section off than to extend the blade. In addition to the fulcrum, I have shown two other
blue dots. In my test yuloh, | intend these to be single-axis hinges. 1 would like to experiment with
different angles. Adjustable hinges at the two points shown will permit various angles of droop and anti-
droop to be tested against various blade slant angles. The hinges will permit the sections to be adjusted in
the vertical plane, but not the horizontal plane. The hinge labeled pivot #1 will be immediately at the

~38 ~

sculler's aft hand. The hinge labeled pivot #2 will be as close as practical to the top of the blade, to
minimize the size of the cone swept out when the blade's twist angle is reversed at stroke ends.

January 2014
Jim Hawley

P.S. A couple of weeks in front of the computer screen, followed by a couple of days in the shop and a
couple of hours of testing, is no substitute for 4,000 years of Darwinian selection on the Yangtze
River.

P.P.S. The aborigines of Australia may have mastered aerodynamics with their boomerangs, but the
Chinese mastered hydrodynamics with their yulohs.

~39 ~

Appendix ""A"

Equations of an airfoil comprised of opposing circular arcs

Let's consider an airfoil which is symmetrical, and whose upper and lower surfaces are arcs of circles.
The figure here shows the circle which generates
the upper surface highlighted in red. Points A and
B are the leading and trailing edges. Which one is
which makes no difference since the airfoil is
symmetrical about its midpoint. The circle which
generates the upper surface of the profile has its
center at point C. Our goal is to develop the shape
which: (i) has a specified chord length (distance
AB), for which | will use the symbol ¢ and (ii) has
a specified thickness (distance DE), for which |
will use the symbol d. All we need to calculate is
the radius r of the generating circle.

v
=

Once we have found the correct answer, then triangle CDB will be a right triangle whose three sides have
the lengths shown here. We can invoke the Pythagorean Theorem to write:

2
r? = (%c) +(r—-1t? (A1)
We can solve this for radius r using the following steps:

r? = Gc)z + (r—t)?2

- r2=202+r2—2rt+t2

- 2Tt=%62+t2

C2+t (A2)
- r=—+4—

8t 2

Let's try an example. Suppose we want an airfoil with a chord length of six inches (¢ = 6) and a
thickness of two inches (t = 2). The radius of the generating circle is four and one-quarter inches,
computed as follows:

2
+ > = 4.25 inches

In Cartesian co-ordinates x and y, the equation of a circle with radius r whose center is located at point
(x0, Vo) is (x — x¢)? + (v — y5)? = r2. We can insert the center of our generating circle (0,t —) to
write the equation of our generating circle as:

x>+ [y-@t-n]*=r* (43)

~ 40 ~

Often, we will want to draw the shape of the upper surface. To do this, one normally selects several
different points along the X-axis and, for each x-value, calculates the corresponding value of y. This is
done most efficiently if we re-arrange the equation for the circle as follows:

x4y — (=) =72
- [y—(t-PP =r—x?

- y—(t—r)=r?—x?

- y=yr2—-x?+t-r (44)

The same equations can be used to create a bottom surface for the profile. If the bottom is to be concave,
so that it has the same upward curve as the top surface, then the radius of the generating circle will be
larger than the radius of the generating circle for the top surface. Indeed, if the radius is made very large,
for example 1 x 1029, then the bottom surface will be flat. To construct a convex bottom surface, set the
offset y-values in Equation (A4) negative, so they fall below the reference chord line between the leading
and trailing edges.

~4]1 ~

Appendix "'B"
Control files for the base case OpenFoam simulation run

This appendix contains a listing of the ten files used to control the OpenFoam simulation of the base case.
The name of the “case directory" for the base case is Yuloh 4fps 15deg 2Byé6Blade. The 10 files are
located in the following sub-directories:

Yuloh 4fps 15deg 2By6Blade/
!
|--0/
.

| ——nut

| -—nuTilda

l--p

| --U

--constant/
\
| -——polyMesh/
\ \

| --boundary

\
| -—RASProperties
| -—transportProperties

—-—-system
| -—controlDict

| -—fvSchemes
| -——fvSolution

This directory structure does not name all of the files used or produced by an OpenFoam run, but the ten
files listed below would be sufficient to recreate the results.

Listing of file 0/nut

[e Cht —F o *\
| ========= \ \
I AN\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[\\ / 0 peration | Version: 2.1.1 \
\ AN\ / A nd | Web: www .OpenFOAM. org |
\ \\/ M anipulation | \
N\ K o o o */
FoamFile
{

version 2.0;

format ascii;

class volScalarField;

object nut;

}

// Set the freestream value of nut to one-tenth of nuTilda.
// If nuTilda = 0.001865, then nut = 0.0001865.

dimensions [02 -1 00 0 0];
internalField uniform 0.0001865;
boundaryField

~42 ~

Inlet
{
type freestream;
freestreamValue uniform 0.0001865;
}
Outlet
{
type freestream;
freestreamValue uniform 0.0001865;

}

RightWall
{
type empty;
}
LeftWall
{
type empty;
}
Top
{
type symmetryPlane;
}
Bottom
{
type symmetryPlane;

}

"Segment.*"

{
type nutUSpaldingWallFunction;

value uniform 0;

Listing of file 0/nuTilda

e Fe CHt —Fmmmm e *\
| ========= | |
[A\\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[\\ / 0 peration | Version: 2.1.1 |
| A\ / A nd | Web: www . OpenFOAM. org |
| \\/ M anipulation | |
* ___ */
FoamFile
{

version 2.0;

format ascii;

class volScalarField;

object nuTilda;

// Calculate nuTilda = sqgrt(l1.5) * UIl, where

// U 1.2192 m/s

// I = 0.025 is the estimated turbulent intensity

// 1 = 1 centimeter is the estimated length scale

// Then, nuTilda = 0.000373

// Set the freestream value of nuTilda to five times this.

dimensions [02 -1 000017
internalField uniform 0.001865;
boundaryField

~43 ~

Inlet
{
type

freestream;

freestreamValue uniform 0.001865;

}
Outlet

{
type

freestream;

freestreamValue uniform 0.001865;

}
RightWall
{

type
}
LeftWall
{

type
}
Top
{

type
}
Bottom
{

type
}
"Segment.*"

{

type fixedValue;
value uniform O;
}
}
Listing of file 0/p
R e *e Ot — Ko *
| ========= |
[\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
[\\ / 0 peration | Version: 2.1.1
| AN\ / A nd | Web: www .OpenFOAM. org
| \\/ M anipulation |
& o o
FoamFile
{
version 2.0;
format ascii;
class volScalarField;
object s

}
dimensions
internalField
boundaryField
{
Inlet
{
type
}
Outlet
{
type

empty;

empty;

symmetryPlane;

symmetryPlane;

[02 -2 000 0]
uniform 0;

zeroGradient;

fixedvalue;

~44 ~

value uniform 0;

}

RightWall
{
type empty;
}
LeftWall
{
type empty;
}
Top
{
type symmetryPlane;
}
Bottom
{
type symmetryPlane;

}

"Segment.*"

{

type zeroGradient;

}

}
Listing of file 0/U

e Fe CAt —F e *\
| ========= [|
[\\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[\ / 0 peration | Version: 2.1.1 |
| A\ / A nd | Web: www .OpenFOAM. org |
| \\/ M anipulation | |
K o */
FoamFile
{

version 2.0;

format ascii;

class volVectorField;

object U;

}

// 2 feet per second = 0.06096 m/s

// 4 feet per second = 1.2192 m/s
// 6 feet per second = 1.8288 m/s
dimensions [0O1 -1 000 0],

internalField uniform (1.2192 0 0);

boundaryField
{
Inlet
{
type fixedValue;
value uniform (1.2192 0 0);
}
Outlet
{
type zeroGradient;
}
RightWall
{
type empty;

~45 ~

}
LeftWall

{

type empty;
}
Top
{
type symmetryPlane;
}
Bottom
{
type symmetryPlane;

}

"Segment.*"

{
type fixedValue;
value uniform (0 0 0);

Partial listing of file constant/polyMesh/boundary

e Fe CAt —F o *\
| ========= | |
[\\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
I \\ / O peration | Version: 2.1.1 |
| \\ / A nd | Web: www.OpenFOAM. org |
| \\/ M anipulation | |
K e e e */
FoamFile
{

version 2.0;

format ascii;

class polyBoundaryMesh;

location "constant/polyMesh";

object boundary;

}

//*************************************//

2006
(

RightWall

{
type empty;
nFaces 553962;
startFace 829623;

}

LeftWall

{
type empty;
nFaces 553962;
startFace 1383585;

}

Top

{
type symmetryPlane;
nFaces 160;
startFace 1937547;

}

Outlet

{

~ 46 ~

type
nFaces
startFace

}

Bottom

{
type
nFaces
startFace

}

Inlet

{
type
nFaces
startFace

}

Segment.1l

{
type
nFaces
startFace

}

Segment.2

{
type
nFaces
startFace

}

[Records for Segment.3 through Segment.1998 removed from listing.]

Segment.1999
{

patch;
160;
1937707;

symmetryPlane;
160;
1937867;

patch;
160;
1938027;

wall;
1;
1938187;

wall;
1;
1938188;

type wall;
nFaces 1;
startFace 1940185;
}
Segment.2000
{
type wall;
nFaces 1;
startFace 1940186;
}
)
Listing of file constant/RASProperties
/* ________________________________ e CH4 = e *
| =====———= |
I \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
[\\ / 0 peration | Version: 2.1.1
\ AN\ / A nd | Web: www .OpenFOAM. org
\ \\/ M anipulation |
A\ o
FoamFile
{
version 2.0;
format ascii;
class dictionary;
location "constant";
object RASProperties;

~47 ~

}
RASModel SpalartAllmaras;

turbulence on;
printCoeffs on;
Listing of file constant/transportProperties

/* ________________________________ e CHd = F e *
| ========= |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
I\ / O peration | Version: 2.1.1
| A\ / A nd | Web: www . OpenFOAM. org
| \\/ M anipulation |
K e e e e o *
FoamFile
{

version 2.0;

format ascii;

class dictionary;

location "constant";

object transportProperties;
}
// Water
// Temperature Density----- Dynamic viscosity- Kinematic visc---
// 5.0 deg 1,000 kg/m”3 1.519x107-3 Ns/m”*2 1.519x10%-6 m"2/s

// 12.5 deg 1,000 kg/m”3 1.261x107-3 Ns/m"2 1.262x10"-6 m"2/s
// 20.0 deg 1,000 kg/m”3 1.002x107-3 Ns/m”*2 1.004x10%-6 m"2/s

transportModel Newtonian;
nu nu [0 2 -1 0
rho rho [1 -3 0

] 1.262E-6;

000
0000] 1000;

Listing of file system/controlDict

/* ________________________________ * e 44 e *
| ========= |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
I \\ / O peration | Version: 2.1.1
| \\ / A nd | Web: www.OpenFOAM. org
| \\/ M anipulation |
K e e *
FoamFile
{
version 2.0;
format ascii;
class dictionary;
object controlDict;
}
application simpleFoam;
startFrom latestTime;
startTime 0;
stopAt endTime;
endTime 100000;
deltaT 1;
writeControl timeStep;
writeInterval 250;
purgeWrite 3;
writeFormat ascii;

~ 48 ~

writePrecision 7;
writeCompression off;

timeFormat general;

timePrecision 6;
runTimeModifiable true;

!/

// Function to print forces exerted on a section of the blade.

//
functions
{
ForceOnBlade
{
type forces;
functionObjectLibs ("libforces.so");
patches (
"Segment.*"
)i
rhoName rhoInf;
pName P
UName U;
log true;
rhoInf 1000;
CofR (000);
outputControl timeStep;
outputInterval 1;
}
bi
Listing of file system/fvSchemes
/* ________________________________ e CH4 —F e *
| ========= |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
I \\ / O peration | Version: 2.1.1
| \\ / A nd | Web: www.OpenFOAM. org
| \\/ M anipulation |
K e e e
FoamFile
{
version 2.0;
format ascii;
class dictionary;
location "system";
object fvSchemes;
}
ddtSchemes
{
default steadyState;
}
gradSchemes
{
default Gauss linear;
grad (p) Gauss linear;
grad(U) Gauss linear;
}
divSchemes
{
default none;

~ 49 ~

div (phi, U) Gauss linearUpwind grad (U) ;

div (phi,nuTilda) Gauss linearUpwind grad(nuTilda) ;
div ((nuEff*dev (T (grad(U))))) Gauss linear;

}

laplacianSchemes

{
default none;
laplacian (nukEff, U) Gauss linear corrected;
laplacian((11A(U)),p) Gauss linear corrected;
laplacian(DnuTildaEff,nuTilda) Gauss linear corrected;
laplacian(1l,p) Gauss linear corrected;

}

interpolationSchemes

{

default linear;
interpolate (U) linear;
}
snGradSchemes
{
default corrected;
}
fluxRequired
{
default no;
P ;
}
Listing of file system/fvSolution
/* ________________________________ * e 44 e *
| ========= !
[\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
[\\ / O peration | Version: 2.1.1
| \\ / A nd | Web: www.OpenFOAM. org
| \\/ M anipulation |
|
FoamFile
{
version 2.0;
format ascii;
class dictionary;
location "system";
object fvSolution;
}
solvers
{
P
{
solver GAMG;
tolerance 1le-10;
relTol 0.05;
smoother GaussSeidel;
nPreSweeps 0;
nPostSweeps 2;

cacheAgglomeration true;
nCellsInCoarsestLevel 10;
agglomerator faceAreaPair;

~50~

mergelevels 1;
}
U
{
solver smoothSolver;
smoother GaussSeidel;
nSweeps 2;
tolerance le-10;
relTol 0.05;
}
nuTilda
{
solver smoothSolver;
smoother GaussSeidel;
nSweeps 2;
tolerance 1le-10;
relTol 0.05;
}
}
SIMPLE
{
nNonOrthogonalCorrectors 0;
pRefCell 0;
pRefValue 0;
residualControl
{
p le-5;
U le-5;
nuTilda le-5;

}

}

relaxationFactors

// Start with pRelax=0.3,

{

fields

{

}

P

equations

{

U
nuTilda

o O
0 J
Ne e

URelax=0.7 and nuRelax=0.

~51 ~

8

Appendix "'C"

Summary of numerical results from the OpenFoam simulation

Description of four blades:

Blade #1: Circular top surface inscribed within 5.93" x 1.5" rectangle; flat bottom surface.
Blade #2: Circular top surface inscribed within 5.93" x 0.75" rectangle; flat botom surface.
Blade #3: Same as Blade#2, with convex bottom surface 0.25" thick.

Blade #4: Same as Blade#2, with concave bottom surface 0.25" thick.

Forces are stated in Newtons per meter of long axis. X-direction is parallel to the relative wind far

upstream; Y-direction is perpendicular to the relative wind far upstream.

Angle

Pressure forces Viscous forces Total forces L/D
Blade | Speed of _ _ _ _ _ _ ratio
attack X Y X Y X Y
#1 4 fps 5° 94 91.1 2.1 0.3 115 91.4 7.9
#1 4 fps 15° 17.9 147.9 1.9 0 19.8 147.9 75
#1 6 fps 30° 128.8 327.4 0.9 -0.7 129.6 | 326.6 2.5
#2 4 fps 5° 3.6 103.9 2.1 0 5.7 103.9 18.2
#2 4 fps 15° 20.5 141.1 0.8 -0.2 21.3 140.8 6.6
#2 6 fps 30° D.N.C.
#2 4 fps 15° 18.1 113.6 1.0 -0.2 19.0 113.3 6.0
#2 4 fps 15° 23.1 164.5 0.7 -0.2 23.8 164.3 6.9

D.N.C. = did not converge.

The following table sets out the values of the dimensionless boundary layer thickness parameter y, for
the various simulations.

Blade speed Angle of Top surface Bottom surface
attack | miny. | maxy, | miny, | maxy,
#1 4 fps 5° 1.0 3.9 0.3 6.4
#1 4 fps 15° 0.7 4.5 0.2 6.7
#1 6 fps 30° 0.2 7.5 0.2 7.5
#2 4 fps 5° 1.3 4.7 0.2 5.2
#2 4 fps 15° 0.5 5.4 0.1 4.9
#2 6 fps 30° 0.3 7.4 0.1 6.0
#2 4 fps 15° 0.4 6.9 0.1 4.9
#2 4 fps 15° 0.8 5.6 0.1 5.0

~52 ~

Appendix "'D"*

Listing of program vB YulohGMesh

The following program was used to create a text file containing the instructions to be used by GMesh to
create the geometry of the virtual wind tunnel. It consists of a main form named Form1 and one module
named WriteGMeshFile. It was developed in Visual Basic Express 2010. A screenshot of the GUI is
shown after the listing.

Option Strict On
Option Explicit On

Sets up the .geo file for a 2D steady-state viscous simulation of a yuloh profile.

Public Class Forml
Inherits System.Windows.Forms.Form

Public Sub New()
InitializeComponent()
With Me

Name =
Text = "2D yuloh profile in a steady waterflow"

FormBorderStyle = Windows.Forms.FormBorderStyle.FixedSingle

Size = New Drawing.Size(1024, 7490)

CenterToScreen()

Visible = True

Controls.Add(buttonExecute) : buttonExecute.BringToFront()
Controls.Add(buttonExit) : buttonExit.BringToFront()
Controls.Add(labelChord) : labelChord.BringToFront()
Controls.Add(tbChord) : tbChord.BringToFront()
Controls.Add(labelTopSurfThick) : labelTopSurfThick.BringToFront()
Controls.Add(tbTopSurfThick) : tbTopSurfThick.BringToFront()
Controls.Add(labelBotSurfThick) : labelBotSurfThick.BringToFront()
Controls.Add(tbBotSurfThick) : tbBotSurfThick.BringToFront()
Controls.Add(labelTotalThick) : labelTotalThick.BringToFront()
Controls.Add(tbTotalThick) : tbTotalThick.BringToFront()
Controls.Add(labelTopSurfRadius) : labelTopSurfRadius.BringToFront()
Controls.Add(tbTopSurfRadius) : tbTopSurfRadius.BringToFront()
Controls.Add(labelBotSurfRadius) : labelBotSurfRadius.BringToFront()
Controls.Add(tbBotSurfRadius) : tbBotSurfRadius.BringToFront()
Controls.Add(labelAngle) : labelAngle.BringToFront()
Controls.Add(tbAngle) : tbAngle.BringToFront()
Controls.Add(OutputArea) : OutputArea.BringToFront()

PerformLayout()

End With

Initialization()
End Sub
II11117171771717
'// Data entry //
I111117177177717
Public ChordEU As Double = 5.93 " Length of chord, inches
Public TopSurfThickEU As Double = 1.5 ' Top surface thickness, inches
Public BotSurfThickEU As Double = © ' Bottom surface thickness, inches
Public TotalThickEU As Double " Total airfoil thickness
Public TopSurfRadiusEU As Double ' Radius of top surface circle, inches

~53 ~

Public BotSurfRadiusEU As Double ' Radius of bottom surface circle, inches
Public AngleAttackDeg As Double = 15 ' Angle of attack, degrees

I
'// Input variables in S.I. units //
YT

Public ChordSI As Double ' Length of chord, meters

Public TopSurfThickSI As Double ' Top surface thickness, meters

Public BotSurfThickSI As Double ' Bottom surface thickness, meters

Public TotalThickSI As Double ' Total airfoil thickness, meters

Public TopSurfRadiusSI As Double ' Radius of top surface circle, meters
Public BotSurfRadiusSI As Double ' Radius of bottom surface circle, meters
Public AngleAttackRad As Double ' Angle of attack, radians

Public RelSpeedSI As Double ' Relative speed, meters per second

IITTTIITTTTI T
'// Modeling paranmeters //
ITTTIITTTTI T

Public NumSeg As Int32 = 1000 ' Number of segments on each surface
Public NumPoints As Int32 = NumSeg + 1 ' Number of points on each surafce

T 771717777777

'// Definition of other variables //

T 7T T

Public Xtop(NumPoints) As Double ' X-co-ordinates of points on top surface
Public Ytop(NumPoints) As Double ' Y-co-ordinates of points on top surface
Public Xbot(NumPoints) As Double ' X-co-ordinates of points on bottom
Public Ybot(NumPoints) As Double ' Y-co-ordinates of points on bottom

U111

'// Conversion factors //

Y1111 711717777777717

Public MetersPerInch As Double = 2.54 / 100
Public MetersPerFoot As Double = 12 * 2.54 / 100
Public RadPerDeg As Double = Math.PI / 180

II1T117177771717777

'// Initialization //

1111111

Public Sub Initialization()
UpdateTheDisplayTextboxes()
OutputArea.Text = ""
Me.Refresh()

End Sub

NN NN ay sy
'// Controls
NN vy

Public labelChord As New Windows.Forms.lLabel With _
{.Size = New Drawing.Size(160, 20), _
.Location = New Drawing.Point(5, 5), _
.Text = "Chord (inch)", .TextAlign = ContentAlignment.MiddlelLeft}

Public WithEvents tbChord As New Windows.Forms.TextBox With _

{.Size = New Drawing.Size(80, 20), _
.Location = New Drawing.Point(17@, 5), _

~54 ~

.Text = "", .TextAlign = HorizontalAlignment.Left}

Public labelTopSurfThick As New Windows.Forms.Label With _
{.Size = New Drawing.Size(160, 20), _
.Location = New Drawing.Point(5, 30), _
.Text = "Top surface thickness (inch)", _
.TextAlign = ContentAlignment.MiddleLeft}

Public WithEvents tbTopSurfThick As New Windows.Forms.TextBox With _
{.Size = New Drawing.Size(80, 20), _
.Location = New Drawing.Point(170, 30), _
.Text = "", .TextAlign = HorizontalAlignment.Left}

Public labelBotSurfThick As New Windows.Forms.Label With _
{.Size = New Drawing.Size(160, 20), _
.Location = New Drawing.Point(5, 55), _
.Text = "Bottom surface thickness (inch)", _
.TextAlign = ContentAlignment.MiddleLeft}

Public WithEvents tbBotSurfThick As New Windows.Forms.TextBox With _
{.Size = New Drawing.Size(80, 20), _
.Location = New Drawing.Point(17@, 55), _
.Text = "", .TextAlign = HorizontalAlignment.Left}

Public labelTotalThick As New Windows.Forms.Label With _
{.Size = New Drawing.Size(160, 20), _
.Location = New Drawing.Point(5, 80), _
.Text = "Total thickness (inch)", _
.TextAlign = ContentAlignment.MiddleLeft}

Public tbTotalThick As New Windows.Forms.TextBox With _
{.Size = New Drawing.Size(80, 20), _
.Location = New Drawing.Point(170, 80), _
.Text = "", .TextAlign = HorizontalAlignment.Left, _
.Enabled = False}

Public labelTopSurfRadius As New Windows.Forms.Label With
{.Size = New Drawing.Size(160, 20), _
.Location = New Drawing.Point(5, 105), _
.Text = "Top surface radius (inch)", _
.TextAlign = ContentAlignment.MiddleLeft}

Public tbTopSurfRadius As New Windows.Forms.TextBox With _
{.Size = New Drawing.Size(80, 20), _
.Location = New Drawing.Point(170, 105), _
.Text = "", .TextAlign = HorizontalAlignment.Left, _
.Enabled = False}

Public labelBotSurfRadius As New Windows.Forms.Label With _
{.Size = New Drawing.Size(160, 20), _
.Location = New Drawing.Point(5, 130), _
.Text = "Bottom surface radius (inch)", _
.TextAlign = ContentAlignment.MiddleLeft}

Public tbBotSurfRadius As New Windows.Forms.TextBox With _
{.Size = New Drawing.Size(80, 20), _
.Location = New Drawing.Point(170, 130), _
.Text = "", .TextAlign = HorizontalAlignment.Left, _

~55 ~

.Enabled = False}

Public labelAngle As New Windows.Forms.lLabel With _
{.Size = New Drawing.Size(160, 20), _
.Location = New Drawing.Point(5, 155), _
.Text = "Angle (deg)", .TextAlign = ContentAlignment.MiddlelLeft}

Public tbAngle As New Windows.Forms.TextBox With _
{.Size = New Drawing.Size(80, 20), _
.Location = New Drawing.Point(170, 155), _
.Text = "", .TextAlign = HorizontalAlignment.Left}

Public WithEvents buttonExecute As New Windows.Forms.Button With _
{.Size = New Drawing.Size(245, 30), _
.Location = New Drawing.Point(5, 180), _
.Text = "Execute", _
.TextAlign = ContentAlignment.MiddleCenter}

Public WithEvents buttonExit As New Windows.Forms.Button With _
{.Size = New Drawing.Size(245, 30), _
.Location = New Drawing.Point(5, 215), _
.Text = "Exit", _
.TextAlign = ContentAlignment.MiddleCenter}

Public OutputArea As New Windows.Forms.lLabel With _
{.Size = New Drawing.Size(600, 300), _
.Location = New Drawing.Point(5, 250), _
.TextAlign = ContentAlignment.TopLeft, _
.BorderStyle = BorderStyle.FixedSingle}

ITTTITITITIT T 7177777777171 7777777777777 777777777777777777771777777777

'// Handlers for controls

YIIITTIITIT I I T2 0770777707777 7 777777777777 77777777777777777777777777177777777

Public Sub tbChord_Changed() Handles tbChord.TextChanged
If (ChordEU <> Val(tbChord.Text)) Then
ChordEU = Val(tbChord.Text)
UpdateTheDisplayTextboxes()
Me.Refresh()
End If
End Sub

Public Sub tbTopSurfThick_Changed() Handles tbTopSurfThick.TextChanged
If (TopSurfThickEU <> Val(tbTopSurfThick.Text)) Then
TopSurfThickEU = Val(tbTopSurfThick.Text)
UpdateTheDisplayTextboxes()
Me.Refresh()
End If
End Sub

Public Sub tbBotSurfThick_Changed() Handles tbBotSurfThick.TextChanged
If (BotSurfThickEU <> Val(tbBotSurfThick.Text)) Then
BotSurfThickEU = Val(tbBotSurfThick.Text)
UpdateTheDisplayTextboxes ()
Me.Refresh()
End If
End Sub

~56 ~

Public Sub buttonExecute_Click() Handles buttonExecute.MouseClick

' Convert input variables into SI units
ChordSI = ChordEU * MetersPerInch
TopSurfThickSI = TopSurfThickEU * MetersPerInch
BotSurfThickSI = BotSurfThickEU * MetersPerInch
TotalThickSI = TotalThickEU * MetersPerInch
TopSurfRadiusSI = TopSurfRadiuskU * MetersPerInch
BotSurfRadiusSI = BotSurfRadiuskEU * MetersPerInch
AngleAttackRad = AngleAttackDeg * RadPerDeg
' Calculate the points along the chord for offset co-ordinates
' The point (x, y) = (@, @) is the center of the flat bottom face.
Dim DeltaX As Double
DeltaX = ChordSI / NumSeg
For I As Int32 = 1 To NumPoints Step 1

Xtop(I) = (-0.5 * ChordSI) + ((I - 1) * DeltaX)

Xbot(I) = Xtop(I)
Next I

Generate the vector of points along the top surface

Dim Rtop As Double = TopSurfRadiusSI

Dim Ttop As Double = TopSurfThickSI

For I As Int32 = 1 To NumPoints Step 1
Ytop(I) = Math.Sqrt((Rtop * Rtop) - (Xtop(I) * Xtop(I))) + Ttop - Rtop

Next I

' Generate the vector of points along the bottom surface

Dim Rbot As Double = BotSurfRadiusSI

Dim Tbot As Double = BotSurfThickSI

For I As Int32 = 1 To NumPoints Step 1
Ybot(I) = Math.Sqrt((Rbot * Rbot) - (Xbot(I) * Xbot(I))) + Thot - Rbot
' Change algebraic sign to make concave (+) or convex (-) bottom.
Ybot(I) = Ybot(I)

Next I

' Rotate the surfaces to the given angle of attack

Dim SinAA As Double = Math.Sin(AngleAttackRad)

Dim CosAA As Double = Math.Cos(AngleAttackRad)

Dim Temp As Double

For I As Int32 = 1 To NumPoints Step 1
Temp = Xtop(I)
Temp = (Xtop(I) * CosAA) + (Ytop(I) * SinAA)
Ytop(I) = (Ytop(I) * CosAA) - (Xtop(I) * SinAA)
Xtop(I) = Temp
Temp = Xbot(I)
Temp = (Xbot(I) * CosAA) + (Ybot(I) * SinAA)
Ybot(I) = (Ybot(I) * CosAA) - (Xbot(I) * SinAA)
Xbot(I) = Temp

Next I

' Write the GMesh file
WriteGMeshFile.WriteGMeshFile(NumPoints, Xtop, Ytop, Xbot, Ybot)

Notify the user
OutputArea.Text = "All done"
End Sub

~57 ~

Public Sub buttonExit_Click() Handles buttonExit.MouseClick
Application.Exit()
End Sub

YIITTTTIITL TP I 727770777777 77 7777777777 77777777777777777717777717711717117717

'// Calculation subroutines
I LTI T

Public Function CalculateRadius(_
ByVal 1Chord As Double, _

ByVal 1Thick As Double) As Double
This subroutine calculates the radius of a generating circle given a chord

' length and the thickness of the segment of the circle.
If (1Thick = @) Then

CalculateRadius 1.0E+20

Else

CalculateRadius

End If
End Function

Public Sub UpdateTheDisplayTextboxes()

tbChord.Text = Trim(Str(ChordEU))
tbTopSurfThick.Text = Trim(Str(TopSurfThickEU))
tbBotSurfThick.Text = Trim(Str(BotSurfThickEU))
TotalThickEU = TopSurfThickEU + BotSurfThickEU
tbTotalThick.Text = Trim(Str(TotalThickEU))

TopSurfRadiustEU = CalculateRadius(ChordEU, TopSurfThickEU)

tbTopSurfRadius.Text = Trim(Str(TopSurfRadiusEU))

BotSurfRadiuskEU = CalculateRadius(ChordEU, BotSurfThickEU)

tbBotSurfRadius.Text = Trim(Str(BotSurfRadiusEU))

tbAngle.Text = Trim(Str(AngleAttackDeg))

End Sub

End Class

Option Strict On
Option Explicit On

Public Module WriteGMeshFile

NNy ayass
'// Wind tunnel parameters //

UL

Public
Public
Public
Public
Public
Public
Public

WTDistanceAhead As Double = 2
WTDistanceAstern As Double = 2
WTDistanceAbove As Double = 2
WTDistanceBelow As Double = 2
1cWT As Double = 0.025

1cYuloh As Double = 0.00025
WTHalfThick As Double = 0.0005

The wind tunnel ("WT") is positioned with

~58 ~

(1Chord * 1Chord / (8 * 1Thick)) + (1Thick / 2)

The X-Y co-ordinates of the surfaces which are passed as arguments to the
subroutine in this module include the rotation due to the angle of attack.

respect to the base center of the airfoil

Distance from O
Distance from O
Distance from O
Distance from O
Size of mesh on
Size of mesh on

to Inlet, meters

to Outlet, meters

to top of WT, meters

to bottom of WT, meters
WT, meters

Yuloh, meters

' Half-thickness of WT, mm

Public FileName As String = "Yuloh.geo.txt"
Public Filewriter As System.IO.StreamWriter

Y111 T
'// Definition of other variables //
Y11 T
' Yuloh reference indices

Public FirstPt As Int32

Public LastPt As Int32

Public FirstLn As Int32

Public LastLn As Int32

Public AirfoillineLoop As Int32

' Wind tunnel reference indices
Public FirstPtOnWT As Int32

Public FirstLnAlngWT As Int32

Public WTLineLoop As Int32

' Surface Loop reference indices
Public WTSurface As Int32

' Other variables

Public AngleAttackRad As Double

Public Sub WriteGMeshFile(_
ByVal NumPoints As Int32, _
ByVal Xtop() As Double, ByVal Ytop() As
ByVal Xbot() As Double, ByVal Ybot() As

' Step #1: Open the output file
Filewriter = New System.IO.StreamWriter

Step #2: Write header information to

Filewriter.Write(_

"// Yuloh in 2D waterflow" & vbCrLf
"Mesh.RandomFactor le-11;" & vbCr
"Geometry.AutoCoherence 1;" & vbC
"Geometry.HighlightOrphans 1;" &

"Geometry.MatchGeomAndMesh = 1;" &

"Geometry.SnapX = 0;" & vbCrLf & _

"Geometry.SnapY = 0;" & vbCrLf & _

"Geometry.SnapZ = 0;" & vbCrLf & _

"Geometry.Tolerance = le-15;" & vbC
"WTDistanceAhead = " & Trim(Str(WTD
"WTDistanceAstern = " & Trim(Str(WT
"WTDistanceAbove = " & Trim(Str(WTD
"WTDistanceBelow = " & Trim(Str(WTD

Name of output file

of
of
of
of
of

first Point

last Point

first Line

last Line

LineLoop around airfoil

Index
Index
Index
Index
Index

of
of
of

first Point on wind tunnel
first Line around WT
Line Loop around wind tunnel

Index
Index
Index
of

Index WT Plane Surface, right side

Double,
Double)

(FileName)
the output file

& _

Lf & _

rLf & _
vbCrLf & _
vbCrLf & _

rLf & vbCrLf & _

istanceAhead)) & ";" & vbCrLf &
DistanceAstern)) & ";" & vbCrLf
istanceAbove)) & ";" & vbCrLf & _
istanceBelow)) & ";" & vbCrLf & _

"IcWT = " & Trim(Str(lcWT)) & ";" & vbCrLf & _

"lcYuloh = " & Trim(Str(lcYuloh)) &
"WTHalfThick = " & Trim(Str(WTHalfT

Step #3: Points around the airfoil, r
FirstPt 1

LastPt 0

Filewriter.Write(_

"//" & vbCrLf & _

";" & vbCrLf & _
hick)) & ";" & vbCrLf)

ight side, clockwise from the LE

"// Points around the airfoil, right side, clockwise from the LE" & vbCrLf)

For I As Int32 1 To NumPoints Step 1
LastPt LastPt + 1

Filewriter.Write(_

~59 ~

"Point(" & Trim(Str(LastPt)) & ") = {" &
FormatNumber (Xtop(I), 12) & ", " &
FormatNumber(Ytop(I), 12) & ", " & _
"-WTHalfThick, lcYuloh};" & vbCrLf)

Next I
For I As Int32 = (NumPoints - 1) To 2 Step -1
LastPt = LastPt + 1
Filewriter.Write(_
"Point(" & Trim(Str(LastPt)) & ") = {" &
FormatNumber(Xbot(I), 12) & ", " & _
FormatNumber(Ybot(I), 12) & ", " & _
"-WTHalfThick, lcYuloh};" & vbCrLf)

Next I

' Step #4: Lines around the airfoil, right side, clockwise from the LE
FirstLn = LastPt + 1
LastLn = LastPt
Filewriter.Write(_
"//" & vbCrLf & _
"// Lines around the airfoil, right side, clockwise from LE" & vbCrLf)
For I As Int32 =1 To (2 * (NumPoints - 1)) Step 1
Dim PointIndexFrom As Int32
Dim PointIndexTo As Int32
LastLn = LastLn + 1
PointIndexFrom = FirstPt + I - 1
If (I <> (2 * (NumPoints - 1))) Then
PointIndexTo = FirstPt + I
Else
PointIndexTo = FirstPt
End If
Filewriter.Write(_
"Line(" & Trim(Str(LastLn)) & _
") = {" & Trim(Str(PointIndexFrom)) & _
", " & Trim(Str(PointIndexTo)) & "};" & vbCrLf)
Next I

' Step #5: Line Loop around the airfoil, right side, directed outwards
Filewriter.Write(_
"//" & vbCrLf & _
"// Line Loop around the airfoil, right side, directed outwards" & vbCrLf)
AirfoillinelLoop = LastlLn + 1
Dim NumbersAcrossPage As Int32 = 11
Filewriter.Write("Line Loop(" & Trim(Str(AirfoillLineLoop)) & ") = {")
For I As Int32 =1 To (2 * (NumPoints - 1)) Step 1
Dim LineIndex As Int32 = Firstln + I - 1
If (I <> (2 * (NumPoints - 1))) Then
If (NumbersAcrossPage > 10) Then
Filewriter.Write(vbCrLf & " " & Trim(Str(LineIndex)) & ",")
NumbersAcrossPage = 1
Else
Filewriter.Write(Trim(Str(LineIndex)) & ",")
NumbersAcrossPage = NumbersAcrossPage + 1
End If
Else
Filewriter.Write(Trim(Str(LineIndex)) & "};" & vbCrLf)
End If
Next I

~60~

Step #6: Points at the corners of the wind tunnel
Filewriter.Write(_

"//" & vbCrLf & _

"// Points at the corners of the wind tunnel” & vbCrLf)
FirstPtOnWT = LastPt + 1

Filewriter.Write("Point(" & Trim(Str(FirstPtOnWT)) & ") = " &
"{-WTDistanceAhead, WTDistanceAbove, -WTHalfThick, chT}," & vbCrLf)
Filewriter.Write("Point(" & Trim(Str(FirstPtOnWT + 1)) & ") = " &

"{WTDistanceAstern, WTDistanceAbove, -WTHalfThick, 1cWT};" & vbCrLf)

Filewriter.Write("Point(" & Trim(Str(FirstPtOnWT + 2)) & ") = " & _
"{WTDistanceAstern, -WTDistanceBelow, -WTHalfThick, 1cWT};" & vbCrLf)

Filewriter.Write("Point(" & Trim(Str(FirstPtOnWT + 3)) & ") = " & _
"{-WTDistanceAhead, -WTDistanceBelow, -WTHalfThick, 1cWT};" & vbCrLf)

' Step #7: Lines along the edges of the wind tunnel, clockwise
Filewriter.Write(_
"//" & vbCrLf & _
"// Lines along the edges of the wind tunnel, clockwise" & vbCrLf)
FirstLnAlngWT = AirfoillinelLoop + 1
Filewriter.Write("Line(" & Trim(Str(FirstLnAlngWT)) & ") = {" &
Trim(Str(FirstPtOnWT)) & ", " & _

Trim(Str(FirstPtOnWT + 1)) & "};" & vbCrLf)
Filewriter.Write("Line(" & Trim(Str(FirstLnAlngWT + 1)) & ") = {" & _

Trim(Str(FirstPtOnWT + 1)) & ", " & _

Trim(Str(FirstPtOnWT + 2)) & "};" & vbCrLf)
Filewriter.Write("Line(" & Trim(Str(FirstLnAlngWT + 2)) & ") = {" & _

Trim(Str(FirstPtOnWT + 2)) & ", " & _

Trim(Str(FirstPtOnWT + 3)) & "};" & vbCrLf)
Filewriter.Write("Line(" & Trim(Str(FirstLnAlngWT + 3)) & ") = {" & _

Trim(Str(FirstPtOnWT + 3)) & ", " & _
Trim(Str(FirstPtOnWT)) & "};" & vbCrLf)

' Step #8: Line Loop around the wind tunnel, directed outwards
Filewriter.Write(_

"//" & vbCrLf & _

"// Line Loop around the wind tunnel, directed outwards" & vbCrLf)
WTLineLoop = FirstLnAlngWT + 4
Filewriter.Write("Line Loop(" & Trim(Str(WTLineLoop)) & ") = {" & _

Trim(Str(FirstLnAlngWT)) & ", " & _

Trim(Str(FirstLnAlngWT + 1)) & ", " & _

Trim(Str(FirstLnAlngWT + 2)) & ", " & _

Trim(Str(FirstLnAlngWT + 3)) & "};" & vbCrLf)
' Step #9: Plane Surface on the wind tunnel, right side, directed outwards
Filewriter.Write(_

"//" & vbCrLf & _

"// Plane Surface on the wind tunnel, right side," & vbCrLf & _

"// excluding the hole left by the membrane." & vbCrLf)
WTSurface = WTLineLoop + 1
Filewriter.Write("Plane Surface(" & Trim(Str(WTSurface)) & ")

- (" &
Trim(Str(WTLineLoop)) & ", " & Trim(Str(AirfoillLineLoop)) & "};'

s

& vbCrLf)

YIITITITIITII I T I NI
N NN ay sy ayyays
'// Extrusion of the right-hand side into the left-hand side ////////////////////
S NNy NNy ayyyyyays
N NNy a Ny yays

~61 ~

' Step #10: Extrude the Plane Surface of the wind tunnel in the Z-direction
Filewriter.Write(_
"//" & vbCrLf & _
"// Extrude Plane Surface of the wind tunnel in the Z-direction" & vbCrLf)
Filewriter.Write("NewWT[] = " & _
"Extrude { @ , @ , 2 * WTHalfThick } {" & vbCrLf & _
Surface{" & Trim(Str(WTSurface)) & "};" & vbCrLf & _
Layers{1};" & vbCrLf & _
Recombine; };" & vbCrLf)

YIITITIIITI P27 1077777777770 7777777777 7177777777777771777777711777717
YIIITTIITIT T IT 7777777770707 7 0777777777 777777777777777777777777777771177
"// Define Physical Surfaces ////////////17/711177117177117711177/17711177111771117
O NNy,
YIIITTIITILT T I 7777707770777 7 0777777777 777777777777777777777777177771177

' Step #11: Define Physical Surfaces for OpenFoam's use
Filewriter.Write(_
"//" & vbCrLf & _
"// Physical Surfaces on Yuloh for OpenFoam's use" & vbCrLf)
For I As Int32 =1 To (2 * (NumPoints - 1)) Step 1
Filewriter.Write(_
"Physical Surface(""Segment." & Trim(Str(I)) & _
")y = { NewWT[" & Trim(Str(5 + I)) & "] };" & vbCrLf)
Next I

' Step #12: Define Physical Surfaces on the wind tunnel for OpenFoam's use
Filewriter.Write(_
"//" & vbCrLf & _
"// Physical Surfaces on the wind tunnel for OpenFoam's use" & vbCrLf)
Filewriter.Write(_
"Physical Surface(""LeftWall"") = { NewWT[O] };" & vbCrLf & _
"Physical Surface(""Top"") = { NewWT[2] };" & vbCrLf & _
"Physical Surface(""Outlet"") = { NewWT[3] };" & vbCrLf & _
"Physical Surface(""Bottom"") { NewWT[4] };" & vbCrLf & _
"Physical Surface(""Inlet"") = { NewWT[5] };" & vbCrLf & _
"Physical Surface(""RightWall"") = { " & _
Trim(Str(WTSurface)) & " };" & vbCrLf)

' Step #13: Define the Physical Volume for OpenFoam's use
Filewriter.Write(_

"//" & vbCrLf & _

"// Define the Physical Volume for OpenFoam's use" & vbCrLf)
Filewriter.Write("Physical Volume(""Internal"") = { NewWT[1] };" & vbCrLf)

' Step #14: Conclude
Filewriter.Close()
End Sub

End Module

~62 ~

2D yuloh profile in a steady waterflow

Chord (inch) 593
Top surface thickness (inch] 75

Bottom surface thickness (inch) lAU]

Total thickness (inch) 5

Top surface radius (inch)

Battom surface radius (inch)
Angle (deg) [15

I Execute]
[Exit]

All done

~ 63~

Appendix ""E""

Listing of program VB YulohKinematics

The following program was used to calculate and plot the kinematics of the blade's trajectory. It consists
of a main form named Form1 and two modules. The module named Trajectories calculates the
trajectories of a line segment across the flat side of the blade at a given cross-section. This is the routine
which produces the "falling leaf"-type plots. The module named anglesOfAttack calculates the
relative wind at points along the long axis of the blade. Both modules plot their results on a bitmap which
occupies most the the screen. The main form has two buttons. They execute the calculations. For each
button, there are subordinate buttons which determine the geometric plane used to display the results.

The program was developed in Visual Basic Express 2010. A screenshot of the GUI is shown after the
listing.

Option Strict On
Option Explicit On

' Calculates the time-trajectories of points on a Yuloh's blade

Public Class Forml
Inherits System.Windows.Forms.Form

Public Sub New()

InitializeComponent()

With Me
Name = ""
Text = "Trajectories of points on a Yuloh"
FormBorderStyle = Windows.Forms.FormBorderStyle.FixedSingle
Size = New Drawing.Size(1024, 7490)
CenterToScreen()
Visible = True
Controls.Add(buttonCalculateTrajectories)
buttonCalculateTrajectories.BringToFront()
Controls.Add(buttonPlotXY) : buttonPlotXY.BringToFront()
Controls.Add(buttonPlotYz) : buttonPlotYZ.BringToFront()
Controls.Add(buttonPlotXZ) : buttonPlotXZ.BringToFront()
Controls.Add(buttonCalculateAngles)
buttonCalculateAngles.BringToFront()
Controls.Add(buttonPlotlFrame) : buttonPlotlFrame.BringToFront()
Controls.Add(buttonPlot6Frame) : buttonPlot6Frame.BringToFront()
Controls.Add(buttonPlot6XZFrame) : buttonPlot6XZFrame.BringToFront()
Controls.Add(buttonPlot6YZFrame) : buttonPlot6YZFrame.BringToFront()
Controls.Add(PlotArea) : PlotArea.BringToFront()
Controls.Add(TextArea) : TextArea.BringToFront()
PerformLayout()

End With

Initialization()

End Sub

Public TextArea As New Windows.Forms.lLabel With _
{.Size = New Drawing.Size(950, 400), _
.Location = New Drawing.Point(10, 50)}

YIITIITIITTIT T

'// Initialization //
1111111171771

~64 ~

Public Sub Initialization()
End Sub

I LTI T
'// Controls
NNy aaasayyayi

Public WithEvents buttonCalculateTrajectories As New Windows.Forms.Button With _
{.Size = New Drawing.Size(150, 30), _
.Location = New Drawing.Point(5, 5), _
.Text = "Calculate trajectories", _
.TextAlign = ContentAlignment.MiddleCenter}

Public WithEvents buttonPlotXY As New Windows.Forms.Button With _
{.Size = New Drawing.Size(80, 30), _
.Location = New Drawing.Point(160, 5), _
.Text = "Plot XY plane", _
.TextAlign = ContentAlignment.MiddleCenter, _
.Enabled = False}

Public WithEvents buttonPlotYZ As New Windows.Forms.Button With _
{.Size = New Drawing.Size(80, 30), _
.Location = New Drawing.Point(245, 5), _
.Text = "Plot YZ plane", _
.TextAlign = ContentAlignment.MiddleCenter, _
.Enabled = False}

Public WithEvents buttonPlotXZ As New Windows.Forms.Button With _
{.Size = New Drawing.Size(80, 30), _
.Location = New Drawing.Point(330, 5), _
.Text = "Plot XZ plane", _
.TextAlign = ContentAlignment.MiddleCenter, _
.Enabled = False}

Public WithEvents buttonCalculateAngles As New Windows.Forms.Button With _
{.Size = New Drawing.Size(150, 30), _
.Location = New Drawing.Point(415, 5), _
.Text = "Calculate angles of attack", _
.TextAlign = ContentAlignment.MiddleCenter}

Public WithEvents buttonPlotlFrame As New Windows.Forms.Button With _
{.Size = New Drawing.Size(80, 30), _
.Location = New Drawing.Point(570, 5), _
.Text = "Plot 1 frame", _
.TextAlign = ContentAlignment.MiddleCenter, _
.Enabled = False}

Public WithEvents buttonPlot6Frame As New Windows.Forms.Button With _
{.Size = New Drawing.Size(80, 30), _
.Location = New Drawing.Point(655, 5), _
.Text = "Plot 6 frame", _
.TextAlign = ContentAlignment.MiddleCenter, _
.Enabled = False}

Public WithEvents buttonPlot6XZFrame As New Windows.Forms.Button With
{.Size = New Drawing.Size(80, 30), _
.Location = New Drawing.Point(740, 5), _
.Text = "Plot 6Xz", _

~65~

.TextAlign = ContentAlignment.MiddleCenter, _
.Enabled = False}

Public WithEvents buttonPlot6YZFrame As New Windows.Forms.Button With _
{.Size = New Drawing.Size(80, 30), _
.Location = New Drawing.Point(825, 5), _
.Text = "Plot 6YZ", _
.TextAlign = ContentAlignment.MiddleCenter, _
.Enabled = False}

Public PlotArea As New Windows.Forms.Panel With _
{.Size = New Drawing.Size(1000, 650), _
.Location = New Drawing.Point(5, 40), _
.BorderStyle = BorderStyle.FixedSingle}

Public PlotBitmap As New Bitmap(1000, 650)

YIIITTITI LTI T T L I T
'// Handlers

ITTTITITIIT T 7707777777717 7177777777777 777777777 7777777777777777777777

Public Sub buttonCalculateTrajectories_Click() Handles _
buttonCalculateTrajectories.MouseClick
CalculateTrajectories()
buttonPlotXZ.Enabled = True

buttonPlotYZ.Enabled = True
buttonPlotXY.Enabled = True
End Sub

Public Sub buttonPlotXY_Click() Handles buttonPlotXY.MouseClick
' Part A: Clear the graphics
Dim g As Graphics = Graphics.FromImage(PlotBitmap)
g.Clear(Color.White)
g.Dispose()

PlotArea.BackgroundImage = PlotBitmap
PlotArea.Refresh()
' Part B: Paint the Bitmap
Dim e As System.EventArgs
RenderTrajectories(_

PlotArea, e, PlotBitmap, "XY")

Part C: Display the Bitmap
PlotArea.BackgroundImage = PlotBitmap
PlotArea.Refresh()

End Sub

Public Sub buttonPlotYZ_Click() Handles buttonPlotYZ.MouseClick
' Part A: Clear the graphics
Dim g As Graphics = Graphics.FromImage(PlotBitmap)
g.Clear(Color.White)
g.Dispose()
PlotArea.BackgroundImage = PlotBitmap
PlotArea.Refresh()
' Part B: Paint the Bitmap
Dim e As System.EventArgs
RenderTrajectories(_

PlotArea, e, PlotBitmap, "YZ")
Part C: Display the Bitmap
PlotArea.BackgroundImage = PlotBitmap

~ 66 ~

PlotArea.Refresh()
End Sub

Public Sub buttonPlotXZ_Click() Handles buttonPlotXZ.MouseClick
' Part A: Clear the graphics
Dim g As Graphics = Graphics.FromImage(PlotBitmap)
g.Clear(Color.White)
g.Dispose()

PlotArea.BackgroundImage = PlotBitmap
PlotArea.Refresh()
' Part B: Paint the Bitmap
Dim e As System.EventArgs
RenderTrajectories(_

PlotArea, e, PlotBitmap, "XZ")

Part C: Display the Bitmap
PlotArea.BackgroundImage = PlotBitmap
PlotArea.Refresh()

End Sub

Public Sub buttonCalculateAngles_Click() Handles buttonCalculateAngles.MouseClick
CalculateAnglesOfAttack()
buttonPlotlFrame.Enabled = True
buttonPlot6Frame.Enabled = True
buttonPlot6XZFrame.Enabled = True
buttonPlot6YZFrame.Enabled = True
End Sub

Public Sub buttonPlotlFrame_Click() Handles buttonPlotlFrame.MouseClick
' Part A: Clear the graphics
Dim g As Graphics = Graphics.FromImage(PlotBitmap)
g.Clear(Color.White)
g.Dispose()

PlotArea.BackgroundImage = PlotBitmap

PlotArea.Refresh()

' Part B: Paint the Bitmap

Dim e As System.EventArgs

RenderAnglesOfAttackInlFrame(_
PlotArea, e, PlotBitmap)

Part C: Display the Bitmap
PlotArea.BackgroundImage = PlotBitmap
PlotArea.Refresh()

End Sub

Public Sub buttonPlot6Frame_Click() Handles buttonPlot6Frame.MouseClick
' Part A: Clear the graphics
Dim g As Graphics = Graphics.FromImage(PlotBitmap)
g.Clear(Color.White)
g.Dispose()

PlotArea.BackgroundImage = PlotBitmap

PlotArea.Refresh()

' Part B: Paint the Bitmap

Dim e As System.EventArgs

RenderAnglesOfAttackIn6Frame(_
PlotArea, e, PlotBitmap)

Part C: Display the Bitmap
PlotArea.BackgroundImage = PlotBitmap
PlotArea.Refresh()

End Sub

~67 ~

Public Sub buttonPlot6XZFrame_Click() Handles buttonPlot6XZFrame.MouseClick

Part A: Clear the graphics

Dim g As Graphics = Graphics.FromImage(PlotBitmap)
g.Clear(Color.White)

g.Dispose()

PlotArea.BackgroundImage = PlotBitmap
PlotArea.Refresh()

' Part B: Paint the Bitmap

Dim

e As System.EventArgs

RenderAnglesOfAttackIn6XZFrame(_

PlotArea, e, PlotBitmap)

Part C: Display the Bitmap

PlotArea.BackgroundImage = PlotBitmap
PlotArea.Refresh()

End Sub

Public Sub buttonPlot6YZFrame_Click() Handles buttonPlot6YZFrame.MouseClick

Part A: Clear the graphics

Dim g As Graphics = Graphics.FromImage(PlotBitmap)
g.Clear(Color.White)

g.Dispose()

PlotArea.BackgroundImage = PlotBitmap
PlotArea.Refresh()

' Part B: Paint the Bitmap

Dim

e As System.EventArgs

RenderAnglesOfAttackInéyZFrame(_

PlotArea, e, PlotBitmap)

Part C: Display the Bitmap

PlotArea.BackgroundImage = PlotBitmap
PlotArea.Refresh()

End Sub

End Class

Option Strict On
Option Explicit On

Public Module Trajectories

1111171117717717

'// Data entry //
“1111711111111117

Private D As Double = 9

Private PsiDeg As Double = 40
Private ThetaMax As Double = 12.4
Private PhiMax As Double = 45
Private V As Double = 2.35
Private THStroke As Double = 1
Private Ax6 As Double = 0

Private Ay6 As Double = -0.0417
Private Az6 As Double = +0.146
Private Bx6 As Double = 0

Private By6 As Double = -0.0417
Private Bz6 As Double = -0.146
Private NPerHStroke As Int32 = 1000
Private NHStrokes As Int32 =5

~68 ~

Translation down the Yuloh shaft, feet
Slant angle, deg

Maximum side-to-side deflection, deg
Maximum loom twist angle, deg

Boat speed, feet per second

Duration of half-stroke, seconds
X6-co-ordinates of point A
Y6-co-ordinates of point A
Z6-co-ordinates of point A
X6-co-ordinates of point B
Y6-co-ordinates of point B
Z6-co-ordinates of point B
Number of time steps per half stroke
Number of half-strokes to simulate

I

'// Stroke variables //

NI

Private CurrentStrk As String ' "p" or "S"

Private ThetaDot As Double = 2 * ThetaMax / THStroke ' Stroke speed, deg per sec
Private TimeInStroke As Double ' Time since start of stroke, seconds

IITTTITTTTT I

'// Definition of other variables //

UL

Private delT As Double = THStroke / NPerHStroke ' Duration of time step, seconds
Private NTotal As Int32 = NPerHStroke * NHStrokes ' Number of time steps

Private NCurrent As Int32 ' Number of current time step

Private PsiRad As Double ' Slant angle, radians

Private ThetaDeg As Double ' Side-to-side deflection, degrees
Private ThetaRad As Double ' Side-to-side deflection, radians
Private PhiDeg As Double ' Loom twist angle, degrees
Private PhiRad As Double ' Loom twist angle, radians

Private cosPsi, sinPsi As Double
Private cosTheta, sinTheta As Double
Private cosPhi, sinPhi As Double

Trigonometric function

Private T As Double ' Time, seconds

Private Ax1(NTotal) As Double ' X1-co-ordinates of point A
Private Ayl1(NTotal) As Double ' Yl-co-ordinates of point A
Private Az1(NTotal) As Double ' Zl-co-ordinates of point A
Private Bx1(NTotal) As Double ' X1-co-ordinates of point B
Private Byl(NTotal) As Double ' Yl-co-ordinates of point B
Private Bz1(NTotal) As Double ' Zl-co-ordinates of point B

Public Sub CalculateTrajectories()
' Intermediate matrix products
Dim Ax5, Bx5 As Double
Dim Ay5, By5 As Double
Dim Az5, Bz5 As Double
Dim Ax4, Bx4 As Double
Dim Ay4, By4 As Double
Dim Az4, Bz4 As Double
Dim Ax3, Bx3 As Double
Dim Ay3, By3 As Double
Dim Az3, Bz3 As Double
Dim Ax2, Bx2 As Double
Dim Ay2, By2 As Double
Dim Az2, Bz2 As Double
' Set initial conditions
CurrentStrk = "P"
NCurrent = ©
For Istroke As Int32 = 1 To NHStrokes Step 1
' Change sense of half stroke
If (CurrentStrk = "P") Then
CurrentStrk = "S"
Else
CurrentStrk
End If
For Jstep As Int32 = @ To (NPerHStroke - 1)
' Determine time in this half-stroke
TimeInStroke = Jstep * delT
Increment the master clock and the number of the current time step

npn

~069 ~

T=T+ delT

NCurrent = NCurrent + 1

' Calculate angles Theta and Phi, in degrees

If (CurrentStrk = "S") Then
ThetaDeg = -ThetaMax + (ThetaDot * TimeInStroke)
PhiDeg = +PhiMax

Else
ThetaDeg = +ThetaMax - (ThetaDot * TimeInStroke)
PhiDeg = -PhiMax

End If

' Convert all angles to radians

PsiRad = PsiDeg * Math.PI / 180

ThetaRad = ThetaDeg * Math.PI / 180

PhiRad = PhiDeg * Math.PI / 180

' Compute the trigonometric functions

cosPsi = Math.Cos(PsiRad)

sinPsi = Math.Sin(PsiRad)

cosTheta = Math.Cos(ThetaRad)

sinTheta = Math.Sin(ThetaRad)

cosPhi = Math.Cos(PhiRad)

sinPhi = Math.Sin(PhiRad)

' Transform from frame 6 to frame 5

AxX5 = Ax6 - D

Ay5 = Ay6

Az5 = Az6

Bx5 = Bx6 - D

By5 = By6

Bz5 = Bz6

' Transform from frame 5 to frame 4
Ax4 = Ax5

Ay4 = (cosPhi * Ay5) + (-sinPhi * Az5)
Az4 = (sinPhi * Ay5) + (cosPhi * Az5)
Bx4 = Bx5

By4 = (cosPhi * By5) + (-sinPhi * Bz5)

Bz4 = (sinPhi * By5) + (cosPhi * Bz5)

' Transform from frame 4 to frame 3

Ax3 = (cosTheta * Ax4) + (sinTheta * Az4)
Ay3 = Ay4

Az3 = (-sinTheta * Ax4) + (cosTheta * Az4)
Bx3 = (cosTheta * Bx4) + (sinTheta * Bz4)
By3 = By4

Bz3 = (-sinTheta * Bx4) + (cosTheta * Bz4)
' Transform from frame 3 to frame 2

Ax2 = (cosPsi * Ax3) + (-sinPsi * Ay3)

Ay2 = (sinPsi * Ax3) + (cosPsi * Ay3)
Az2 = Az3
Bx2 = (cosPsi * Bx3) + (-sinPsi * By3)

By2 = (sinPsi * Bx3) + (cosPsi * By3)
Bz2 = Bz3

' Transform from frame 2 to frame 1
Ax1(NCurrent) = Ax2 + (V * T)

Ay1(NCurrent) = Ay2
Az1(NCurrent) = Az2
Bx1(NCurrent) = Bx2 + (V * T)
Byl(NCurrent) = By2
Bz1(NCurrent) = Bz2

Next Jstep

Next Istroke

~70 ~

End Sub

Public Sub RenderTrajectories(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs, _
ByRef PlotBitmap As Bitmap, _
ByVal Plane As String)
' Find the extreme X- and Y- and Z-values, in feet
Dim xMax As Double = -1.0E+20
Dim xMin As Double = 1.0E+20
Dim yMax As Double = -1.0E+20
Dim yMin As Double = 1.0E+20
Dim zMax As Double = -1.0E+20
Dim zMin As Double = 1.0E+20
For I As Int32 1 To NTotal Step 1

If (Ax1(I) > xMax) Then xMax = Ax1(I)
If (Ax1(I) < xMin) Then xMin = Ax1(I)
If (Ayl(I) > yMax) Then yMax = Ayl1(I)
If (Ayl(I) < yMin) Then yMin = Ay1(I)
If (Az1(I) > zMax) Then zMax = Az1(I)
If (Az1(I) < zMin) Then zMin = Az1(I)
If (Bx1(I) > xMax) Then xMax = Bx1(I)
If (Bx1(I) < xMin) Then xMin = Bx1(I)
If (Byl(I) > yMax) Then yMax = Byl1(I)
If (Byl(I) < yMin) Then yMin = By1(I)
If (Bz1(I) > zMax) Then zMax = Bz1(I)
If (Bz1(I) < zMin) Then zMin = Bz1(I)
Next I

' Find the extreme overall distance
Dim MaxDistance As Double = -1.0E+20
If ((xMax - xMin) > MaxDistance) Then
MaxDistance = xMax - xMin
End If
If ((yMax - yMin) > MaxDistance) Then
MaxDistance = yMax - yMin
End If
If ((zMax - zMin) > MaxDistance) Then
MaxDistance = zMax - zMin
End If
' Calculate the appropriate scaling factor, in pixels per foot
' Leave a 5% margin all around the display.
Dim SFPixelsPerFoot As Double
SFPixelsPerFoot = 1000 / (1.1 * MaxDistance)
' Express the location and offset of the bitmap in feet
Dim bmLeftFeet As Double
Dim bmTopFeet As Double
Select Case Plane
Case "XY"
bmLeftFeet = xMin - (©.05 * MaxDistance)
bmTopFeet = Math.Max(@, yMax) + (0.05 * MaxDistance)
Case "YZ"
bmLeftFeet = zMin - (0.5 * MaxDistance)
bmTopFeet = Math.Max(@, yMax) + (0.05 * MaxDistance)
Case "XZ"
bmLeftFeet = xMin - (0.5 * MaxDistance)
bmTopFeet = zMax + (0.05 * MaxDistance)
End Select
' Define the graphics object

~71~

Dim
Dim
Dim

g As Graphics = Graphics.FromImage(PlotBitmap)
PlotPen As New Drawing.Pen(Color.Red, 2)
AxisPen As New Drawing.Pen(Color.Black, 2)

Draw the segments one-by-one starting from the first time step

Dim StartX As Double
Dim StartY As Double
Dim StopX As Double
Dim StopY As Double
For I As Int32 = 1 To NTotal Step 100
Select Case Plane
Case "XY"
StartX = (Ax1(I) - bmLeftFeet) * SFPixelsPerFoot
StartY = (bmTopFeet - Ayl(I)) * SFPixelsPerFoot
StopX = (Bx1(I) - bmLeftFeet) * SFPixelsPerFoot
StopY = (bmTopFeet - Byl(I)) * SFPixelsPerFoot
g.DrawLine(PlotPen, _
CSng(StartX), CSng(StartY), CSng(StopX), CSng(StopY))
Case "YZ"
StartX = (Az1(I) - bmLeftFeet) * SFPixelsPerFoot
StartY = (bmTopFeet - Ayl1(I)) * SFPixelsPerFoot
StopX = (Bz1(I) - bmLeftFeet) * SFPixelsPerFoot
StopY = (bmTopFeet - Byl(I)) * SFPixelsPerFoot
g.DrawLine(PlotPen, _
CSng(StartX), CSng(StartY), CSng(StopX), CSng(StopY))
Case "XZ"
StartX = (Ax1(I) - bmLeftFeet) * SFPixelsPerFoot
StartY = (bmTopFeet - Az1(I)) * SFPixelsPerFoot
StopX = (Bx1(I) - bmLeftFeet) * SFPixelsPerFoot
StopY = (bmTopFeet - Bz1(I)) * SFPixelsPerFoot
g.DrawLine(PlotPen, _
CSng(StartX), CSng(StartY), CSng(StopX), CSng(StopY))
End Select
Next I

Draw the horizontal axes

Select Case Plane

End

Case "XY"
StartX = (0@ - bmLeftFeet) * SFPixelsPerFoot
StartY = (bmTopFeet + @) * SFPixelsPerFoot

StopX = ((xMax - bmLeftFeet) + (0.05 * MaxDistance)) * SFPixelsPerFoot
StopY = (bmTopFeet + @) * SFPixelsPerFoot
g.DrawLine(AxisPen, _
CSng(StartX), CSng(StartY), CSng(StopX), CSng(StopY))
Case "YZ"
StartX = ((zMin - bmLeftFeet) - (©.05 * MaxDistance)) * SFPixelsPerFoot
StartY = (bmTopFeet - @) * SFPixelsPerFoot
StopX = ((zMax - bmLeftFeet) + (©.05 * MaxDistance)) * SFPixelsPerFoot
StopY = (bmTopFeet - @) * SFPixelsPerFoot
g.DrawLine(AxisPen, _
CSng(StartX), CSng(StartY), CSng(StopX), CSng(StopY))
Case "XZ"
StartX = (@ - bmLeftFeet) * SFPixelsPerFoot
StartY = (bmTopFeet - @) * SFPixelsPerFoot
StopX = ((xMax - bmLeftFeet) + (©.05 * MaxDistance)) * SFPixelsPerFoot
StopY = (bmTopFeet - @) * SFPixelsPerFoot
g.DrawLine(AxisPen, _
CSng(StartX), CSng(StartY), CSng(StopX), CSng(StopY))

Select

Draw the vertical axes

~72 ~

Select Case Plane
Case "XY"
StartX = (0@ - bmLeftFeet) * SFPixelsPerFoot
StartY = ((bmTopFeet - yMin) + (©.05 * MaxDistance)) * SFPixelsPerFoot
StopX = (@ - bmLeftFeet) * SFPixelsPerFoot
StopY = ((bmTopFeet - @) - (0.05 * MaxDistance)) * SFPixelsPerFoot
g.DrawLine(AxisPen, _
CSng(StartX), CSng(StartY), CSng(StopX), CSng(StopY))
Case "YZ"
StartX = (@ - bmLeftFeet) * SFPixelsPerFoot
StartY = ((bmTopFeet - yMin) + (©.05 * MaxDistance)) * SFPixelsPerFoot
StopX = (@ - bmLeftFeet) * SFPixelsPerFoot
StopY = ((bmTopFeet - @) - (0.95 * MaxDistance)) * SFPixelsPerFoot
g.DrawLine(AxisPen, _
CSng(StartX), CSng(StartY), CSng(StopX), CSng(StopY))
Case "XZ"
StartX = (0@ - bmLeftFeet) * SFPixelsPerFoot
StartY = ((bmTopFeet - zMin) + (©.05 * MaxDistance)) * SFPixelsPerFoot
StopX = (@ - bmLeftFeet) * SFPixelsPerFoot
StopY = ((bmTopFeet - zMax) - (0.05 * MaxDistance)) * SFPixelsPerFoot
g.DrawLine(AxisPen, _
CSng(StartX), CSng(StartY), CSng(StopX), CSng(StopY))

End Select
' Dispose of the graphics object
g.Dispose()

End Sub

End Module

Option Strict On

Option Explicit On

' There are 11 cross-sections through the blade, starting with the top of the blade and
ending with the tip. The top of the blade is located at D = 6.5 feet and the tip

' tip is located at D = 11.5 feet. The spacing is 0.5 feet. Each point is located at
the origin in the corresponding 6-frame of reference.

There are 5 specified times during a half-stroke, from one extreme of the sweep to the
other. Assume a maximum deflection of 12.4 degrees.

Vector LocationStart1(11, 5, 3) is the location of one of the 11 points at one of the 5
specified times, where the third dimension holds the x, y and z co-ordinates in the
1-frame of reference.

Vector LocationStopl(11l, 5, 3) is the location of one of the 11 points one millisecond
after the 5 specified times, also expressed in the 1-frame of reference.

Vectors LocationStart5(11, 5, 3) and LocationStop5(11, 5, 3) are the corresponding
location vectors in the 5-frame of reference.

Vector RelSpeed1(11, 5, 3) is the relative speed expressed in the 1-frame of reference.

Vector RelSpeed5(11, 5, 3) is the relative speed expressed in the 5-frame of reference.

Public Module AnglesOfAttack

I111117111171717

'// Data entry //
“111177111117111717
Private Dstart As Double
Private delD As Double = 0.5
Private D As Double
Private TStart As Double

1
(o))
Ul

1
(]

~73~

Private
Private
Private
Private
Private
Private
Private
Private
Private
Private
Private
Private
Private
Private
Private
Private
Private
Private
Private
Private
Private

delT As Double = 0.25

T As Double

ThetaDegMax As Double = 12.4
ThetaDeg As Double

PsiDeg As Double = 40

PhiDeg As Double = -45
cosTheta, sinTheta As Double
cosPsi, sinPsi As Double
cosPhi, sinPhi As Double

V As Double = 2.35

X5,
X4,
X3,
X2,
X1,

Y5, Z5 As Double
Y4, Z4 As Double
Y3, Z3 As Double
Y2, Z2 As Double
Y1, Z1 As Double

LocationStart1(11, 5, 3) As Double
LocationStop1(11, 5, 3) As Double
LocationStart5(11, 5, 3) As Double
LocationStop5(11, 5, 3) As Double
RelSpeed1(11, 5, 3) As Double
RelSpeed5(11, 5, 3) As Double

TN T

'// Plot parameters //

TN T

BeginPoint(58, 3) As Double

EndPoint (58, 3) As Double

ViewStart(58, 2) As Double

ViewStop(58, 2) As Double

Sqrt3 As Double = Math.Sqrt(3)

PlotPenTl As New Drawing.Pen(Color.Red, 2)
PlotPenT2 As New Drawing.Pen(Color.Green, 2)
PlotPenT3 As New Drawing.Pen(Color.Blue, 2)
PlotPenT4 As New Drawing.Pen(Color.Orange, 2)
PlotPenT5 As New Drawing.Pen(Color.Violet, 2)
AxisPen As New Drawing.Pen(Color.Black, 2)

Private
Private
Private
Private
Private
Private
Private
Private
Private
Private
Private

Public Sub CalculateAnglesOfAttack()

' PartA: Calculate the locations at the 5 specified times.

Loop through 11 cross-sections.

For Iblade As Int32 = 1 To 11 Step 1

D =

For

Dstart + ((Iblade - 1) * delD)

Loop through 5 specified times during a half-stroke.

Itime As Int32 =1 To 5 Step 1

' Calculate the exact time.

T = TStart + ((Itime - 1) * delT)

' Calculate the sweep angle.

ThetaDeg = ThetaDegMax - (2 * ThetaDegMax * T)
' Calculate the trigonometric functions.
cosTheta = Math.Cos(ThetaDeg * Math.PI / 180)
sinTheta = Math.Sin(ThetaDeg * Math.PI / 1890)
cosPsi = Math.Cos(PsiDeg * Math.PI / 189)
sinPsi = Math.Sin(PsiDeg * Math.PI / 1890)
cosPhi = Math.Cos(PhiDeg * Math.PI / 189)
sinPhi = Math.Sin(PhiDeg * Math.PI / 189)

' Set the co-ordinates of the point in the 5-frame of reference.
LocationStart5(Iblade, Itime, 1) = -D

~ 74 ~

LocationStart5(Iblade, Itime, 2) = @
LocationStart5(Iblade, Itime, 3) = @
X5 = LocationStart5(Iblade, Itime, 1)
Y5 = LocationStart5(Iblade, Itime, 2)
Z5 = LocationStart5(Iblade, Itime, 3)
' Transform from frame 5 to frame 4
X4 = X5

Y4 = (cosPhi * Y5) + (-sinPhi * Z5)

Z4 = (sinPhi * Y5) + (cosPhi * Z5)

' Transform from frame 4 to frame 3
X3 = (cosTheta * X4) + (sinTheta * Z4)
Y3 =Y4

Z3 (-sinTheta * X4) + (cosTheta * Z4)
' Transform from frame 3 to frame 2
X2 = (cosPsi * X3) + (-sinPsi * Y3)
Y2 = (sinPsi * X3) + (cosPsi * Y3)

Z2 = Z3

' Transform from frame 2 to frame 1
X1 =X2+ (V*T)

Y1 =Y2

Z1 = Z2

Save the co-ordinates in the 1-frame of reference.
LocationStartl(Iblade, Itime, 1) = X1
LocationStartl(Iblade, Itime, 2) = Y1
LocationStartl(Iblade, Itime, 3) Z1

Next Itime

Next Iblade

' PartB: Calculate the locations one millisecond after the 5 specified times.
For Iblade As Int32 = 1 To 11 Step 1
D = Dstart + ((Iblade - 1) * delD)
' Loop through 5 specified times during a half-stroke.
For Itime As Int32 =1 To 5 Step 1
' Calculate the exact time.
T = TStart + ((Itime - 1) * delT) + 90.001
' Calculate the sweep angle.
ThetaDeg = ThetaDegMax - (2 * ThetaDegMax * T)
' Calculate the trigonometric functions.
cosTheta = Math.Cos(ThetaDeg * Math.PI / 180)
sinTheta = Math.Sin(ThetaDeg * Math.PI / 1890)
cosPsi = Math.Cos(PsiDeg * Math.PI / 189)
sinPsi = Math.Sin(PsiDeg * Math.PI / 1890)
cosPhi = Math.Cos(PhiDeg * Math.PI / 189)
sinPhi = Math.Sin(PhiDeg * Math.PI / 189)
' Set the co-ordinates of the point in the 5-frame of reference.
LocationStop5(Iblade, Itime, 1) = -D
LocationStop5(Iblade, Itime, 2) 0
LocationStop5(Iblade, Itime, 3) = ©
X5 = LocationStop5(Iblade, Itime, 1)
Y5 = LocationStop5(Iblade, Itime, 2)
Z5 = LocationStop5(Iblade, Itime, 3)
' Transform from frame 5 to frame 4
X4 = X5
Y4 = (cosPhi * Y5) + (-sinPhi * Z5)
Z4 = (sinPhi * Y5) + (cosPhi * Z5)
' Transform from frame 4 to frame 3
X3 = (cosTheta * X4) + (sinTheta * z4)
Y3 = Y4

~75~

Z3 = (-sinTheta * X4) + (cosTheta * Z4)
' Transform from frame 3 to frame 2

X2 = (cosPsi * X3) + (-sinPsi * Y3)

Y2 = (sinPsi * X3) + (cosPsi * Y3)

Z2 = 73

' Transform from frame 2 to frame 1

X1 =X2 + (V*T)

Y1 = Y2

71 = 72

' Save the co-ordinates in the 1-frame of reference.
LocationStopl(Iblade, Itime, 1) = X1
LocationStopl(Iblade, Itime, 2) = Y1
LocationStopl(Iblade, Itime, 3) = Z1

Next Itime
Next Iblade
' Part C: Calculate the relative speed.
For Iblade As Int32 =1 To 11 Step 1
For Itime As Int32 =1 To 5 Step 1
RelSpeedl(Iblade, Itime, 1) = (LocationStopl(Iblade, Itime, 1) - _
LocationStartl(Iblade, Itime, 1)) / 0.001
RelSpeedl(Iblade, Itime, 2) = (LocationStopl(Iblade, Itime, 2) - _
LocationStartl(Iblade, Itime, 2)) / ©.001
RelSpeedl(Iblade, Itime, 3) = (LocationStopl(Iblade, Itime, 3) - _
LocationStartl(Iblade, Itime, 3)) / ©.001
Calculate the exact time.
T = TStart + ((Itime - 1) * delT)
' Calculate the sweep angle.
ThetaDeg = ThetaDegMax - (2 * ThetaDegMax * T)
' Calculate the trigonometric functions.
cosTheta = Math.Cos(ThetaDeg * Math.PI / 180)
sinTheta = Math.Sin(ThetaDeg * Math.PI / 1890)
cosPsi = Math.Cos(PsiDeg * Math.PI / 189)
sinPsi = Math.Sin(PsiDeg * Math.PI / 1890)
cosPhi = Math.Cos(PhiDeg * Math.PI / 189)
sinPhi = Math.Sin(PhiDeg * Math.PI / 189)
' Rotate the relative speed back to the 5-frame of reference.
' Transform from frame 1 to frame 2
X2 = RelSpeedl(Iblade, Itime, 1)
Y2 = RelSpeedl(Iblade, Itime, 2)
Z2 = RelSpeedl(Iblade, Itime, 3)
' Transform from frame 2 to frame 3
X3 = (cosPsi * X2) + (sinPsi * Y2)
Y3 = (-sinPsi * X2) + (cosPsi * Y2)
73 = 72
' Transform from frame 3 to frame 4
X4 = (cosTheta * X3) + (-sinTheta * Z3)
Y4 = Y3
Z4 = (sinTheta * X3) + (cosTheta * Z3)
' Transform from frame 4 to frame 5

X5 = X4
Y5 = (cosPhi * Y4) + (sinPhi * z4)
Z5 = (-sinPhi * Y4) + (cosPhi * Z4)

' Save the relative speed in the 5-frame of reference.
RelSpeed5(Iblade, Itime, 1) = X5
RelSpeed5(Iblade, Itime, 2) = Y5
RelSpeed5(Iblade, Itime, 3) = Z5
Next Itime

~76~

Next Iblade
Forml.TextArea.Text = ""
For Iblade As Int32 =1 To 11 Step 5
For Itime As Int32 =1 To 5 Step 4
Dim X5 As Double = RelSpeed5(Iblade, Itime, 1)
Dim Y5 As Double = RelSpeed5(Iblade, Itime, 2)
Dim Z5 As Double = RelSpeed5(Iblade, Itime, 3)
Dim SigmaRad As Double = Math.Atan(-X5 / Z5)
Dim SigmaDeg As Double = SigmaRad * 180 / Math.PI
Dim Speed As Double = Math.Sqrt((X5 * X5) + (Y5 * Y5) + (Z5 * Z5))
Dim ProjLen As Double = Math.Sqrt((X5 * X5) + (Z5 * Z5))
Dim AlphaRad As Double = Math.Acos(ProjLen / Speed)
Dim AlphaDeg As Double = AlphaRad * 180 / Math.PI
Forml.TextArea.Text = Forml.TextArea.Text & _
"Iblade=" & Trim(Str(Iblade)) & _
" Itime=" & Trim(Str(Itime)) & vbCrLf & _
" SpdX=" & Trim(Str(X5)) & _
" Spdy=" & Trim(Str(Y5)) & _
" Spdz=" & Trim(Str(z5)) & _
" Sigma=" & Trim(Str(SigmaDeg)) & _
" Alpha=" & Trim(Str(AlphaDeg)) & _
" Speed=" & Trim(Str(Speed)) & vbCrLf
Next Itime
Next Iblade

End Sub

Public Sub RenderAnglesOfAttackInlFrame(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs, _

ByRef PlotBitmap As Bitmap)

' This subroutine plots a set of 55 line segments whose starting locations, in
feet, and effective lengths, in feet per second, are given in the two vectors
LocationStartl() and RelSpeedl(), respectively. The canvas is orthogonal with
the Y-axis pointing up, the X-axis extending towards the lower right at a
30-degree angle and the Z-axis extending towards the lower left at a 30-degree
angle. Separate scale factors are applied to the locations and lengths to
enable easy adjustment of the figure. Note that the scaling factors are set
manually.

Dim SFPixelsPerFoot As Double = 75
Dim SFPixelsPerFPS As Double = 10
" Transfer the data into 55 consecutive beginning and ending points.
For Iblade As Int32 =1 To 11 Step 1
For Itime As Int32 =1 To 5 Step 1
Dim IndexInVector As Int32
IndexInVector = ((Iblade - 1) * 5) + Itime
BeginPoint(IndexInVector, 1) = _
LocationStartl(Iblade, Itime, 1) * SFPixelsPerFoot
BeginPoint(IndexInVector, 2) = _
LocationStartl(Iblade, Itime, 2) * SFPixelsPerFoot
BeginPoint(IndexInVector, 3) = _
LocationStartl(Iblade, Itime, 3) * SFPixelsPerFoot
EndPoint(IndexInVector, 1) = BeginPoint(IndexInVector, 1) +
(RelSpeedl(Iblade, Itime, 1) * SFPixelsPerFPS)
EndPoint(IndexInVector, 2) = BeginPoint(IndexInVector, 2) + _
(RelSpeedl(Iblade, Itime, 2) * SFPixelsPerFPS)
EndPoint(IndexInVector, 3) = BeginPoint(IndexInVector, 3) + _

~77 ~

(RelSpeedi(Iblade, Itime, 3) * SFPixelsPerFPS)
Next Itime
Next Iblade
' Add a line for the X-axis.
BeginPoint(56, 1) -7 * SFPixelsPerFoot

BeginPoint(56, 2) = ©

BeginPoint(56, 3) = ©

EndPoint(56, 1) = 0.5 * SFPixelsPerFoot
EndPoint(56, 2) = 0

EndPoint(56, 3) = 0
' Add a line for the Y-axis.
BeginPoint(57, 1) = ©
BeginPoint (57, 2) -7 * SFPixelsPerFoot
BeginPoint(57, 3) = ©
EndPoint (57, 1) = 0
EndPoint (57, 2) 0
EndPoint(57, 3) = ©
' Add a line for the Z-axis
BeginPoint(58, 1) = ©
BeginPoint(58, 2) = ©
BeginPoint (58, 3) -2 * SFPixelsPerFoot
EndPoint (58, 1) =
EndPoint (58, 2)
EndPoint (58, 3) * SFPixelsPerFoot
' Convert the data to a two-dimensional framework. The vector ViewStart(55,2)
contains the horizontal and vertical co-ordinates of the starts of the 55 line
segments. Vector ViewStop(55,2) are the co-ordinates of the ends of the
corresponding line segments. The dimensions are expressed in pixels with
respect to the (0, 0, 0) origin.
For I As Int32 =1 To 58 Step 1
ViewStart(I, 1) = _
(BeginPoint(I, 1) * Sqrt3 / 2) + _
(-BeginPoint(I, 3) * Sqrt3 / 2)
ViewStart(I, 2) = _
(-BeginPoint(I, 1) / 2) + _
BeginPoint(I, 2) + _
(-BeginPoint(I, 3) / 2)
ViewStop(I, 1) = _
(EndPoint(I, 1) * Sqrt3 / 2) + _
(-EndPoint(I, 3) * Sqrt3 / 2)
ViewStop(I, 2) = _
(-EndPoint(I, 1) / 2) + _
EndPoint(I, 2) + _
(-EndPoint(I, 3) / 2)

.5 * SFPixelsPerFoot

0
0
2

Next I
' Translate the origin to the center of the PlotArea.
For I As Int32 = 1 To 58 Step 1
ViewStart(I, 1) = 800 + ViewStart(I, 1)
ViewStart(I, 2) = 250 - ViewStart(I, 2)
ViewStop(I, 1) = 800 + ViewStop(I, 1)
ViewStop(I, 2) = 250 - ViewStop(I, 2)
Next I
' Define the graphics object
Dim g As Graphics = Graphics.FromImage(PlotBitmap)
' Draw the segments one-by-one starting. A small dot is placed at the starting
location so the direction of motion can be better understood. The five
across a sweep are coloured in the order: red, green, blue, orange, violet.
Note that the last three segments are axes and should be rendered using the

~78 ~

appropriate colour.
For Iblade As Int32 = 1 To 11 Step 1
For Itime As Int32 =1 To 5 Step 1
Dim J As Int32
J = ((Iblade - 1) * 5) + Itime
Select Case Itime
Case 1
g.DrawLine(PlotPenT1, _
CSng(ViewStart(J, 1)), CSng(ViewStart(J, 2)),
CSng(ViewStop(J, 1)), CSng(ViewStop(J, 2)))
Case 2
g.DrawLine(PlotPenT2, _
CSng(ViewStart(J, 1)), CSng(ViewStart(J, 2)),
CSng(ViewStop(J, 1)), CSng(ViewStop(J, 2)))
Case 3
g.DrawLine(PlotPenT3, _
CSng(ViewStart(J, 1)), CSng(ViewStart(3d, 2)),
CSng(ViewStop(J, 1)), CSng(ViewStop(J, 2)))
Case 4
g.DrawLine(PlotPenT4, _
CSng(ViewStart(J, 1)), CSng(ViewStart(J, 2)),
CSng(ViewStop(J, 1)), CSng(ViewStop(J, 2)))
Case 5
g.DrawLine(PlotPenT5, _
CSng(ViewStart(J, 1)), CSng(ViewStart(Jd, 2)), _
CSng(ViewStop(J, 1)), CSng(ViewStop(J, 2)))
End Select
g.FillEllipse(Brushes.Black, _
CSng(ViewStart(J, 1) - 3), CSng(ViewStart(Jd, 2) - 3), 6, 6)
Next Itime
Next Iblade
For I As Int32 = 56 To 58 Step 1
g.DrawLine(AxisPen, _
CSng(ViewStart(I, 1)), CSng(ViewStart(I, 2)), _
CSng(ViewStop(I, 1)), CSng(ViewStop(I, 2)))
Next I
' Dispose of the graphics object
g.Dispose()
End Sub

Public Sub RenderAnglesOfAttackIn6Frame(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs, _

ByRef PlotBitmap As Bitmap)

' This subroutine plots a set of 55 line segments whose starting locations, in
feet, and effective lengths, in feet per second, are given in the two vectors
LocationStart5() and RelSpeed5(), respectively. The canvas is orthogonal with
the Y-axis pointing up, the X-axis extending towards the lower right at a
30-degree angle and the Z-axis extending towards the lower left at a 30-degree
angle. Separate scale factors are applied to the locations and lengths to
enable easy adjustment of the figure. Note that the scaling factors are set
manually.

Dim SFPixelsPerFoot As Double = 100
Dim SFPixelsPerFPS As Double = 50
' Transfer the data into 55 consecutive beginning and ending points.
For Iblade As Int32 =1 To 11 Step 1
For Itime As Int32 =1 To 5 Step 1
Dim IndexInVector As Int32

~79~

IndexInVector = ((Iblade - 1) * 5) + Itime
D = -((Iblade - 1) * delD)
BeginPoint(IndexInVector, 1) D * SFPixelsPerFoot
BeginPoint(IndexInVector, 2) = ©
BeginPoint(IndexInVector, 3) = 0@
EndPoint(IndexInVector, 1) = BeginPoint(IndexInVector, 1) + _
(RelSpeed5(Iblade, Itime, 1) * SFPixelsPerFPS)
EndPoint(IndexInVector, 2) = BeginPoint(IndexInVector, 2) + _
(RelSpeed5(Iblade, Itime, 2) * SFPixelsPerFPS)
EndPoint(IndexInVector, 3) = BeginPoint(IndexInVector, 3) + _
(RelSpeed5(Iblade, Itime, 3) * SFPixelsPerFPS)
Next Itime
Next Iblade
' Add a line for the X-axis.
BeginPoint (56, 1) -6 * SFPixelsPerFoot
BeginPoint(56, 2) = ©
BeginPoint(56, 3) = ©
EndPoint(56, 1) = 0.5 * SFPixelsPerFoot
EndPoint (56, 2) =
EndPoint(56, 3) = ©
' Add a line for the Y-axis.
BeginPoint(57, 1) = ©
BeginPoint(57, 2) -0.5 * SFPixelsPerFoot
BeginPoint(57, 3) = ©
EndPoint(57, 1) = ©
EndPoint(57, 2) = ©
EndPoint (57, 3) 0
' Add a line for the Z-axis
BeginPoint(58, 1) = ©
BeginPoint(58, 2) = ©
BeginPoint (58, 3) -2 * SFPixelsPerFoot
EndPoint(58, 1) =
EndPoint (58, 2)
EndPoint (58, 3) * SFPixelsPerFoot
' Convert the data to a two-dimensional framework. The vector ViewStart(55,2)
contains the horizontal and vertical co-ordinates of the starts of the 55 line
segments. Vector ViewStop(55,2) are the co-ordinates of the ends of the
corresponding line segments. The dimensions are expressed in pixels with
respect to the (0, 0, 0) origin.
For I As Int32 =1 To 58 Step 1
ViewStart(I, 1) = _
(BeginPoint(I, 1) * Sqrt3 / 2) + _
(-BeginPoint(I, 3) * Sqrt3 / 2)
ViewStart(I, 2) = _
(-BeginPoint(I, 1) / 2) + _
BeginPoint(I, 2) + _
(-BeginPoint(I, 3) / 2)
ViewStop(I, 1) = _
(EndPoint(I, 1) * Sqrt3 / 2) + _
(-EndPoint (I, 3) * Sqrt3 / 2)
ViewStop(I, 2) = _
(-EndPoint(I, 1) / 2) + _
EndPoint(I, 2) + _
(-EndPoint(I, 3) / 2)

[IR

.5 * SFPixelsPerFoot

0
0
2

Next I
' Translate the origin to the center of the PlotArea.
For I As Int32 =1 To 58 Step 1

ViewStart(I, 1) = 600 + ViewStart(I, 1)

~80~

ViewStart(I, 2) = 500 - ViewStart(I, 2)
ViewStop(I, 1) = 600 + ViewStop(I, 1)
ViewStop(I, 2) = 500 - ViewStop(I, 2)
Next I
' Define the graphics object
Dim g As Graphics = Graphics.FromImage(PlotBitmap)
' Draw the segments one-by-one starting. A small dot is placed at the starting
location so the direction of motion can be better understood. The five
across a sweep are coloured in the order: red, green, blue, orange, violet.
Note that the last three segments are axes and should be rendered using the
appropriate colour.
For Iblade As Int32 =1 To 11 Step 1
For Itime As Int32 =1 To 5 Step 1
Dim J As Int32
J = ((Iblade - 1) * 5) + Itime
Select Case Itime
Case 1
g.DrawLine(PlotPenT1, _
CSng(ViewStart(J, 1)), CSng(ViewStart(Jd, 2)), _
CSng(ViewStop(J, 1)), CSng(ViewStop(J, 2)))

Case 2
g.DrawLine(PlotPenT2, _
CSng(ViewStart(J, 1)), CSng(ViewStart(Jd, 2)), _

CSng(ViewStop(J, 1)), CSng(ViewStop(J, 2)))
Case 3

g.DrawLine(PlotPenT3, _
CSng(ViewStart(J, 1)), CSng(ViewStart(J, 2)), _
CSng(ViewStop(J, 1)), CSng(ViewStop(J, 2)))
Case 4
g.DrawLine(PlotPenT4, _
CSng(ViewStart(J, 1)), CSng(ViewStart(Jd, 2)), _

CSng(ViewStop(J, 1)), CSng(ViewStop(J, 2)))
Case 5

g.DrawLine(PlotPenT5, _
CSng(ViewStart(J, 1)), CSng(ViewStart(J, 2)), _

CSng(ViewStop(J, 1)), CSng(ViewStop(J, 2)))
End Select

g.FillEllipse(Brushes.Black, _
CSng(ViewStart(J, 1) - 3), CSng(ViewStart(Jd, 2) - 3), 6, 6)
Next Itime
Next Iblade
For I As Int32 = 56 To 58 Step 1
g.DrawLine(AxisPen, _
CSng(ViewStart(I, 1)), CSng(ViewStart(I, 2)), _
CSng(ViewStop(I, 1)), CSng(ViewStop(I, 2)))
Next I
' Dispose of the graphics object
g.Dispose()
End Sub

Public Sub RenderAnglesOfAttackIn6XZFrame(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs, _

ByRef PlotBitmap As Bitmap)

' This subroutine plots the relative speed in the 6-frame of reference, but only
the components of the speed in the X-Z plane. The X-axis points to the right
and the Z-axis points straight down.

Dim SFPixelsPerFoot As Double = 100

~81~

Dim SFPixelsPerFPS As Double = 50
' Transfer the data into 55 consecutive beginning and ending points.
For Iblade As Int32 = 1 To 11 Step 1
For Itime As Int32 =1 To 5 Step 1
Dim IndexInVector As Int32
IndexInVector = ((Iblade - 1) * 5) + Itime
D = -((Iblade - 1) * delD)
BeginPoint(IndexInVector, 1) = D * SFPixelsPerFoot
BeginPoint(IndexInVector, 3) = ©
EndPoint(IndexInVector, 1) = BeginPoint(IndexInVector, 1) + _
(RelSpeed5(Iblade, Itime, 1) * SFPixelsPerFPS)
EndPoint(IndexInVector, 3) = BeginPoint(IndexInVector, 3) + _
(RelSpeed5(Iblade, Itime, 3) * SFPixelsPerFPS)
Next Itime
Next Iblade
' Add a line for the X-axis.
BeginPoint(56, 1) -6 * SFPixelsPerFoot
BeginPoint(56, 3) = 0
EndPoint(56, 1) = 0.5 * SFPixelsPerFoot
EndPoint(56, 3) = ©
' Add a line for the Z-axis
BeginPoint(57, 1) = ©
BeginPoint(57, 3) = -2 * SFPixelsPerFoot
EndPoint(57, 1) = ©
EndPoint (57, 3) = 2 * SFPixelsPerFoot
' Convert the data to a two-dimensional framework. The vector ViewStart(55,2)
contains the horizontal and vertical co-ordinates of the starts of the 55 line
segments. Vector ViewStop(55,2) are the co-ordinates of the ends of the
corresponding line segments. The dimensions are expressed in pixels with
respect to the (0, 0, 0) origin.
For I As Int32 =1 To 57 Step 1
ViewStart(I, 1) = BeginPoint(I, 1)
ViewStart(I, 2) -BeginPoint (I, 3)
ViewStop(I, 1) = EndPoint(I, 1)
ViewStop(I, 2) -EndPoint (I, 3)
Next I
' Translate the origin to the center of the PlotArea.
For I As Int32 = 1 To 57 Step 1
ViewStart(I, 1) = 700 + ViewStart(I, 1)
ViewStart(I, 2) = 400 - ViewStart(I, 2)
ViewStop(I, 1) = 700 + ViewStop(I, 1)
ViewStop(I, 2) = 400 - ViewStop(I, 2)
Next I
' Define the graphics object
Dim g As Graphics = Graphics.FromImage(PlotBitmap)
' Draw the segments one-by-one starting. Note that the last two segments
' are axes and should be rendered using the appropriate colour.
For Iblade As Int32 = 1 To 11 Step 1
For Itime As Int32 =1 To 5 Step 1
Dim J As Int32
J = ((Iblade - 1) * 5) + Itime
Select Case Itime
Case 1
g.DrawLine(PlotPenTl, _
CSng(ViewStart(J, 1)), CSng(ViewStart(J, 2)), _
CSng(ViewStop(J, 1)), CSng(ViewStop(J, 2)))

Case 2
g.DrawLine(PlotPenT2, _

~82 ~

CSng(ViewStart(J, 1)), CSng(ViewStart(J, 2)), _
CSng(ViewStop(J, 1)), CSng(ViewStop(J, 2)))
Case 3
g.DrawLine(PlotPenT3, _
CSng(ViewStart(J, 1)), CSng(ViewStart(J, 2)), _
CSng(ViewStop(J, 1)), CSng(ViewStop(J, 2)))
Case 4
g.DrawLine(PlotPenT4, _
CSng(ViewStart(J, 1)), CSng(ViewStart(J, 2)), _
CSng(ViewStop(J, 1)), CSng(ViewStop(J, 2)))
Case 5
g.DrawLine(PlotPenT5, _
CSng(ViewStart(J, 1)), CSng(ViewStart(3, 2)), _
CSng(ViewStop(J, 1)), CSng(ViewStop(J, 2)))
End Select
g.FillEllipse(Brushes.Black, _
CSng(ViewStart(J, 1) - 3), CSng(ViewStart(Jd, 2) - 3), 6, 6)
Next Itime
Next Iblade
For I As Int32 = 56 To 57 Step 1
g.DrawLine(AxisPen, _
CSng(ViewStart(I, 1)), CSng(ViewStart(I, 2)), _
CSng(ViewStop(I, 1)), CSng(ViewStop(I, 2)))
Next I
' Dispose of the graphics object
g.Dispose()
End Sub

Public Sub RenderAnglesOfAttackIn6YZFrame(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs, _
ByRef PlotBitmap As Bitmap)
' This subroutine plots the relative speed in the 6-frame of reference, but only
the components of the speed in the Y-Z plane. The Y-axis points straight up
' and the Z-axis points to the *LEFT**,
Dim SFPixelsPerFoot As Double = 100
Dim SFPixelsPerFPS As Double = 100
' Transfer the data into 55 consecutive beginning and ending points.
For Iblade As Int32 =1 To 11 Step 1
For Itime As Int32 =1 To 5 Step 1
Dim IndexInVector As Int32
IndexInVector = ((Iblade - 1) * 5) + Itime
BeginPoint(IndexInVector, 2) = @
BeginPoint(IndexInVector, 3) = 0
EndPoint(IndexInVector, 2) = BeginPoint(IndexInVector, 2) + _
(RelSpeed5(Iblade, Itime, 2) * SFPixelsPerFPS)
EndPoint(IndexInVector, 3) = BeginPoint(IndexInVector, 3) + _
(RelSpeed5(Iblade, Itime, 3) * SFPixelsPerFPS)
Next Itime
Next Iblade
' Add a line for the Y-axis.
BeginPoint(56, 2) = -0.5 * SFPixelsPerFoot
BeginPoint(56, 3) = ©
EndPoint (56, 2) = 0.5 * SFPixelsPerFoot
EndPoint(56, 3) = ©
' Add a line for the Z-axis
BeginPoint(57, 2) = ©
BeginPoint(57, 3) = -2 * SFPixelsPerFoot

~83~

EndPoint (57, 2) = ©
EndPoint (57, 3) = 2 * SFPixelsPerFoot
' Convert the data to a two-dimensional framework. The vector ViewStart(55,2)
contains the horizontal and vertical co-ordinates of the starts of the 55 line
segments. Vector ViewStop(55,2) are the co-ordinates of the ends of the
corresponding line segments. The dimensions are expressed in pixels with
respect to the (0, 0, 0) origin.
For I As Int32 =1 To 57 Step 1
ViewStart(I, 1) = -BeginPoint(I, 3)
ViewStart(I, 2) BeginPoint (I, 2)
ViewStop(I, 1) = -EndPoint(I, 3)
ViewStop(I, 2) = EndPoint(I, 2)
Next I
' Translate the origin to the center of the PlotArea.
For I As Int32 =1 To 57 Step 1
ViewStart(I, 1) = 400 + ViewStart(I, 1)
ViewStart(I, 2) = 400 - ViewStart(I, 2)
ViewStop(I, 1) = 400 + ViewStop(I, 1)
ViewStop(I, 2) = 400 - ViewStop(I, 2)
Next I
' Define the graphics object
Dim g As Graphics = Graphics.FromImage(PlotBitmap)
' Draw the segments one-by-one starting. Note that the last two segments
' are axes and should be rendered using the appropriate colour.
For Iblade As Int32 = 1 To 11 Step 10
For Itime As Int32 =1 To 5 Step 1
Dim J As Int32
J = ((Iblade - 1) * 5) + Itime
Select Case Itime
Case 1
g.DrawLine(PlotPenT1, _
CSng(ViewStart(J, 1)), CSng(ViewStart(J, 2)), _
CSng(ViewStop(J, 1)), CSng(ViewStop(J, 2)))

Case 2
g.DrawLine(PlotPenT2, _
CSng(ViewStart(J, 1)), CSng(ViewStart(J, 2)), _
CSng(ViewStop(J, 1)), CSng(ViewStop(J, 2)))
Case 3
g.DrawLine(PlotPenT3, _
CSng(ViewStart(J, 1)), CSng(ViewStart(J, 2)), _
CSng(ViewStop(J, 1)), CSng(ViewStop(J, 2)))
Case 4
g.DrawLine(PlotPenT4, _
CSng(ViewStart(J, 1)), CSng(ViewStart(J, 2)), _
CSng(ViewStop(J, 1)), CSng(ViewStop(J, 2)))
Case 5
g.DrawLine(PlotPenT5, _
CSng(ViewStart(J, 1)), CSng(ViewStart(Jd, 2)), _
CSng(ViewStop(J, 1)), CSng(ViewStop(J, 2)))
End Select
g.FillEllipse(Brushes.Black, _
CSng(ViewStart(J, 1) - 3), CSng(ViewStart(3d, 2) - 3), 6, 6)
Next Itime
Next Iblade
For I As Int32 = 56 To 57 Step 1
g.DrawLine(AxisPen, _
CSng(ViewStart(I, 1)), CSng(ViewStart(I, 2)), _
CSng(ViewStop(I, 1)), CSng(ViewStop(I, 2)))

~84 ~

Next I
' Dispose of the graphics object
g.Dispose()

End Sub

End Module

Trajectories of points on a Yuloh

[Calculate trajectories } [F’Iut XY plane I [Plol YZ plane] Plot X2 plane Calculate angles of attack Plot 1 frame Plot 6 frame Plot B2 Plot 6YZ

EBX

Ibg;c$<i11.l7t;‘:r‘868=‘l1885833375 Spdy=647958920983058 SpdZ=-2.7842004660481 Sigma=32.2811731900054 Alpha=11.1311127012077 Speed=3.35634713658349
|b5|?3‘§<==11,l?§;.%%=1288834011 SpdY=1.13464730766212 SpdZ=-3.33088345272107 Sigma=27 8355205972732 Alpha=17.5368244663215 Speed=3.95163906143773
Ibsl;‘:t!g:=s'l.l7tgn9e[3=51285870898 Spdy=1.4131220697793 SpdZ=-354936361483833 Sigma=26.3628630016548 Alpha=19.6327357670019 Speed=4.2058486666932
lbézﬁi,gg?‘jg%w%% Spdy=1.95381105645185 SpdZ=-4.09605260151185 Sigma=23.2411405015129 Alpha=23.7320730755048 Speed=4.86957628393033
Ibé;iﬂﬂ?gfarg%:?}MBS?Sd.S Spdy=2.17828521856959 SpdZ=-4.31452676362857 Sigma=22.1836199832688 Alpha=25.0561341818312 Speed=5.14345784465643
Ibsl?niﬂ{l,?ggge;?%%ﬁ? SpdY=2.72437420524301 SpdZ=-4.86121575030133 Sigma=19.8953262653308 Alpha=27.7936197461083 Speed=5.84337073080206

~ 85 ~

