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The ideal transformer with an active secondary circuit 

 

Reference is made to a previous paper: The ideal transformer with a single secondary winding.  This 

paper extends that analysis to the case where the secondary winding has its own independent voltage 

source. 

 

The analysis is based on the principle of superposition, as illustrated in the following diagram.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

What we will do is this: we will analyze the circuit twice, first with only one of the voltage sources 

included, and then again with only the other voltage source included.  Then, we will add the results. 

 

In the figure,  is the resistance in the primary winding, including the lumped resistance of inductor .  

Similarly, the load  in the secondary circuit includes the equivalent series resistance of the secondary 

winding .  As before, we will consider the transformer to be ideal in all other respects. 

 

The equivalent circuit diagrams for the two cases are as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Some care has been taken to use symbols in such a way that there is no repetition.  Furthermore, the 

directions of the currents and voltages have been chosen to be consistent with basic model of an ideal 

transformer as described in The ideal transformer with a single secondary winding.  However, this does 

mean that we have to watch out for the algebraic signs of the currents when we add them up.  In 

particular, the total current flowing into the primary winding at its top end is equal to .  

Similarly, the total current flowing into the secondary winding at its top end is equal to . 
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Analysis of Case #1 – including only the voltage source in the primary circuit 

 

The principal voltage equation is the voltage drop over the primary resistor : 

 

 

  

The principal current equation is based on the voltage drop over the parallel branch on the primary side: 

 

 

The inductor’s voltage-current characteristic is: 

 

 

 

Combining these three equations gives: 

 

 

 

We can foresee that the time-constant  will be equal to: 

 

 

 

and that the general solution of Equation  will be: 

 

 

 

where function  will have the same time-dependence as the forcing function .  If  is 

constant, then  will be constant; if  is a sinusoid, then  will be a sinusoid with the same 

frequency; and so on.  The unknown constant  and whatever constants there are in  will be 

determinable from the initial conditions.  Taking the derivative of , and multiplying by , gives  

as: 

 

 

  

where I have used the convention that an overhead dot represents a time-derivative.  Let us now turn our 

attention to the secondary circuit.  The voltage  will be equal to the voltage over the primary circuit 

 multiplied by the turns-ratio, thus: 

 

 

 

Recalling that the inductance-ratio is the square of the turns-ratio, this can be written as: 
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Then, the current flowing in the secondary circuit can be found from a straight-forward application of 

Ohm’s Law, as: 

 

 

 

There are a couple of loose ends to win up.  Substituting the expression for  from Equation  into 

Equations  and  will give expressions for  and  directly in terms of time.  Similarly, 

substituting Equation  into the principal current equation will give an expression for  directly in 

terms of time.  Finally, adding  and  together will give .  When these substitutions are done, we 

have the following equations for the six unknown quantities: 

 

 

 

The relationship between  and  

 

In the above analysis, I was not as precise about  as I could have been.  Let us look again at .  

The differential equation for  was given in Equation , which is repeated here for convenience:  

 

 

 

We proposed a solution of form .  Substituting  and its derivative into the 

differential equation gives: 

 

 

 

The way we selected the time-constant  above guarantees satisfaction of the transient part of the 

solution.  That is, the two terms in  cancel each of out, leaving: 
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This differential equation will need to be solved for whatever forcing function  is given.  A couple 

of common cases are the following: 

 

A. If  is constant, then, by inspection,      (12) 

 

B. If , then  will be a sinusoid having the form 

 with derivative .  Substituting into Equation 

,  

 

 

 

Since the cosine and sine functions are independent from each other with respect to time, the only 

way this equation can hold true for any and all times  is if the coefficient of each term is 

identically zero.  Then,  

 

 

 

These two equations can be solved for  and : 

 

 

 

from which we can write down the equation for : 

 

 

 

C. If , then  will be an exponential function with an imaginary exponent 

having the form  with derivative .  Substituting into 

Equation , we get: 
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Since the exponential function is not constant (other than the degenerate case of zero frequency), 

the only way this equation can hold true for any and all times  is if the coefficient of each term is 

identically zero.  Then,  

 

 

 

and the expression for  is: 

 

 

  

For the moment, I will say nothing about the interpretation of imaginary numbers other than to 

say that the imaginary coefficient is a more handy way to account for phase angles than the 

equivalent combination of sinusoidal terms. 

 

Analysis of Case #2 – including only the voltage source in the secondary circuit 

 

The analysis of Case #2 proceeds in the same way as the analysis of Case #1.  The time-constant  will be 

the same as in Case #1.  This time, the differential equation will involve the current  (instead of ) and 

it will have a general solution with the form:  

 

 
 

where function v  will have the same time-dependence as the forcing function .  The constant  

will have to be found from the initial conditions.  We can write down the circuit variables by direct 

comparison with the results of Case #1, thus: 

 

 

 

Furthermore, the relationship between  and  will be the same as that between  and , 

and  must be found by solving the differential equation: 
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Adding together the results from Case #1 and Case #2 

 

We now need to combine the results from the two analyses.  To do this, we need to refer back to the two 

schematic models at the bottom of page 1.  The voltages in the two cases have the same direction: from 

top to bottom.  But, the currents have been drawn in opposite directions: flowing out of the top of the 

inductor in the power-on side and into the top of the inductor in the power-off side.  Let us define the total 

currents,  and , to be positive when flowing into the top of their respective inductors.  Then: 

 

 

 

Inserting the results for the two cases above, we get: 

 

 

 

Terms can be collected to give: 

 

 

 

A little further reduction can be made by substituting the time-constant  from Equation : 
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Note the perfect symmetry between the primary winding and the secondary winding.  This was to be 

expected.   

 

 

Numerical example #1 – Two constant voltages 

 

Let us look at a special case, in which both voltage sources are constant dc.  While this is not a common 

case, it does allow us to focus on the transient response only, which will not be overwhelmed by changes 

due to the driving voltages.  We will use the symbols  and  for the two constant voltage sources, in 

the primary and secondary circuits, respectively.  Then: 

 

 

 

For convenience, let us also assume that power is applied at time .  Since the circuit starts up from 

rest, the magnetizing currents  and  must be zero at time .  From Equations  and , we can 

see that: 

 

 

 

The set of Equations  then reduces to: 

 

 

 

Notice that the factors in the round brackets are all the same.  The start-up currents and voltages, at time 

, are equal to: 
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We can see that the ratio of the initial voltages is equal to the turns-ratio, which is itself equal to the 

square root of the inductance ratio, as it must: 

 

 

 

In order to examine the ratio of the initial currents, we need to collect terms first.  The expression for 

 is: 

 

 

 

Similarly, the expression for  can be written as: 

 

 

 

Then, the ratio of the initial currents is equal to: 
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This is correct, including the minus sign.  The minus sign occurs because we defined both currents as 

being positive when flowing into the tops of their respective inductors.  This is the reverse of the 

customary labeling, in which the current from the secondary flows out of the top of its inductor.  The 

magnitude is also correct, being the reciprocal of the turns-ratio. 

   

As time passes, the transient dies away.  For large enough times , often quantified as being more than 

five time-constants, the currents and voltages steady out at the following values: 

 

 

 

Let us look at the following numerical values: 

 

 

 

The time-constant (there is only one time-constant), is equal to: 

 

 

 

The primary-side inductor-resistor pair has an individual time-constant of 5ms.  The secondary-side 

inductor-resistor pair has an individual time-constant of 4ms.  The individual time-constants combine is 

such a way that the time-constant of the circuit as a whole is their sum.  The steady-state voltages and 

currents are: 
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The factor in the round brackets in Equation is equal to: 

 

 

  

so the initial currents and voltages are equal to: 

 

 

 

I carried out a spice simulation of this circuit using the following SPICE schematic. 
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The schematic includes three independent, but very similar, circuits.  The middle circuit models Case #1 

(with the primary-side voltage source only) and the bottom circuit models Case #2 (with the secondary-

side voltage source only).  The combined circuit (with both voltage sources) is at the top.  All component 

values and voltage tags have two subscripts.  One set of subscripts indicates “p” for primary-side or “s” 

for secondary-side.  The second set of subscripts indicates “t” for the total, or combined, circuit, “a” for 

the Case #1 circuit and “b” for the Case #2 circuit.  When the simulation is run, all three circuits are 

integrated independently. Afterwards, various waveforms can be plotted and the relationships between the 

two cases and the combined circuit examined. 

 

The mutual inductance directive, of form K1 Lpt Lst 1, specifies that the linkage is 100% – that the 

transformer is ideal.  The resistors shown are assumed to include the series resistance of the windings in 

their circuits.  Note that the current convention used by SPICE is that current flowing through an inductor 

is negative if it flows into the dotted end and positive if it flows into the undotted end. 

 

Let us look first at the voltages on the primary side.  The combined voltage (  in the analysis above 

and V(vpt) in the graph) starts at 7.441V and decays to zero with a time-constant of 9ms. 

 

 
 

The voltages on the secondary side are shown in the following graph.  The combined voltage (  in 

the analysis above and V(vst) in the graph) starts at 10.52V and decays to zero with a time-constant of 

9ms. 

 

  

The currents on the primary side are shown in the following graph.  The combined current (  in the 

analysis above and I(Lpt) in the graph) starts at 255.9mA and rises to 1A with a time-constant of 9ms. 
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The currents on the secondary side are shown in the following graph.  The combined current (  in 

the analysis above and I(Lst) in the graph) starts at negative 180.9mA and rises to positive 240mA with a 

time-constant of 9ms.  This steady-state current is not so well illustrated in the graph, which shows only a 

single time-constant’s length of time.  Running the simulation out to 50ms confirms that I(Lst) does rise 

all the way to 240mA.  

 

 
 

In fact, all variables converge to their expected steady-state values.  This is confirmed by the following 

graph which shows the waveforms for 50ms, slightly longer than five time-constants. 

 

 
 

The careful reader will observe that all the waveforms exhibit a spike at time .  This is an artifact of 

the SPICE integration, which assumes that constant voltage sources do not start up instantaneously.  

Instead, SPICE assumes that constant voltage sources power up over 20μs, during which time their 

voltages rise linearly from zero to their constant values. 
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Numerical example #2 – Two sinusoidal driving voltages 

 

Having looked at the transient response, let us now look at a second example, in which we will focus on 

the steady-state.  We will look at the case where both voltage sources are sinusoidal.  In particular, we 

will assume that the driving voltages have the mathematical forms: 

 

 

 

We will allow the voltage sources to have different temporal frequencies,  and , as well as different 

amplitudes  and .  For convenience, though, they will start at zero.  An incidental benefit from this 

choice is that there is no transient voltage response at all.  The circuit is in its steady-state mode right 

from the get-go. 

 

We will have to solve differential Equations  and  to find  and .  However, we have 

already done so above, in the sub-case C, and can take over the result from Equation  to write: 

  

 

 

We will need the derivatives as well: 

 

 

 

We can now substitute these waveforms into the general Equations .  For times much greater than the 

time-constant (and, in this case, for shorter times, too), the steady-state parts of Equations  are: 

 

 

 

Substituting the sinusoidal driving functions gives: 
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Each of the four independent variables is the sum of two terms, one being a sinusoid at temporal 

frequency  and the other being a sinusoid at frequency .  Each sinusoidal term is multiplied by a factor 

which is a constant imaginary number.  Each such factor can be expanded into the standard imaginary 

form , where both  and  are strictly real numbers.  Then, each such factor can in turn be 

expressed in the standard exponential form , where both  and  are strictly real numbers.  Since 

there are eight terms, there will be eight amplitudes, which we will call  for , and eight 

phase angles, which we will call  for .  With these symbols, Equations  can be 

written as: 

 

 

 

Calculating the s and s is tedious, but not difficult.  We will do one pair, for  and , to show the 

procedure.   

 

 

 

Then, the standard exponential form is found by: 
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Regretfully, no further simplification is possible.  This is particularly unfortunate because there are seven 

more pairs like this one. 

 

However, simplification is possible in certain cases where we can make approximations.  For example, let 

us assume that both voltage sources run at “suitably high” frequencies.  Let us define “suitably high” 

using the mathematical restrictions that: 

 

 
 

For example, if the time-constant is 9ms, as it was in Numerical example #1, then a frequency of 5KHz 

would satisfy these inequalities because .  So, if the frequencies 

 and  satisfy these inequalities, then Equations  can themselves be approximated by the following 

set of equations: 

 

 

 

These can be re-written as: 
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And, finally, observing the symmetries between the secondary and the primary sides, we have, for the 

secondary dependent variables: 

 

 

 

So, for sinusoids at high frequencies, the secondary current and voltage have the “normal” turns-ratio 

relationships with their primary circuit equivalents. 

 

Let us use the same component values as we did in Numerical example #1, namely: 

 

 

 

The time-constant will therefore be the same as before, 9ms.  Let us assume that the voltage sources are: 

 

 
 

The following figure is the SPICE model for this analysis.  All that has changed from Numerical example 

#1 is the specification of the voltage sources. 
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Let us use the results of the analysis to calculate the expected steady-state primary current: 

 

 

 

And, for the primary voltage: 

 

 

 

The following chart showing the components of the primary voltage, and how the 3.333V-amplitude 

contribution from Case #1 and the 0.9428V-amplitude contribution from Case #2 add up to the total 

voltage in the primary circuit. 

 

 
 

The following chart shows the components of the primary current, and how the 226.7mA-amplitude 

contribution from Case #1 and the negative 94.28mA-amplitude contribution from Case #2 add up to the 

total current in the primary circuit. 

 

 
 

The following chart shows how the secondary voltage is equal to the primary voltage multiplied by the 

turns-ratio.  The turns-ratio is , so the peak amplitude of the primary voltage (about 

3.25V) is scaled up to a peak amplitude of about 4.60V over the secondary winding. 
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The following chart shows how the secondary current is equal to the primary current multiplied by the 

reciprocal of the turns-ratio.  Since the peak amplitude of the primary current is about 280mA, the peak 

amplitude of the secondary current will be about 198mA.  Recall, too, that the primary and secondary 

currents have opposing algebraic signs. 

 

 
 

One final note: since both voltage sources start up at zero volts, there is no transient response, and the 

steady-state is entered immediately. 

 

 

Jim Hawley 

December 2011 

 

An e-mail describing errors or omissions would be appreciated. 

 

 

 

 

 

 

 

 

 


