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Enhancements to the dynamics of a 2WD pickup truck pull 

 

In an earlier paper, we looked at a simple model of a 2WD pickup truck pulling a loaded sled in a "tractor 

pull" competition.  The simplified model was simple enough that we were able to derive a single equation 

for the distance travelled by the rig as a function of time.  The single equation was useful because it 

provided some insight into the dynamics of a run and allowed us to quantify roughly what was going on. 

 

On the other hand, a single equation suffers from two big disadvantages.  Firstly, it can only describe the 

activity in a single "mode" of operation.  The most important mode in a tractor pull has the truck or 

tractor firmly on the ground.  But, the single equation does not describe what happens when the rig begins 

to operate in some other mode, such as spinning its wheels.  Secondly, keeping the model simple meant 

that we had to ignore certain physical realities.  For example, we assumed that the effective height of the 

sled was the same as the effective height of the truck.  As another example, we assumed that the entire rig 

was a rigid body; its wheels translated along with the rest of the rig, but did not turn. 

 

In this paper, we will enhance the dynamics of simplified model to make it more realistic.  We will break 

the rig into five separate rigid bodies, being the three sets of wheels, the truck's chassis and the sled's 

chassis.  The cost of making the enhancements is that we will no longer be able to perform closed-form 

integration of the equations of motion, and will have to integrate numerically instead. 

 

Part I -- Dynamics of the truck's front wheels, which are not driven wheels 

 

In the earlier paper, we used Newton's Law, , to calculate the acceleration 

of the rig along the horizontal.  I described the variant of Newton's Law which applies to rotations, 

, but we did not use it in the equations of 

motion.  We did not have to use it because we assumed that nothing would rotate.  It is true that the 

source of power in the simplified model was a rotational torque applied to the rear wheels of the truck, 

from which we calculated the horizontal force applied by the tires on the ground.  For that purpose, we 

used the definition of torque, .  But, we did not actually allow the rear 

wheels to turn, so we did not need to find their rotational acceleration. 

 

Let's consider a typical pair of non-driven wheels.  Both the front wheels of the pickup truck and the rear 

wheels of the sled fall into this category.  They are not powered, and merely turn as required to adjust to 

the instantaneous position of their respective vehicles.  The following figure shows a free body diagram 

for the front wheels of the truck.  Variables which relate to these wheels have the subscript , which 

stands for "truck wheels, front". 
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The wheels are shown in a side view and their motion will be considered only in the plane of the page.  

Five forces act on the wheels.  As is usual, the tail of each individual force is located at the point in the 

rigid body at which it acts.  (It would be customary to scale the lengths of the arrows in proportion to the 

magnitudes of the forces, but we do not yet know the numerical values.)  The five forces are these: 

 

  is the mass of the pair of wheels, so that  is the force of gravity exerted on the pair of 

wheels.  Since the wheels are rotationally symmetric, we know that the center-of-gravity lies at 

the center of the axle.  We will assume that the force of gravity can be concentrated at that point. 

  is the vertical force which the rest of the truck (the"chassis") exerts on the front axle.  I 

have assumed that the weight of the chassis causes it to bear down on the axle, so that this force 

will normally act in the downward direction.  Note that the first subscript of the forces other than 

gravity is either  for vertical and  for horizontal.   

  is the horizontal force which the rest of the truck exerts on the front axle.  As in the 

earlier paper, the direction of the rig's motion is towards the right.  If the vehicle is accelerating, it 

will push the front wheels forward in the direction of motion. 

  is the vertical force which the ground exerts on the front wheels.  This will normally be 

an upwards force, as shown.   

  is the horizontal force which the ground exerts on the front wheels.  This will normally 

be a retarding force, as shown, with a tendency to hold the bottom of the wheels stationary.  We 

will not get into the details of the ground-to-rim interaction for the non-driven wheels.  It will be 

sufficient for our purposes to assume that the non-driven wheels do not slip.  The maximum 

frictional drag which the ground can exert on the rim of the tire is equal to the coefficient of static 

friction multiplied by the vertical force acting through the ground-to-rim boundary.  We will 

assume that this maximum retarding force is always greater than the actual force  

required to hold the bottom of the wheels in place. 

 

We will assume that the lines-of-action of all of these forces, other than , pass through the center 

of the front axle.  We will assume that  acts perpendicularly to the radial vector from the center 

of the axle to the ground.  In other words, everything is "squared up" with respect to the center of the axle 

and the point of contact with the ground which lies directly below it. 

   

We will use the same - -  co-ordinate frame of reference that we used in the earlier paper.  Its axes are 

shown to the lower right of the free body diagram. Note that I have defined rotation angle  in such a 

way that it increases as the wheels move forward.  The sums of the forces in the  and -directions and 

the sum of the torques in the -direction, around the center of the front axle, are as follows: 

 

 

 

In the earlier paper, we used the symbol  for the angle by which an arbitrary wheel had rotated.  For 

convenience, we will continue to use that symbol, with the appropriate subscript for the truck's front 

wheels.  In the earlier paper, we used the symbol  for the horizontal distance an arbitrary wheel had 

travelled.  We did not have a corresponding symbol for the vertical distance an arbitrary wheel had 

travelled, since we assumed that the rig remained in contact with the ground at all times.  Let's use a new 

set of symbols for the distance travelled by the front wheels of the truck.  Let  and  be the 



~ 3 ~ 

 

absolute co-ordinates of the front axle.  We will measure  upwards from the ground and  from 

some spot related to the start of the run.  Defined in this way,  and  cannot be said to be the 

"distances travelled" by the front wheels, but the distances travelled can easily be found from them by 

subtracting their starting values. 

 

The horizontal acceleration of the wheels at any instant in time is the second derivative of the horizontal 

distance travelled. The vertical acceleration of the wheels at any instant in time is the second derivative of 

the vertical distance travelled.  The rotational acceleration of the wheels at any instant in time is the 

second derivative of the angle by which the wheels have rotated.  Note that, in Equation  following, 

the rotational acceleration around the -axis has a minus sign.  This arises because I defined angle  

in such a way that it increases as the wheel rotates around the negative -axis.  We can state these 

relationships as: 

 

 

 

To apply the linear variant of Newton's Law, the relevant physical parameter is the mass of the wheels, 

.  The physical parameter needed to apply the rotational variant of Newton's Law is the moment of 

inertia.  For the moment of inertia, we will use the symbol .  I will explain presently how to calculate 

this quantity.  One can think of the mass of the wheels as their resistance to moving in response to an 

applied force.  In a like way, the moment of inertia of the wheels is their resistance to rotating in response 

to an applied torque.  Newton's Law applied to the front wheels of the truck can be written as: 

 

 

 

This is the set of three equations of motion which apply to the front wheels.  We cannot solve them in 

isolation.  Each of the five forces is associated with an equal and opposite force which is applied to some 

other body.  The reaction to the force of gravity , for example, is the upwards pull which is 

experienced by the center of the Earth.  We don't really care how the Earth responds to the pull of the 

wheels.  But we do care about the equal and opposite forces associated with two of these five forces, 

 and .  The reaction forces are experienced by the truck's chassis, which is an integral 

part of the rig.  There is said to be a "coupling" between the equations of motion for the front wheels and 

the equations of motion for the truck's chassis.  Both equations of motion will need to be solved 

simultaneously.  In fact, we are going to divide the rig up into five separate rigid bodies, each with its 

own three equations of motion.  There are couplings between various pairs of these five bodies, with the 

result that all 15 equations of motion will need to be solved simultaneously    

 

The three equations of motion involve seven unknowns: accelerations in the three variables ,  

and , a pair of ground forces and a pair of chassis forces.  Even if we expect to get two more pieces 
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of information, in the form of two more equations, when we solve the equations of motion for the chassis, 

we will still have an under-constrained set of equations.  There will still be two more unknowns than 

equations.  Resolving the shortfall is most easily done if we consider certain physical states, or cases, in 

which the front wheels can be in.  There are three distinct states. 

 

Case Front #1 -- The front wheels are in the air 

 

If the front wheels do leave the ground, then the ground can no longer exert any vertical or horizontal 

forces on the wheel.  I will call this condition "airborne".  Mathematically, we can describe this state as: 

 

 

 

Note the inequality in  which describes the front wheels being above the ground.  Of course, 

when , the wheels are on the ground.  A less-than inequality is not physically possible since 

it would correspond to the wheels somehow sinking into the ground. 

 

When the wheels are airborne, the equations of motion reduce to: 

 

 

 

There are only five unknowns now and a solution should be possible.  The third equation is a second-

order differential equation in the single variable  which sets the rotational acceleration of the front 

wheels to zero.  The rotational speed is the first integral of the rotational acceleration, so the rotational 

speed of the front wheels will be constant.  In fact, this constant rotational speed will be the rotational 

speed at which the wheels were turning at the instant they left the ground.  Mathematically, the wheels 

will keep spinning forever at this speed or, at least until the wheels come back into contact with the 

ground.  In reality, the wheels will not keep spinning in the air forever.  There is some friction in the axle 

that will absorb energy from the spin and slow the rotation.  We are going to ignore this little bit of 

rotational drag. 

 

Case Front #2 -- The front wheels are on the ground 

 

When the front wheels are in contact with the ground, then the rims of the wheels do not slip with respect 

to the ground.  As we saw in the earlier paper, this requires that the rate at which the circumference of the 

wheels comes into contact with the ground must be equal to the rate at which the wheels are moving 

forward.  This relationship applies not just to the horizontal speed, but to the horizontal acceleration as 

well. Mathematically, we can express the accelerations' relationship in this state as: 

 

 

 

We can notionally add this equation to the three which constitute the equations of motion.  Equation  

is a kinematic relationship, or constraint, which applies whenever the front wheels are on the ground.  
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Even adding this extra equation is not enough to give a unique solution.  There is still one more unknown 

than there are equations.  Before I describe how we can resolve this shortfall, let me show what happens 

when we substitute Equation  into the equations of motion.  We can re-arrange Equation  to 

isolate the horizontal ground force .  After substituting for it, the first two equations of motion 

reduce to: 

 

 

 

Notice that the first equation looks a lot like Newton's Law, .  In fact, it 

is exactly in the form of Newton's Law if we treat the factor  as the "effective mass" of 

the wheels.  In other words, for the purposes of calculating their linear acceleration, the rotation of the 

front wheels can be treated like, and has the same effect as, an increase in their mass.   

 

Notice that the second equation also looks a lot like Newton's Law.  In fact, it is exactly in the form of 

Newton's Law if we interpret the factor  as the "effective vertical acceleration" of the 

wheels.  The term is the sum of the gravitational force and the reaction force to the acceleration of the 

wheels as they travel upwards. 

 

Case Front #2A -- The front wheels are on the ground, and stay on the ground 

 

It might be tempting to say: if the front wheels are on the ground, then the sum of the vertical forces must 

be zero.  That is not necessarily so.  It is true that, if the sum of the vertical forces is zero, then the front 

wheels will say of the ground.  In fact, that is exactly what we would say if we were looking for a "static 

equilibrium" for the wheels.  But, what if the front wheels are just on the verge of going airborne.  It's best 

if we look at two sub-cases of the Front #2 case. 

 

If the front wheels are on the ground, and are expected to stay on the ground, then the net vertical force 

must be zero.  An equivalent description of this situation, in terms of acceleration, is that the vertical 

acceleration is zero.   We can write down this situation mathematically as: 

 

 

 

One can look at this as either adding another equation or as eliminating one of the unknowns.  Either way, 

the number of equations is brought into balance with the number of unknowns, making a solution 

possible. 

 

Case Front #2B -- The front wheels are on the ground, but are on the verge of going airborne 

 

Two things must happen at the same instant when the front wheels make a transition from being on the 

ground to being airborne.  The vertical force of the ground on the wheels  must be zero and the 

vertical acceleration  must be non-zero.  Mathematically, we cannot say that one causes the 

other or vice versa.  They happen together.  Knowing that  has the effect of reducing the 

number of unknowns by one, once again making the set of equations soluble. 
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There is a certain symmetry between the Front #2A case and the Front #2B case.  We set an acceleration 

equal to zero in the former; we set a force equal to zero in the latter. 

 

It will not be very convenient if we have to set up and solve different sets of equations for different cases.  

As we will see, there are also different cases for the truck's rear wheels and for the sled's motion.  It will 

be more convenient to have a single set of equations which can handle all of the various cases.  One way 

to accomplish that is to use binary flags which cause certain terms or even equations to be included or 

excluded from the set.  I propose to use two binary flags for the truck's front wheels.  I will define them as 

follows: 

 

State of truck's front wheels   

Case Front #1: Wheels are airborne   

Case Front #2A: On ground; remain on ground   

Case Front #2A: On ground; ready for take-off   

 

The subscript of  is intended to be descriptive.  When the "truck's front wheels are airborne", it is 

equal to one.  When they are not airborne, it is equal to zero.  The flag  does not mean anything 

when the wheels are in the air but, when they are on the ground, it is equal to one when the "truck's front 

wheels are ready for take-off".  Using these flags, we can combine everything we know about the state of 

the truck's front wheels into the following set of equations: 

 

 

 

It makes sense to combine Equations  and .  The vertical force of the ground on the front 

wheels is identically equal to zero in two of the cases.  We we combine them as follows: 

 

 

 

Having combined two of the equations leaves seven equations.  They involve seven unknowns.  But, they 

are not soluble.  The reader can confirm that, for any combination of the binary flags, two of the equations 

be become trivial identities .  So, we will always have exactly five non-trivial equations.  That's 

good, because the front wheels interact with the truck's chassis and the interaction will be the source of 

two more equations, which involve the two chassis forces. 
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Part II -- Dynamics of the sled's rear wheels, which are also non-driven wheels 

 

Like the front wheels of the truck, the rear wheels of the sled are not driven.  If we use the subscript , 

which stands for "sled wheels, rear", then we can take over all of the results from Part I.  In fact, the rear 

wheels of the sled are even simpler.  We do not expect them to rise off the ground, so there are not 

multiple cases.  In other words,  at all times.  Not only that, but the net vertical force is 

always zero.  These wheels are in a static vertical equilibrium.  The equations of motion of the rear 

wheels of the sled can be written down by inspection from Equation  as follows: 

 

 

 

Since these wheels remain in contact with the ground, and do not slip, the following circumference versus 

distance relationship holds true as well:  

 

 

 

We can combine Equations  and  into a single set of equations, as follows: 

 

 

 

There are six unknowns: accelerations in the two variables  and , a pair of ground forces and a 

pair of chassis forces.  A solution is possible.  These four equations will be augmented by two more when 

the interaction between the sled's chassis and its rear wheels is taken into account. 

 

 Part III -- Calculating the moment of inertia of a wheel 

 

As I have said, a moment of inertia is an object's resistance to a rotational force, which one calls torque.  

Let's consider the simplest case first, of a point mass  on the end of a massless stick with length .  We 

will try to rotate the mass around the other end of the stick by applying torque .  (These are generic 

symbols and do not relate specifically to the truck, the sled or their wheels.)  The following figure shows 

the setup. 
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Since the stick is fixed at one end, the mass revolves around the fixed end in a circle with radius .  At any 

instant in time, the mass is moving in a direction which is tangent to its orbit, which is to say, in the 

direction which is perpendicular to the stick.  In the figure, I have shown an angle , which is the Greek 

letter "theta", which is measured from a starting position defined, arbitrarily, as the dotted horizontal line.  

As we have seen before, the distance travelled around the circumference of a circle is related to the angle 

subtended by the arc, and the constant of proportionality is the radius.  So, the speed  of the mass is 

related to the rate of change of the subtended angle  by: 

 

 

 

The direction of the speed changes as the mass revolves, but the instantaneous speed is always given by 

Equation .  If the mass happens to be revolving around the rotation axis at speed , and no torque is 

applied, then the mass will continue to orbit at this constant speed.  It will nevertheless be accelerating, 

inwards, along the axis of the stick.  This is the centripetal acceleration which counteracts the so-called 

centrifugal force.  Circular motion is a special case where the acceleration is such that it changes the 

direction of travel of an object without changing its speed.  When we apply a non-zero torque, we will 

cause changes in the speed of travel as well. 

 

Let's consider a very short interval of time during which the object moves a very short distance along the 

circumference of its circular orbit.  We can easily imagine such a short interval and such a short distance 

that the object travels, for all intents and purposes, along a straight line segment.  If torque  is being 

applied to the other end of the stick during this interval, then the point mass will experience a force along 

its direction of travel during the interval equal to the torque divided by the lever-arm .  If we let  be the 

mass's linear acceleration along the straight line during this interval, then Newton's Law for linear motion 

can be written as: 

 

 

 

Since the acceleration  is the rate of change of the speed , we can combine Equations  and  as: 

 

 

 

This has exactly the form of the variant of Newton's Law for rotational acceleration, 

, where the moment of inertia is .  For a point mass, 

the moment of inertia is the mass multiplied by the square of the radius of the orbit. A point mass twice as 

heavy resists a torque by twice as much.  A point mass twice as far away resists a torque by four times as 

much.  

 

The units of a moment of inertia are mass multiplied by distance squared.  In English units, we would say 

pound-inch-squared or pound-foot-squared.  In S.I. units, we would say kilogram-meter-squared. 

 

The concept and derivation of the moment of inertia of a point mass can be extended to any rigid object, 

including a three dimensional one.  The trick is to divide the rigid object up into a large number of tiny 



~ 9 ~ 

 

bits, and to deal with each little bit as if it was a point mass.  Consider the homogeneous disk shown in 

the following figure.  The disk does not have to be thin; it can have thickness.  The moment of inertia of 

the little bits depends only on their radial distance from the axis of rotation.  It does not depend on their 

displacement along the axle, so we can think of a thick disk as being the sum of many thin disks glued 

together face-to-face.  

 

 

 

 

 

 

 

 

 

 

 

 

If the disk has an outer radius  and a total mass , then its mass per unit area of face is equal to .  

We will divide the face up into little bits in two steps.  Firstly, we will divide the face up into annuli.  An 

annulus is a circle with a circular hole cut out of the middle, just like a washer.  One such annulus is 

shown in the figure.  It has an inside radius  and an outside radius that is just a tiny bit  bigger.  The 

outside radius of the annulus is .  Both the inside and outside circumferences of the annulus are 

shown as dotted circles in the figure.  We will divide up the entire disk into a succession of such annuli, 

where the outer radius of each annulus is equal to the inner radius of the next bigger annulus, and so on 

until we reach the rim of the disk. 

 

Secondly, each annulus is divided up by chopping the 360° around the circle into small angles.  I have 

shown an angle , which is the Greek letter "psi", which is defined by a radial dotted line.  A nearby 

radial dotted line is positioned at angle , where  is a very small angle.   

 

The intersection of the annulus and the small change in angle  is a small rectangular-shaped area.  It is 

not a true rectangle.  Two of its sides are arcs of circles and so are slightly curved.  Its other two sides are 

radii of the same circle and so are not exactly parallel.  However, as we imagine that  and  become 

smaller and smaller, the small bit of area becomes more and more rectangular.  In the limit as the two 

differentials become infinitely small, the area becomes exactly rectangular.  Like any rectangle, its area is 

the product of its base times its height, .  If we multiply this area by the mass of the disk 

per unit area, we get the mass of the disk enclosed by this rectangle: .  It should be 

apparant that I have used the symbol  for the mass of this little rectangle. 

 

We can now apply the formula for the moment of inertia of a point mass, .  

We have just calculated the mass  and, by definition, the radial distance of the little rectangle is .  If 

we let  be the moment of inertia of the little rectangle, then: 

 

 

 

This formula applies to each little rectangle into which we can divide the disk.  "Adding up" the  

contibutions to the total moment of inertia  of the disk as a whole is accomplished by integrating 

Equation  over the physical extemes of the disk.  The integration is straight forward: 
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The moment of inertia of a uniform disk is quite similar to that of a point mass.  The difference is the 

factor one-half.  As expected, the units are the same, too, being mass times distance squared. 

 

As a quick numerical example, suppose we have a uniform disk which has a mass of 100 pounds (45.4 

kilograms) and a diameter of 30 inches (radius = 0.381 meters).  Its moment of inertia is 45.4  0.381
2
   

6.59 kg-m
2
.  This is roughly equivalent to 17 pounds on the end of a yard-stick.  A real wheel, of course, 

is not a uniform disk.  It likely has a metal rim and rubber tires and, in any event, has various amounts of 

these materials at various radii from the center.  Calculating the moment of inertia of a real wheel can be 

done by adding up the little bits, as we have done, but requires a complete specification of the mass as a 

function of radial distance. 

 

Let's take the concept to the next stage.  What if a rigid body is subjected to a combination of rotation and 

revolution?  There is a difference between rotation and revolution.  The Earth, for example, rotates once 

per day but revolves once per year.  Rotation takes place around a body's center of mass while revolution 

is the rotation of the center of mass around some other point.  To explore this concept, let's consider a 

uniform disk with mass  and radius  bolted to the end of a stick with length .  This is shown in the 

following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

The two black dots are the bolts that secure the disk to the stick.  It must therefore be the case that the 

angle by which the disk rotates around the rotation axis is identical to the angle by which the disk 

revolves around the revolution axis.  To calculate the moment of inertia of this body, we will follow the 

procedure we did above.  We will divide the disk up into annuli and radial sectors.  A typical small 

rectangle will again be located by radius , measured from the rotation axis, and by angle , measured 

counter-clockwise from the horizontal.  But, to calculate the moment of inertia around the revolution axis, 

mass , radius  

torque  
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instantaneous orbital speed  

instantaneous angle  

revolution axis 
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we need to convert the radius and angle by which the small rectangle is located into terms referenced to 

the revolution axis.  We will use the trigonometry shown in the following figure to do the conversion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The instantaneous location of the rectangle  can be specified using the Cartesian co-ordinates  and 

, which are computed using the following trigonometry: 

 

 

 

The radius  from the revolution axis to the rectangle can be found by applying the Pythagorean 

Theorem: 

 

 

 

The mass of the small rectangle is the same as it was before, .  Now, however, the 

expression for the moment of inertia of the point mass  must depend on its radius from the revolution 

axis, as follows: 
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To find the total moment of inertia, we integrate over the extremes of the disk.  The integration is a little 

bit more involved than it was before, since it involves a trigonometric term.  One proceeds as follows, 

integrating over the angle  first: 

 

 

 

This is a very important result.  It says that the total moment of inertia is the sum of the M.O.I. of the disk 

around its central axis (the  term) plus the M.O.I. of the disk's total mass treated as if it is a point 

mass revolving around the revolution axis (the  term).   

 

Part IV -- Dynamics of the rear wheels of the truck, which are driven wheels 

 

The equations which describe the dynamics of a driven wheel are not much more complicated than those 

of a non-driven wheel.  Driven wheels are more complex, or course, but the extra complexity is required 

to calculate the applied forces,  not in the equations of motion themselves. 

 

As a starting point, let's 

consider the rear wheels of 

the truck, which are a driven 

pair of wheels.  The figure 

shown here is a free body 

diagram for these wheels.  

The subscript  stands for 

"truck wheels, rear". 
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There are only three differences compared with a pair of non-driven wheels, two of which are merely 

changes in the directions in which the horizontal forces are expected to act.  The differences are these: 

 

 The chassis, through the powertrain, applies a clockwise torque  to the rear wheels.  Of 

course, the wheels exert an equal and opposite torque on the truck's chassis. 

 The horizontal force of the chassis on the axle is a retarding force  on the driven wheels.  

The wheels push the chassis ahead, and the reaction from the chassis is a force holding the wheels 

back. 

 Similarly, the expected direction of the horizontal force of the ground on the wheels  is 

reversed.  The rims of the tires push backwards on the ground and the ground responds by 

pushing forward on the rims. 

 

The sums of the forces in the  and -directions and the sum of the torques in the -direction, around the 

center of the axle, are as follows: 

 

 

 

The distances  and  and the angle  can be defined for this driven wheel in the same way as 

they were defined for the non-driven wheels above.  Therefore, the expressions for the linear and 

rotational accelerations in Equation  apply to driven wheels, as well. 

 

We will use  for the mass of the truck's rear wheels and  for their moment of inertia.  Newton's 

Law applied to the wheels can then be written as: 

 

 

 

Like we did for the non-driven wheels, we can specify some constraints.  The vertical distance  will 

always be equal to the wheels' radius .  The drive wheels may slip, but they will never rise off the 

ground.  Since  at all times, both the vertical speed  and the vertical acceleration 

 must be identically zero.  So will the net vertical force.  We can re-write Equation  as 

follows: 

 

 

 

Although the truck's drive wheels are always in contact with the ground, they may or may not be slipping.  

The proportionality between the wheels rotational speed and translational speed cannot be taken for 

granted.  In any event, it looks like we will have to consider two cases for the rear wheels as well.  An 

important difference between the cases arises from the nature of the ground friction.   

 

.   
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Part V -- The ground reaction forces on the rear wheels of the truck 

 

I am going to refer to both coefficients of friction, the coefficient of static friction  which applies 

when the rear wheels do not slip and the coefficient of dynamic friction  which applies when they 

do.  These coefficients have the same definitions as the coefficients of friction I described in the earlier 

paper. 

 

Case Rear #1 -- The rear wheels are not slipping 

 

Let's consider first the case when the rear wheels do not slip.  When the wheels are not slipping, we will 

have the same circumferential-speed versus translational-speed relationship that obtains for non-driven 

wheels.  We write that relationship for the truck's rear wheels as follows: 

 

 

 

But, we know more than that.  The static friction which the wheels and ground can exert on each other is 

subject to a maximum value.  At a high enough applied torque, the ground will be unable to resist the 

shear force applied by the wheels.  They will begin to slip.  The maximum frictional drag is calculated in 

a way similar to the dynamic drag, but using the coefficient of static friction instead.  I will write the 

condition as:   

 

 

Note that this is an inequality.  It does not affect the calculation of the horizontal force  or 

participate in the solution of the equations of motion.  Instead, it is a condition that determines when the 

non-slipping state comes to an end and slipping starts.  Because it is an inequality, we will have to deal 

with it differently than we deal with the other equations, all of which are equalities. 

 

Case Rear #2 -- The rear wheels are slipping 

 

Now, let's consider the case when the rear wheels are slipping.  When there is slippage, the drag force is 

equal to the vertical force across the interface multiplied by the coefficient of dynamic friction.  I will 

assume that the coefficient of dynamic friction already includes the effects of noise, heat and other 

inefficiencies and so will not define another efficiency parameter.  So, when there is slippage: 

 

 

 

Equation  does not depend on the applied torque.  Nor does it depend on the speed with which the 

wheels are spinning.  This has important physical consequences.  Once the rear wheels start to slip, the 

ground reaction force is a constant.  Pressing down on the gas pedal does not increase the ground reaction 

force; it simply makes the wheels spin faster.  The only way to stop the spin is to take one's foot off the 

gas pedal and wait for the frictional drag to slow the wheels back down to a point where they grip the 

ground once more.  Usually, this means waiting for the wheels to come to a stop.  Waiting for a complete 

stop is not a mathematical necessity, but the result of two practical matters: (i) with one's foot off the gas 

pedal, there is no tactile feedback about the status of the drag, and (ii) sitting in the driver's seat, there are 

no visual cues either. 

 



~ 15 ~ 

 

At any given time during a run, we will have to figure out which of one of the cases to use.  It is one thing 

to be able to calculate the horizontal ground reaction force  for  one case or the other, but it is a 

different thing to decide which case should be used.  Nor is it as simple as comparing the tangential rim 

speed of the wheels to their horizontal speed.  If the two speeds are equal and opposite, the wheels are, by 

definition, not slipping.  But, they could be just at the point where slipping begins.  The inequality in 

Equation  will be our test for the transition point. 

 

To handle these two with a single set of equations, I will introduce another binary flag.   will 

have the value one when the wheels are not slipping and zero when they are.  The subscript should help 

one remember that the flag is active when the wheels are not slipping.  The equations which describe the 

dynamics of the truck's rear wheels can then be written as follows: 

 

 

 

Let's set the last equation -- the inequality -- aside for a moment.  Although there are five other equations, 

only four will be non-trivial at any given time.  Depending on the value of , either Equation 

 or  will vanish.  The set of equations involves six unknowns: accelerations in the two 

variables  and , a pair of ground forces and a pair of chassis forces.  (Although the torque 

 is a variable in the equations, it is not an unknown.)  A solution should be possible.  These four 

equations will be augmented by two more, which involve the two chassis forces, when the interaction 

between the truck's chassis and its rear wheels is taken into account. 

 

Part VI -- Dynamics of the truck's chassis 

 

In the enhanced model, the front and rear wheels are treated as separate rigid bodies, so the chassis does 

not include them.  The chassis does, however, feel their effects and the free body diagram will include the 

forces they exert.  We are also going to add some hitch details to the enhanced model.  The following 

figure shows the dimensions we will use for the truck.   
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The chassis consists of the collection of red line segments, which should be thought of as having no mass.  

The effective masses of the chassis over the rear axle  and over the front axle  are shown as 

the red dots.  They are assumed to be concentrated at the centers of their respective axles.  I have shown 

dotted circles which represent the front and rear wheels.  They can have different diameters, and we will 

use the symbols  and  for their radii, respectively.  Drawing the red line which represents the 

chassis horizontally at the vertical midpoint between the two axles is quite arbitrary.  The hitch ball is 

shown by a small black dot.  It is located a distance  behind the rear axle and a distance  above the 

ground. 

 

To keep track of the location of the chassis, we need to specify its horizontal and vertical co-ordinates.  

Because the front wheels might rise off the ground, we also need to keep track of the angle of the chassis's 

rotation.  We will reference all three quantities to the center of the rear axle, as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 is the horizontal distance of the rear axle from its starting position.   is the distance of the axle 

above the ground.  Angle  is the angle by which the chassis has rotated in the counter-clockwise 

direction from the horizontal.  The subscript  stands for "truck chassis". 

 

I am not going to draw the free body diagram just yet.  Here's why.  We intend to use the free body 

diagram as a reference to add up the forces and torques acting on the chassis.  To calculate the torques, we 

will need to know the lever-arms through which the torquing forces act.  However, the lengths of some of 

the lever-arms change if the chassis rotates.  Therefore, I have shown in this next figure the distances 

from which we can calculate the lever-arms when the chassis is rotated by angle . 

 

 

 

 

 

 

 

 

 

 

 

 

 

where: 
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Some trigonometry is required to determine distances  through .  I will describe first how I 

determined the relationship between the front and rear axles, and distances   and .  The following 

figure shows the relationship between the two axles (the red dots, as above) before any rotation (on the 

left) and after rotation by angle  (on the right). 

 

 

 

 

 

 

 

 

Before the rotation, the vertical and horizontal separations of the two axles are the differences in wheel 

radii  and the wheelbase , respectively.  A right triangle can be set up with these two 

distances as its short sides.  The hypotenuse  is the point-to-point distance between the centers of the 

axles and can be calculated using the Pythagorean Theorem.  I have shown an angle , which is the Greek 

letter "zi", as the angle between the vertical and the line segment connecting the axles.   

 

A similar right triangle can be set up after the rotation, as shown on the right.  The vertical angle has 

increased by the amount of the rotation, and is now .  The hypotenuse stays the same, as .  Now, 

let's compare the sines, cosines and tangents of the vertical angles before and after. 

 

 

  

We can combine these equations to get: 
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The relationship between the hitch ball and the rear axle, from which distances  and  are calculated, 

is shown before and after the rotation in the following figure.  Here, the unrotated vertical angle is shown 

as , the Greek letter "lambda".  This vertical angle decreases when the chassis rotates. 

 

 

 

  

 

 

 

 

The definitions of the trigonometric functions are as follows: 

 

 

 

which can be combined to give: 

 

 

 

Now, we arrive at last at the free body diagram of the truck's chassis, which is shown in the following 

figure.  Since we have just quantified the distances between important points on the chassis, I have not 

shown any dimensions in the free body diagram, just the forces and torques.  To avoid any confusion, I 

have shown the chassis in a rotated position. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Three forces act at the point where the front mass is concentrated: 
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  is the force of gravity acting on the concentrated front mass; 

  is the vertical force which the front wheels exert on the chassis and 

  is the horizontal force which the front wheels exert on the chassis. 

 

As usual, I have picked a direction to use as the algebraically "positive" direction of each force.  I have 

picked the direction in which we expect the forces to act when the truck is in normal operation.  The front 

wheels, for example, must be pushed forwards, which results in their applying a retarding force on the 

chassis. 

 

A similar set of three forces acts at the point where the rear mass is concentrated.  There is also the 

reaction to the torque applied to the rear drive wheels.  The relevant symbols are: 

 

  is the force of gravity acting on the concentrated rear mass; 

  is the vertical force which the drive wheels exert on the chassis; 

  is the horizontal force which the drive wheels exert on the chassis and 

  is the reaction to the torque applied to the drive wheels. 

 

The influence of the sled is felt through the tension exerted by the tow chain.  The tow chain is no longer 

necessarily horizontal in the enhanced model, so we need to take its angle into account.  The easiest way 

to do this is to resolve the tension into its vertical and horizontal components.  This is done in the figure, 

where: 

 

  is the horizontal component of the tension on the truck and 

  is the vertical component of the tension on the truck. 

 

Note that I have assumed that the tow chain is such that it will normally be pulling down on the truck's 

hitch.  We now have enough information to write down the sum of the forces and torques acting on the 

chassis. 

 

 

 

In the expression for the sum of the torques, I have identified the force which gives rise to each 

constituent torque.  I have added or subtracted the torque from the total depending on whether it normally 

acts in the positive or negative -direction, respectively. 

 

To apply Newton's Law, we need the total mass of the chassis, which is , and the moment of 

inertia of the chassis, for which we will use the symbol .  Since we expect that the truck will rotate 

around its rear axle if it rotates at all, we will want to use the moment of inertia which applies to rotations 

around that axis.  The numerical value of the moment of inertia depends on the rotation axis chosen, in 

the same way that the numerical value of a torque depends what axis is chosen for measuring the lever-

arm. 
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The accelerations of the chassis are slightly different from those for the wheels which we looked at above.  

The linear accelerations are the same but the rotational acceleration needs a positive sign rather than a 

negative sign.  I defined angle , which describes the rotation angle of the chassis, in such a way that 

 increases as the chassis rotates around the positive -axis.  On the other hand, I defined the rotation 

angles  for the wheels so that they increased by rotations around the negative -axis.  For the chassis, 

the accelerations are given by: 

 

 

 

and the equations of motion can be written as: 

 

 

 

We have only one constraint: that the net force in the -direction is zero.  We know this because the 

chassis does not rise off the ground in the vertical direction.  That is not to say that the front wheels 

cannot rise up off the ground.  They can but, when they do, it is a result of the chassis's rotation, not a 

result of the chassis's upward translation.  Enforcing the constraint allows us to write this set of equations 

as follows: 

 

 

 

There are eight unknowns in these three equations: accelerations in the two variables  and , a pair 

of forces from the front wheels, a pair of forces from the rear wheels and a pair of forces from the tow 

chain.  When we combine these equations with those of the front wheels, we will in effect be adding two 

more equations, which involve the two front wheel forces.  When we combine these equations with those 

of the rear wheels, we will be adding two more equations, which involve the two rear wheel forces.  

Similarly, when we combine these equations with those of the sled, we will be adding another two, which 

involve the tow chain forces.  In effect, we will have a total of  equations.   

 

At first blush, it looks like we have too many equations, one more than the number of unknowns.  But, 

that's not true.  We have over-counted both the number of unknowns and the number of equations.  For 

example, the horizontal location of the chassis  is not really a new unknown.  We are measuring the 

horizontal location of the truck's chassis to the center of the rear axle, which is the same spot to which we 

are measuring the horizontal location of the truck's rear wheels .  They will always have the same 
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value, notwithstanding that we have used different symbols while setting up the equations of motion.  The 

same applies to the rotation angle , which can be derived from knowledge of the vertical displacement 

 of the front wheels.  There are other kinematic redundancies, which I will describe below.  We are 

also over-counting the number of equations.  Combining the chassis's equations of motion with those of 

the front wheels does not "add" another two equations to this set.  It would be more accurate to say that it 

"removes" two equations from this set, since we already counted the information from two extra 

equations when we compared the numbers of unknowns and equations when analyzing the front wheels. 

 

This is probably a good time to stop trying to predict solubility of the equations on a rigid body-by-rigid 

body basis.  Despite my efforts to do so for the three sets of wheels, things are involved enough that we 

should defer a final check until all the equations have been written down and redundancies eliminated. 

 

Before moving on, though, I want to digress for a moment to deal with one loose end: the moment of 

inertia of the truck's chassis.  We have set up the dynamics so that the truck's rear axle is the axis of 

rotation, so we will want to know the moment of inertia of the chassis as it rotates around the rear axle.   

We modeled the chassis as two point masses.  One of them is concentrated at the rear axle itself.  Since its 

lever-arm is zero, it makes no contribution to the moment of inertia.  The other point mass is concentrated 

at the front axle, whose distance away from the rear axle is approximately equal to the wheelbase .  

More precisely, the separation between the axes is equal to the hypotenuse  shown in one of the figures 

above, whose numerical value is equal to .  Using the formula for the moment of 

inertia of a point mass, we get: 

 

 

 

The right-hand side of Equation  is the front mass  multiplied by the square of the lever-arm.  

So, why is there a "greater than" sign?  Philosophically, the right-hand side of Equation  is the 

moment of inertia of the revolution of the front-end mass around the rear axle.  What is missing from the 

right-hand side of Equation  is the additional moment of inertia which applies when bits of the 

chassis are rotated around each other.  In order to do a more detailed calculation of the moment of inertia, 

we would need a lot more information about the location and weight of the various components which 

make up the truck.  If we use the estimate of  set out in Equation , we will under-estimate the 

moment of inertia of the truck's chassis.  We should ask the question: is this under-estimation a problem?  

One can argue that it is not. 

 

Our objective is to win truck pulls.  If the front wheels of the truck leave the ground, it is a sign that the 

truck's ability to pull the sled further has pretty much come to an end.  Under-estimating the moment of 

inertia will result in over-estimating the rotational acceleration of the chassis.  The chassis will rotate 

more quickly than the use of the correct, and larger, moment of inertia would predict.  Rotation of the 

chassis is an interesting phenomenon to see but, once it starts, there will not be much, if any, further 

progress down the course.  In any event, if you can find or derive a better value for  than the estimate in 

Equation , use it. 

 

Part VII -- Dynamics of the sled's chassis 

 

In this section, we will look at the sled or, more precisely, the chassis of the sled.  The rear wheels of the 

sled have been dealt with as a separate rigid body.  The following figure shows the dimensions of the  

sled we will consider in the enhanced model. 
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The sled has not changed too much from the simplified model.  It still has the masses concentrated over 

the rear wheels  and over the center-line of the pan .  Although the sled has not changed 

physically, the numerical values of one or both of these masses will need to be changed because the rear 

wheels are no longer included as part of the chassis.  The wheelbase of the sled  is defined as it was 

before.  The moveable weight has the same mass  and instantaneous relative location  as it 

had before.   

 

I have changed the definition of the deck height .  Here, it is equal to the distance above the ground of 

the center of mass of the moveable weight.  In practice, this height will be somewhat above the top of the 

rails which carry the moveable weight.  Also new is the hitch, whose ball is located a distance  ahead of 

the center-line of the pan and a distance  up from the ground.  Since the sled is not expected to rotate, 

we can jump right in and look at the free body diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

There are three forces which act in the neighbourhood of the rear of the sled. 

 

  is the force of gravity acting on the concentrated rear mass; 

  is the vertical force which the rear wheels exert on the chassis and 

  is the horizontal force which the rear wheels exert on the chassis. 

 

I have assumed that the first force, the gravitational one, acts at a point at deck height.  The latter two 

forces, which are equal and opposite to the forces which the sled's chassis exerts on the rear wheels, are 

assumed to act at the center of the rear axle. 

 

The force of gravity on the moveable weight is unchanged from the simplified model.  It is and is 

assumed to act at the center of mass of the weight. 
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There are three forces which act in the neighbourhood of the pan. 

 

  is the force of gravity acting on the concentrated front mass; 

  is the vertical force with which the ground pushes up on the pan and 

  is the horizontal drag of the ground on the bottom of the pan.  (Consistency might suggest 

that one use the symbol  for this important force.  I will defy consistency and continue to 

use  for drag.) 

 

The force of the tow chain on the hitch completes the picture.  As with the truck, it is easiest if we resolve 

the tension in the tow chain into its horizontal  and vertical  components. 

 

We can now write down the sums of the forces.  We get: 

 

 

 

To write down the sum of the torques, we need to pick an axis of rotation.  For convenience, we will use 

the center of the rear axle.  Bear in mind that the radius of the rear axle is not the same as the height of the 

deck.  The sum of the torques is: 

 

 

 

To write down the equations of motion, we need to know the total mass of the sled's chassis, which is 

equal to .  If we were purists, we might also want to know the moment of inertia of 

the sled's chassis.  But it is not something we need to know.  Since the sled will never  rotate, we can set 

the sum of the torques to zero.  We can do that merely by setting the right-hand side of Equation  to 

zero.  In addition, since the sled will remain on the ground, we can set the sum of the vertical forces to 

zero.  The only motion the sled makes is a horizontal translation.  We will use the symbol  for the 

instantaneous location of the rear axle with respect to its location when the rig is at the starting line.  

Then, the equations of motion are: 

 

 

 

Part VIII - The ground reaction forces on the pan 

 

When the sled is moving, the horizontal drag on the pan  is determined by the coefficient of 

dynamic friction , as follows: 
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where  is the vertical force acting across the boundary between the bottom of the pan and the 

ground.   

 

When the sled is stopped, a slightly different relationship holds: 

 

 

 

where the maximum frictional drag the ground can sustain is equal to the coefficient of static friction 

multiplied by the vertical force across the boundary.  This is an inequality, so will not help in finding the 

value of .  Instead, Equation  is a condition that determines when the pan's non-slipping state 

comes to an end and the sled starts moving.  However, when the sled is stopped and expected to remain 

stopped, we know that the horizontal acceleration is equal to zero: 

 

 

 

It is apparent that there are two cases for the drag on the pan, one when the sled is moving and the other 

when it is stopped.  The procedure to calculate the drag  is going to differ between the two cases, 

but the same equations of motion, Equation , apply equally to both cases.  Like we have done before, 

we can combine the cases into a single set using another binary flag.  For this purpose, we will use the 

flag , where the subscript refers to the "sled moving" and the value is set to one when the sled is 

moving.  When the sled is stopped, .  Then, the equations which describe the dynamics of 

the sled are as follows: 

 

 

 

The alert reader may compare what we have done here with what we did with the truck's front wheels.  

For the front wheels, we divided things into three cases: (i) the front wheels airborne, (ii) the front wheels 

on the ground and expected to remain on the ground and (iii) the front wheels on the ground but also on 

the verge of going airborne.  Why do we not have three cases here: (i) the sled moving, (ii) the sled 

stopped and expected to stay stopped and (iii) the sled stopped but on the verge of starting to move?  It is 

not necessary here since the difference between the two cases only involves two variables: a horizontal 

force and a horizontal acceleration.  The differences between the cases for the front wheels involved three 

variables: a relative tangential speed, a vertical force and a vertical acceleration.  If took more work, and 

two binary flags, to sort out the possibilities there.   
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Part IX -- Collating the equations of motion 

 

Let me bring together in this section, for future reference, all of the equations of motion and the 

constraints which we identified above.  I will make the following changes before transcribing them.  

 

There are certain pairs of forces (and a torque) between some of the rig's constituent parts which are at all 

times equal and opposite.  The free body diagrams were drawn in such a way that these equal and 

opposite forces (and the torque) were drawn in opposing directions.  No minus signs are needed.  We can 

set equal the magnitudes of the following equal and opposite forces (and the torque): 

 

 

 

In addition, the forces at the end of the tow chain must always be equal and opposite: 

 

 

 

We will substitute the variables on the left-hand sides of Equations  and  for the variables on the 

right-hand sides wherever they occur.  The complete equations of dynamics can then be written as: 

 

 

 

and 
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I will eliminate the internal variables which represent the forces between the wheels and their respective 

chasses.  Although the tensions in the tow chain are internal forces from the point-of-view of the rig, I 

will not eliminate them.  I will use the following equations as the sources expressions for the internal 

variables to be eliminated. 

 

Variable Equation 

  

  

  

  

  

  

 

The set of equations which remains after the substitutions is as follows.  For convenience in tracing, I 

have not changed the letter suffixes in the equation identification numbers. 
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How many unknowns are there?  There are six forces acting between separate rigid bodies in the rig; they 

are listed in Equation .  The torque is not an unknown; the assumptions we will make about the 

powertrain will quantify the torque.  There are the two forces acting on the tow chain, as listed in 

Equation .  There are four vertical ground-reaction forces -- , ,  and  

-- one for each point of contact between the rig and the ground.  There are four corresponding horizontal 
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ground-reaction forces -- , ,  and .  There are five horizontal distances -- 

, , ,  and  -- one for each of the constituent rigid bodies.  There is only one vertical 

distance --  -- since the truck's front wheels are the only ones which can rise off the ground.  And, 

there are four rotation angles --  , ,  and  -- one for each pair of wheels and one for the 

truck's chassis.  The parameters  through  are not independent variables; they can all expressed in 

terms of the angle , which we have already noted as an independent variable. 

 

This is a total of  variables.  There are 20 equations, not all of which will 

be non-trivial at any time.   

 

We will not be able to get a unique solution unless the number of non-trivial equations is equal to the 

number of variables.  We are going to need more pieces of information.  Here is how I think we can get at 

least some of them. 

1. We do not need five different horizontal distances.  Let's pick the location of the rear axle of the 

sled  as the one which is truly independent.  We can express the other four distances in terms 

of distance  and angle . 

2. We can also express the vertical distance  in terms of the truck's rotation angle . 

3. The horizontal and vertical components of the tension in the tow chain are not independent.  They 

can both be expressed in terms of a single variable, the total tension force in the tow chain, for 

example, and the truck's rotation angle .  

4. The binary flags vary among the cases.  Some settings of these flags, either to one or to zero, 

cause some equations to become trivial or redundant, but also set the values of some of the 

variables.  I am hopeful that the dependencies will work themselves out. 

 

The additional information described in paragraphs 1 through 3 are related to the tow chain.  I will 

describe this matter in the next section. 

 

Part X -- The tow chain 

 

The tow chain is the only connection between sled and the truck.  Its length and angle determine their 

their horizontal separation.  If the truck does not rotate, then the tow chain is static and the horizontal 

separation remains constant.  Things become interesting when the truck rotates.  Not only does the 

horizontal separation of the vehicles change, which requires that their horizontal accelerations be 

different, but the ratio of the horizontal and vertical forces which are transmitted between them changes 

as well. 

  

I set up the variables so that the horizontal locations of the sled's chassis  and the sled's rear wheels 

 are measured to the same spot, being the center of the sled's rear axle.  Similarly, the horizontal 

locations of the truck's chassis  and rear wheels  are measured to the same spot, being the center 

of the truck's rear axle.  Therefore: 
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Let's look at the front wheels of the truck, whose horizontal and vertical locations are given by  and 

, respectively.  When the truck is on the ground, the horizontal separation between its axles is equal 

to the wheelbase .  If the truck rotates, the horizontal separation is the distance  which we illustrated 

and quantified in an earlier section.  When the truck is on the ground, the front axle is a distance  

above the ground.  If the truck rotates, this distance increases to , where distance  was also 

illustrated and quantified in the earlier section.  Recall that  and  depend on the rotation angle of the 

chassis .  In any event, we can express the absolute co-ordinates of the front wheels in terms of chassis 

variables as follows: 

 

 

 

To calculate the horizontal and vertical speeds of the front wheels, we need to take the derivatives of  

and .  We proceed as follows, using the expressions for  and  from above: 

 

 

 

Take a close look at the arguments of the sine and cosine terms, and their coefficients.  After comparison 

with the definitions of  and , it is apparent that: 

 

 

 

Then, for the accelerations, we derive a second time, as follows: 

 

 

 

and 
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Again comparing certain factors with the definitions of  and , it is apparent that: 

 

 

 

Note the symmetry between the two equations.  When the truck is firmly on the ground, and the truck's 

rotation angle remains zero, the first expression says that the horizontal accelerations of the truck's front 

wheels and the truck's chassis are the same, and the second expression says that the vertical acceleration 

of the front wheels is zero.  Both of these are as we expect. 

 

Next, we need to relate the horizontal locations of the truck  and the sled .  They are connected by 

the tow chain.  We will continue to assume, even in the enhanced model, that the tow chain has zero mass 

or, alternatively, that its mass is included in the masses used for the vehicles.  Even so, the tow chain 

imposes another constraint on the rigid bodies in the rig.  We will use the symbol  for the nominal 

length of the tow chain.  During normal operation, when the tow chain is taut, the relevant dimensions are 

the following: 

 

 

 

 

 

 

 

 

 

 

Note that  was defined above as the nominal height above ground of the truck's hitch ball.  If the truck's 

chassis rotates, the height of the ball will decrease.  Its instantaneous height is the quantity , 

where the distance  was described above.  Using the distance , the horizontal extent of the 

tow chain can be found using the Pythagorean Theorem, and is the radical shown in the figure.  Of course, 

if the truck is not rotated, then the truck's ball is a height  above ground and the radical reduces to 

. 

 

We are interested in the horizontal component of the tow chain's length because it is the only dimensional 

variable which links the horizontal distances, speeds and accelerations of the truck and the sled.  The 

following figure shows the five rigid bodies and the definitions of their instantaneous horizontal locations.  

In the figure,  is the horizontal component of the tow chain's length.  The truck's chassis is shown 

with a bit of rotation, by angle , which has actually caused the tow chain to angle downwards. 

Length  

Ground surface 

Truck's ball 

 
Truck's ball 

Sled's ball 

 
Sled's ball 
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As we saw above, the distance variable for the sled's chassis is measured to the center of its rear axle, as is 

the distance variable for the sled's rear wheels, so .  Similarly, the distance variable for the 

truck is measured to the center of its rear axle, as is the distance variable for the truck's rear wheels, so 

.  The distance variable for the truck's front wheels  is measured to the center of the front 

axle.   

 

Each of the three distinct distance variables is measured from its location when the rig was back at the 

starting line.  Just to be clear about this matter, it means that the distance travelled by each rigid body 

must be calculated by subtracting the starting distance from the current value. 

 

Consider the location of the truck's chassis .  It can be written in terms of the location of the sled's 

chassis  as follows: 

 

 

 

The horizontal speed of the truck's chassis is the first derivative of this expression with respect to time.  

Since  and  are constants, their derivatives are identically equal to zero and we are left with: 

 

 

 

Let's tackle the derivative of  first. 

 

 

 

It looks like we are going to need to find the derivative  and well as .  Proceeding first 

with , we get: 
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Similarly,  is calculated as: 

 

 

 

Substituting Equations  through  into Equation  gives: 

 

 

 

The horizontal acceleration of the truck's chassis is the derivative of Equation  with respect to time.   

 

 

 

and, continuing: 
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I will not try to simplify this expression further since we are going to be computerizing the calculations 

anyway.  Note that this expression has the same functional form as the acceleration of the front wheels.  

The horizontal acceleration of the truck's chassis is equal to the horizontal acceleration of the sled's 

chassis plus two types of terms.  One type is proportional to the square of the first derivative of the truck's 

rotation angle.  The other is proportional to the second derivative of the truck's rotation angle.  This is a 

pretty common sight in dynamics and, for that matter, in second derivatives generally.  We will write 

Equation  as follows: 

 

 

 

where the functions  and  are functions only of the rotation angle  and are defined by 

their position in Equation . 

 

Fortunately, this is as far as we need to take the relationships among the distances.  We have the ones we 

need.  We will substitute for all kinematic variables other than  and , leaving them as the only two 

independent variables needed to describe the rig's location. 

 

We do, however, want an expression relating the horizontal and vertical components of the tension force 

in the tow chain.  Since the tow chain is a chain, it can resist a force which tends to pull it apart, which 

one calls a "tension" force, but it cannot resist a compressive force.  The tension force must act along the 

axis of the chain.  Therefore, the angle of the forces on its two ends will be the same as the physical slope 

of the chain itself.  From the diagram of the chain above, we can write the slope of the chain as follows: 
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The ratio of the horizontal component of the tension to the vertical component must be the same. 

 

 

 

Combining the two expressions gives: 

 

 

 

To simply the algebra, I propose to introduce the symbol , which is the Cyrillic letter "yoo", as the 

factor of proportionality between the vertical and horizontal forces in the tow chain, thus: 

 

 

 

Although this is not an equation of motion per se, we will add Equation  to our set of equations. 

 

Part XI -- The equations of motion revisited 

 

We will start with the equations of motion in Equation .  We will make the appropriate substitutions 

from the preceding section to remove references in all of the equations to the second derivatives 

, , ,  and .  In a couple of equations, two 

successive substitutions are needed.  In addition, we will also add Equation  to the set.  After all is 

said and done, we have the following 21 equations. 
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I am going to re-order the equations in anticipation of writing them in matrix format as a prelude to 

inversion.  At the same time, I am going to make an ordered list of the unknowns.  My intention is to 

populate the main diagonal of the matrix with as many non-zero entries as possible.  Planning the first 

dozen or so entries in the lists is pretty straight forward. 

 

Matrix row # Equation Unknown Value of A(i, i) 
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After this, things get less deterministic.  Most of the remaining equations involve one or more binary flags 

so there is less assurance that some or all of the coefficients will be non-zero when it comes time to invert 

the matrix.  I have chosen to complete the ordering of equations and unknowns as follows. 

 

Matrix row # Equation Unknown Value of A(i, i) 

    

    

    

    

    

    

    

    

 

The 19 rows in the table do not include the two inequalities.  We will test the inequalities only after we 

have found a solution.  We can write the 19 equations in the form of the following matrix equation: 

 

 

 

Vector  is the  list of the unknwons in the order set out in the third column of the table.  The 

"constant" vector  is the  list of all the terms in the equations which are not coefficients of the 

unknowns.  Any time we solve the equation, all of the terms in vector  will be known.  Each row in the 

main matrix  corresponds to one of the equations; each column corresponds to one of the unknowns.  I 

ordered the equations and variables in such a way that we are guaranteed that the elements on the 

principal diagonal are non-zero down to the eleventh row.  That is,  is non-zero for .   

 

A unique solution can be obtained only if the number of non-zero rows and columns in matrix  are the 

same.  To ensure that this will always be the case, we need to look at rows 12 through 19 of matrix .  

The following figure is a block diagram of those rows.  The elements of the matrix are not given in full.  

Only their dependence on the binary flags is shown.  To keep the size of the diagram reasonable, I have 

used the symbol  for the complement of binary flag .  In addition, I have excluded those unknowns 

(columns) which are not referenced by the last eight equations. 
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The first and last rows, corresponding to Equations  and , respectively, are complemenatry.  

Depending on the setting of the flag , exactly one of these two equations will vanish. 

 

Similarly, the second and second-to-last rows, corresponding to Equations  and , 

respectively, are also complementary.  Depending on the setting of , exactly one of these two 

equations will vanish. 

 

The third and fourth-from-last equations, corresponding to Equations  and , respectively, are 

complementary.  Depending on the setting of , exactly one of these two equations will vanish. 

 

That leaves Equations  and , which are related to the front wheels (and not the other wheels) 

and also on the whether or not the front wheels are on the verge of going airborne.  These two equations 

do not look complementary, but they are.  See the following truth table. 

 

  Coefficient in  Coefficient in  

    

    

    

    

  

It turns out, then, that the last eight rows of matrix  will always reduce to exactly four non-trivial 

equations.  Along with the first 11 rows, there will always be exactly 15 equations.  There are 15 

unknowns, so we shoudl always be able to get a solution. 

 

Ordering the equations and unknowns so that the principal diagonal of matrix  has as few zero elements 

as possible is not a mathematical necessity.  But I did have a reason to do so.  Inverting a  matrix 

which represents non-trivial and linearly independent equations is always possible.  That is not to say that 

it is easy or that, if done by computer, can be done quickly.  We are going to be solving the equations of 

motion several hundred thousand times per real-world second, so we do not want to waste processing 

time. 

 

Our matrix  has a characteristic that I would like to take advantage of.  It is very sparse.  Although we 

have a lot of equations and a lot of unknowns, each equation only refers to a couple of the unknowns.  

Most of the elements in matrix  are zero.  There are numerical methods to invert matrices which have 

been optimized for sparse matrices, but I do not have such a routine at hand.  I will use Eulerian 

elimination instead.  When a matrix is sparse, and has a healthy diagonal, Eulerian substitution can run 

pretty quickly.  It can be particularly good/fast if the ALU does a pre-check for multiplication by zero. 
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Time  

Acceleration  

  
Time  

Acceleration  

 

 

 

 

Part XII -- Numerical integration 

 

As I explained in the earlier paper, adding up the area below the curve in an acceleration-versus-time 

graph gives the speed.  Adding up the area below the curve in a speed-versus-time graph gives the 

distance travelled.  When the Calculus is used, adding up the area below a curve is called "integrating".  

But that is not the only way areas can be added up.  Another way, not much used in recent times, is to 

draw the curve on heavy paper, use scissors to cut out the areas corresponding to different times, and then 

weigh the pieces on a scale.  A third way, the mainstay of computerized calculations, is to divide the area 

up into little rectangles, each of whose area can be found using the  formula, and to add up 

the little bits.  The following figure illustrates how this can be done. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The curve on the left is a typical plot of acceleration  versus time .  The area under this curve from time 

 to some arbitrary time  is the change in the object's speed since time .  A very small section 

of the curve is shown in detail on the right.  We are going to consider an extremely short period of time, 

with duration .  Times  and  are the times at which the interval begins and ends.  If we know the 

object's speed  and its acceleration  at the beginning of the interval, then we can approximate its 

speed at the end of the interval as: 

 

 
 

The product  is the area of the red rectangle shown on the right.  The area of the red rectangle differs 

from the true area under the curve by the small right triangle above the rectangle.  There are lots of 

methods which are sometimes used to increase the accuracy of the approximation, such as adding a term 

based on the assumption that the change in the acceleration over the preceding small increment of time 

continues during this one.  It should be noted, though, that the missing area can be made arbitrarily small 

by shrinking the length of the time-interval.  Shrinking the length of the time-intervals, or "time steps", 

does increase the number of such steps and the amount of labour needed to do the calculations.   

 

As described in the earlier paper, the relationship between the object's speed and the distance it travels are 

related in exactly the same way.  The area under a speed-versus-time curve from time  to some 

arbitrary time  is the change in the object's location since time .  We can update the estimate of the 

object's position  during a time step using the following equation: 

 

 

 

Like the estimate for speed, this expression becomes exact in the limit as we make the duration of the 

time steps vanishingly small.   
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Here is how we will use these expressions. 

1. Let's pick a time step which is 100 microseconds, or 0.0001 seconds, long.  A truck pull which 

lasts 20 seconds will require  time steps.  (A quick and dirty method to 

determine if the time steps are short enough is to re-run one or more cases using a different time 

step and compare the results.) 

2. We will make a note of the location and speed of each of the five rigid bodies at the start of the 

run, which we will say happens at time .  Note that "location and speed" actually refers to 

six quantities for each rigid body.  Each body has two directions of motion and a direction of 

rotation, plus corresponding changes, or speeds, for those three directions. 

3. As we move along from one time step to the next, we will keep track of the updated values for the 

three location variables and three corresponding speeds  of each rigid body.  It follows that, at the 

start of any particular time step, we will know the five bodies' current locations and speeds. 

4. With the locations and speeds at time  known, we will solve the equations of motion to 

calculate the current accelerations.  There will be three accelerations for each rigid body, one for 

each direction of travel and one for rotation.   

5. With the accelerations at time  now at hand, we will use Equations  and  to calculate 

the locations and speeds at the end of the time step, at time .  The relationships for speed and 

distance in these two equations are not restricted to systems which involve a single variable.  

They apply independently to each to each kinematic variable in any physical system. 

6. We are now set up to begin processing the next time step, whose beginning time will be equal to 

the ending time  of the previous time step. 

 

I want to expand the descriptions I gave in steps 4 and 5 to be more particular about the implementation 

of these steps in the attached computer code.  The matrix equations we developed above do not include 

accelerations in all of the kinematic variables.  Certain geometric relationships allowed us to express 

, , ,  and  in terms of  and 

.  It follows that, when we solve the equations of motion by inverting matrix , the only 

accelerations whose values we will have are those for the sled's horizontal location , the truck's 

rotation angle  and the rotational acceleration of the three sets of wheels.  Philosophically, there are 

two ways to proceed. 

 

One way would be to use the geometric relationships to calculate the accelerations for all ten kinematic 

variables.  Each acceleration could be integrated separately using Equations  and  to find the 

corresponding speed and position. 

 

The other way is to limit the integration to the five kinematic variables whose accelerations are produced 

by the matrix inversion.  The speeds and locations of the other kinematic variables would be inferred from 

the changes in the basic five.  For example, we know that the change in the location of the sled's rear 

wheels  during any time step must be exactly equal to the change in the location of sled's chassis . 

 

Mathematically, the two ways give identical answers.  When the equations are discretized for 

computerization solution, small differences arise, which grow as the integration continues.  After a large 

number of time steps, for example, one could find that the rear wheels of the sled have travelled a slightly 

different distance than the sled.  These inconsistencies can be eliminated by ensuring that the kinematic 

variables are always updated in a consistent way. 
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At the end of every time step, the updated speeds and locations need to be reviewed for realism.  Consider 

this example.  At the start of the time step, the truck's front wheels are slightly above the ground, but 

headed downwards.  It is possible that, at the end of the time step, the vertical location of the front wheels 

 turns out to be less than the radius of the front wheels .  This is not possible physically -- the 

wheels do not go into the ground.  It occurs during numerical integration because we assume that the rig 

remains in the same state for the entire duration of a time step.  At the end of every time step, the code 

checks for such physical imperfections and rounds them to zero. 

 

Part XIII -- The transition conditions 

 

At any instant in time, the rig can be in one of eight states, or cases.  I will henceforth refer to the eight 

states, or cases, as follows: 

 

Case ID Sled moving or stopped Truck's front wheels Truck's rear wheels 

1 Moving On ground Not slipping 

2 Moving On ground Slipping 

3 Moving Airborne Not slipping 

4 Moving Airborne Slipping 

5 Stopped On ground Not slipping 

6 Stopped On ground Slipping 

7 Stopped Airborne Not slipping 

8 Stopped Airborne Slipping 

 

It is pretty obvious what it means for the rig to be running in one of these states.   

 

State Mathematical condition  

Sled is moving   

Sled is stopped   

Front wheels on ground   

Front wheels airborne   

Rear wheels gripping   

Rear wheels slipping   

 

These conditions are stated in terms of speeds and locations only.  They do not involve accelerations.  

This is important.  It is the main reason why I placed this section after the one that describes the 

numerical integration procedure.  At the end of each time step, we will know the values and speeds of the 

kinematic variables.  We can therefore determine what state the rig is in at this instant. 

 

What is of interest to us at the start of each time step is what state the rig is going to be in during the 

upcoming time step.  Most often, it will continue forward in whatever state it has been in.  But, not 
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always.  Sometimes, the rig will make a transition to a new state.  We need to figure out what state the rig 

is going to be in during the upcoming time step so that we can use the correct equations of motion to 

calculate the correct accelerations.  In short, we need to figure out when each of the foregoing six 

conditions has come to an end or is expected to come to an end during the upcoming time step.  I am 

going to refer to these as "stopping" conditions.  Let's examine them on a one-by-one basis. 

 

When the front wheels are airborne at the end of a time step 

 

If the front wheels are airborne, so that , they will continue to be airborne until they come 

back into contact with the ground.  We can get a rough idea about when the wheels will hit the ground by 

dividing their current height above ground, , by their current speed .  Of course, 

this test only makes sense if the speed is algebraically negative, so the wheels are heading down towards 

the ground.  We will compare this estimated time to the length of a time step.  If the front wheels will 

encounter the ground less than one-half time step away, then we will assume that the front wheels are on 

the ground during the whole of the time step.  If the front wheels are more than one-half time step away 

from the ground, then we will assume that they are airborne throughout the time step.  If we use the 

symbol  as the duration of a time step, then we can express this test as follows: 

 

Conditions at start of time step, 

with  
Expected state during time step Flag settings 

 Front wheels will be airborne  

 Front wheels will be on ground  

 Front wheels will be airborne  

 

When the front wheels are on the ground at the end of a time step 

 

When the front wheels are on the ground, the only way (physically) they can become airborne is if their 

vertical acceleration is non-zero and positive for at least an instant.  The analysis of the front wheels 

showed there is a connection between the vertical acceleration of the front wheels and the vertical force 

between the wheels and the ground.  Generally speaking, either one or the other must be zero.  In order to 

deal with the special instant when the front wheels on the ground but ready to take-off, we introduced the 

binary flag .   

 

To predict what is going to happen to the front wheels, we need to look at what is happening to the 

vertical force of the ground.  If the vertical force is zero, or expected to reach zero during the upcoming 

time step, we should use the airborne equations, which we do by setting .  As before, let's 

use the mid-point of the time step as the decision point.   

 

One slight difficulty, but easily overcome, is that the equations of motion do not explicitly include the 

time-derivative of the vertical force on the front wheels.  A first-order estimate can be made if we 

temporarily store the value of the vertical force at the beginning of each time time.  Then, at the end of the 

time step, we can make a subtraction to compute the change which occurred in the vertical force.  If we 

use the symbol  as the current value of the vertical force (as always) and the symbol  
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for the vertical force at the start of the previous time step, then we can approximate the time-rate-of-

change of the vertical force as follows: 

 

 

 

Dividing the value of the vertical force at the end of a time step by this rate-of-change will give the 

approximate length of time before the vertical force reaches zero.  The following table sets out the 

flowchart for deciding which equations of motion to solve. 

   

Conditions at start of time step, 

with  
Expected state during time step Flag settings 

 Front wheels will be on ground  

 Front wheels will be airborne  

 Front wheels will be on ground  

 

When the sled is moving at the end of a time step 

 

If the sled is moving, it will continue to move until it comes to a stop.  This is a kinematic test of the same 

ilk as the front wheels being airborne.  If the sled is decelerating, we can estimate the time until it will 

come to a stop by dividing its current speed by the rate of deceleration.  It happens that the sled's 

horizontal acceleration is included in the equations of motion, so we do not need to save former speeds to 

approximate the rate of change.  We will use the following flowchart 

 

Conditions at start of time step, 

with  
Expected state during time step Flag settings 

 Sled will be moving  

 Sled will be stopped  

 Sled will be moving  

 

Let me describe the physical ramifications of using the second test.  The condition is met if the sled is 

decelerating fast enough that it will come to a stop very shortly.  Since it is going to be stopped very soon,  

we will solve the equations of motion assuming it is already stopped.  We are, in effect, jolting the sled to 

a stop.  The jolt will never be more than one-half step.  We can reduce the effect of the jolt as much as we 

want by making the time steps shorter and shorter.  Note that the same kind of jolt will occur even when 

we use the third test.  If it happens that the sled's speed reaches zero during the second half of the time 

step, the deceleration will continue for the rest of the time step, with the result that the sled will have a 

very small negative speed at the end of the time step.  We will round that negative speed back up to zero, 
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in effect jolting the sled to a stop for the start of the following time step.  A similar kind of jolt occurs 

when the front wheels of the truck are airborne and come back into contact with the ground.  These are 

not physical jolts, but a natural result of discretizing time. 

 

When the sled is stopped at the end of a time step 

 

If the sled is stopped, the only kinematic variable which can get it moving is its horizontal acceleration.  

We did not notice any problems above when solving the equations of motion for the sled's horizontal 

acceleration.  Therefore, when the sled is stopped, we should be able to set the flag  and 

then solve the equations.  But, that is not the end of it.  The sled will remain stopped only if the frictional 

force the ground exerts on the pan is less than the critical maximum force.  We need to compare the value 

of  with the maximum possible value, .  This is the inequality in Equation  which, 

being an inequality, was not included in the matrix equations per se.  If the former exceeds the latter, the 

sled will be jostled into motion.  The flowchart is as follows: 

 

Conditions at start of time step, 

with  
Expected state during time step Flag settings 

 Sled will be moving  

 Sled will be stopped  

 

Alert readers may notice a small delay inherent in this test.  When we apply the test, the value of the 

ground drag  is the one calculated when the equations of motion were solved at the start of he 

previous time step.  We are therefore basing our test on a force which is one time step delayed.  We could 

do better.  We could do a trial solution of the equations of motion to update the value of  and decide 

whether the sled will be moving or stopped.  That would give a slightly better decision but would require 

that the equations of motion be solved twice at the start of every time step.  An alternative approach 

would be to look at how fast  has been changing, and to make a prediction about whether it will 

pass through the critical value within the next half-time step.  That is what we did in the tests above.  This 

test is a little different from the previous ones because the critical value is not constant but is itself 

changing.  I have decided not to bother at all with prediction.      

 

When the rear wheels are not slipping at the end of a time step 

 

Slippage of the truck's rear wheels is a friction-driven condition like that which governs the sled.  In this 

case, the variable to test is the horizontal force of the ground on the rear wheels  and the 

maximum frictional force permitted is .  If the former exceeds the latter, the rear wheels 

will be jostled into slipping.  The flowchart is as follows: 

 

Conditions at start of time step, 

with  
Expected state during time step Flag settings 

 Rear wheels will be slipping  

 Rear wheels will not be slipping  

 

Just like the test for starting up the sled, this test involves a one time step delay. 
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When the rear wheels are slipping at the end of a time step 

 

I suspect this transition is rarely seen during a truck pull.  It seems to me that the run is pretty much over 

once the wheels start slipping.  Or, alternatively, that the run must continue with the wheels slipping.  It is 

possible to keep moving, and perhaps complete the course, with slipping wheels.  Once the wheels are 

slipping, their rotational speed must be reduced substantially before they will again grip the ground.  

Think about how slipping starts.  The tread's horizontal force must exceed the static friction of the ground.  

As soon as slipping starts, he wheels' rotation is resisted by the dynamic friction of the ground, which will 

always be less than the static friction.  Before their rotational speed will have decreased to the point where 

the wheels grip the ground, two unrelated things will have happened: (i) the moveable weight will have 

advanced further towards the front of the sled and (ii) the whole rig will have slowed down.  If the wheels 

started slipping before, they are even more likely to slip under these two more adverse conditions.  In any 

event, it is prudent to give the program the capability to deal with this kind of transition. 

 

The rear wheels will stop slipping, by definition, when the tread speed decreases enough to equal the 

horizontal forward speed of the wheels.  This is a speed-related test, like the sled continuing in motion, 

and we can handle it in the same way.  Here, the speed we are interested in is the relative speed between 

the tread and the ground.  We can calculate the time rate-of-change of the relative speed  as follows: 

 

 

 

and the decision tree is the following flowchart: 

 

Conditions at start of time step, 

with  

Expected state during time 

step 
Flag settings 

 Rear wheels will be slipping  

 
Rear wheels will not be 

slipping 
 

 Rear wheels will be slipping  

 

State at the start of the truck pull 

 

The six transition conditions apply once the truck pull gets underway.  Some of them rely on the rig's 

recent trajectory.  At the start of a run, there is no such history, and one needs to make a guess about the 

starting state.  A sensible default state has the sled at rest, the truck's front wheels on the ground and the 

truck's rear wheels no slipping.  When the equations of motion are solved assuming that state, however, 

the tests as described above fail to detect certain states.  For example, the equations of motion may 

produce  less than zero.  This means the front wheels must be airborne, even during the first time 

step.  If this is not corrected, the second time step will produce an even more negative vertical ground 

force.  The related test may never put the wheels mathematically back on the ground.  The remedy is to 

detect forces which are not physically realistic and reset them to realistic values, or even zero.  

Subsequent solutions of the equations of motion will then converge to the realistic trajectory. 
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Part IX -- Simulation results 

  

In the earlier paper, we looked at a stock 1997 Ford F-150 SuperCab two wheel drive pickup truck and a 

sled in "Hillbilly" mode.  I carried out a numerical simulation of that rig based on the equations of motion 

developed above.  The results given below are the distance covered during the run ("Distance") and the 

time taken ("Time"). 

 

Benchmarking against the solution from the simplified model 

 

The place to start, of course, is to run a simulation based on the same assumptions as used in the earlier 

paper.  To the extent possible, all parameters were set to the same values as before.  For example, the 

wheels' radii, sled's deck height and the two hitch heights were all set to the same value, 15¾ inches.  

There was one exception.  The enhanced model assumes that each set of wheels has a moment of inertia.  

Some of the equations of motion degenerate when the moments of inertia are set identically equal to zero.  

(Think of trying to apply Newton's Law to an object having zero mass.)  In order to use the equations of 

motion without any modification, I set the moments of inertia to a very small but non-zero, value: 

0.00001 pound-feet-squared.  The results were: 

 

 
 

The result in the earlier paper was: 

 

 
 

After some checking, I believe the difference arises because we restricted the interim calculations in the 

earlier paper to three significant digits.  The numerical simulation was done by computer in double 

precision.  The difference is not caused by the non-zero moments of inertia, which would tend to reduce 

the distance run.  Changing the moments of inertia to even smaller values, first to  and then to 

, did not the results in Equation . 

 

Sensitivity to the length of each time step 

 

The simulation which produced Equation  was run using a time step of 10 microseconds.  The 

simulation was re-run using various time steps , with the following results: 

 

 

 

The simulation dos not begin to show any effects from lengthening the time step until it becomes greater 

than one millisecond, which corresponds to 1,000 time steps per second.  Just to be on the safe side, the 

simulations whose results are shown below were all carried out with a time step ten times smaller than 

this, or 100 microseconds, which corresponds to 10,000 time steps per second. 
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An aside: 

 

I had initially thought that the simulation would require a time step of 10 microseconds.  It turns 

out that the physical events take place on a much longer time scale than this.  In any event, I had 

some concern that the computations would take too long for the results to be displayed in real 

time.  I planned on taking two steps to reduce execution time.  I ended up implementing the first, 

but not the second. 

 

If the matrix equation is implemented in the form described in the table following Equation , 

it will be a 19  15 matrix.  Exactly four of the rows will be indentically zero.  In my original 

coding of the Eulerian elimination scheme, I set the coefficients in a matrix  as per the 

19 equations in Equation .  Then, I caused the code to check to make sure that four rows 

were zero.  Doing things the long way makes debugging easier, but is not very efficient.  Lugging 

four useless equations through the process does take time.  The easiest way to save some time is 

simply not to enter the four zero-equations in the matrix.  Recall that the four zero equations arise 

from a set of eight equations which involve the four binary flags.  The eight equations come in 

pairs, and it happens that one of each pair vanishes whatever the setting of the flags.  In the final 

version of the code, the main matrix is declared as square .  The 19 equations are 

examined sequentially and only the 15 non-zero equations have their coefficients entered into the 

matrix. 

 

I did not implement any further reduction from .  Since the computation time required to 

invert an  matrix rises by the order of , even minor reductions of scale give a 

disproportionate saving in time.  Some of the unknowns are referred to only two or three times in 

the entire set of equations.  The rotational accelerations of the three sets of wheels are examples.  

It would be possible to substitute some of the equations of motion into the remaining equations 

without too much increase in the complexity of the elements in matrix . 

 

As it turns out, a 100 microsecond time step can easily be handled in real time.  In order to give a 

realistic display, the screen is refreshed every 200 time steps, or nominally 50 times per second.  

Since it takes the operating system a little bit of time to do the calculations required to refresh the 

screen, the observed refresh rate is about 25 times per second. 

 

Including realistic moments of inertia 

 

In this and the following sections, I will add realistic features to the rig.  I will add the features one-by-

one so their effects on the run can be evaluated individually.  First, I gave the three sets of wheels some 

moments of inertia.  

 

I assumed that the truck's front and rear wheels were the same, and weighed 300 pounds per axle 

.  In order to keep the truck's total weight and front-to-rear weight distribution 

unchanged, I removed 300 pounds from the masses assumed to be concentrated at the front and rear axles. 

 

I approximated the truck's wheels as uniform disks with diameters of 31½ inches and masses of 300 

pounds.  The formula given in the earlier paper gives the moment of inertia as , or 258 pound-feet-

squared – .   

 

I assumed that the rear wheels on the sled were smaller, only 20 inches in diameter , but 

also weighed 300 pounds .  Their weight was removed from the concentrated mass at 
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the rear end of the sled, and the wheels were assigned a moment of inertia of 104 pound-feet-squared 

– .  The results of the simulation were: 

 

 
 

Although the moments did not reduce the run time, they did reduce the distance covered by about 5.7 feet, 

or 3.2%. 

 

Increasing the deck height 

 

In the simplified model, and so far in the simulation, the deck height of the sled has been the same as the 

radius of the truck's wheels.  For this next change, I increased the deck height to 25 inches, so it clears the 

rear wheels.  I left the heights of both hitch balls at 15¾ inches for this next run.  The results were 

unchanged: 

 

 
 

Setting more realistic hitch dimensions 

 

In the simplified model, and so far in the simulation, the tow chain has been horizontal.  In reality, the tow 

chain normally slopes upwards towards the truck.  I believe that more realistic hitch heights are 14 inches 

at the truck and eight inches at the sled . 

 

When the tow chain is horizontal, the length of the tow chain and the distances of the two hitches from 

their two vehicles do not matter.  Once the tow chain is not horizontal, they do matter.  For this 

simulation, I made the following assumptions. 

 

 The horizontal distance from the truck's rear axle to the hitch  is 3'6"; 

 The horizontal distance from the sled's hitch to the pan's center-line  is 5'6" and 

 The length of the tow chain  is four feet. 

 

With these dimensions, the slope of the hitch is 7.2°.  This, of course, will be the inclination angle of the  

tension force in the tow chain.  But, the other dimensions, such as the distance of the hitch from the 

wheels, are also important.  They determine how much torque the tension exerts on the vehicles.  An 

upward-sloping tow chain will reduce the effective weight on the pan but reduce the horizontal force 

accelerating the sled.  The former increases the run distance; the latter reduces it.  It seems that the former 

outweighs the latter, as the following simulation result shows. 

 

 
 

I will look at a couple of more sensitivities after the following figure.  It shows the screen part-way 

through this run.  The top third of the screen is a visual display of the rig, with meter-markers on the 

ground to track its progress.  The middle third allows the viewer to keep track of significant variables 

during the run.  The bottom third is a representation of the dashboard with, from left-to-right, a 

speedometer in meters per second, an accelerometer in meters per second squared, a tachometer in RPM 

and a diagram of the gearshift H set up for six forward gears.  Although this paper only deals with the 

more complex dynamics of the rig, I set up the dashboard in anticipation of a more complex model for the 

powertrain to be described in a subsequent paper.  
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Further increases in the height of the truck's hitch 

 

The previous simulation constitutes what I consider to be the basic case for the 1997 F-150 SuperCab.  As 

expected, adding an upwards slope to the tow chain improved the run distance.  I mentioned that 

increasing the slope is a trade-off between reducing the effective load on the pan (since the truck pulls the 

chain upwards) but also reducing the horizontal acceleration.  There should be an optimal slope for the 

tow chain, where the effects are in balance.  To explore this, I ran simulations with the height of the 

truck's hitch  raised further and further off the ground.  The results are: 

 

 

 

There is no sign of abatement.  Raising the hitch further is not necessary, since the rig already travels 

further than most courses.  On balance, though, it seems as if distances would continue to increase with 

increasing hitch height.  Class rules will need to be consulted to determine if there are statutory 

constraints on this parameter.   

 

Changing the horizontal location of the hitch on the truck 

 

Anything that changes the slope of the tow chain will affect the distance achieved during a run.  The 

horizontal position of the hitch on the truck may also have an effect.  To explore this possibility, I 

changed the distance of the hitch aft of the truck's rear wheels .  In the stock truck, the distance is 

3'6".  I tried it at six inches less and 12 inchs less, to model the hitch point being moved closer and closer 

to the rear axle.  In all the cases, I used the same "base case" height above ground: .  The results 

are: 

 

 

 

There was no change.  The sled was merely closer to the tailgate.  A common characteristic of all the runs 

so far is that the front wheels of the truck remained on the ground and the rear wheels did not slip.  

Changing the horizontal placement of the truck's hitch ball does change the overall torque around the rear 

axle.  But, that only affects the dynamics if it leads to either wheelies or wheel-slipping.  Neither of these 

ever occurred during these runs so the effects of horizontal placement did not express themselves. 

 

Changing the coefficient of dynamic friction of the pan 

 

In the "base case", both here and in the earlier paper, I assumed that the coefficient of dynamic friction of 

the pan was equal to 0.4 .  The retarding drag which the ground exerts on the bottom of the 

pan is proportional to this coefficient.  Increasing the coefficient increases the drag, leading to reduced 

run distances.  The following simulation results show by how much. 
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Reducing the coefficient will lead to increases in the run distance by the same factor, about 15 feet per 

basis point of coefficient.  The participant in a truck pull event may or may not have some control over 

when he runs.  If so, he will want to run as soon as possible after a brief rain shower, or perhaps to wait 

for one if one is expected.  If track maintenance is not performed after every run, it would be best to run 

as soon as possible after maintenance is done.  I assume that the track is compacted every time the pan 

passes over.  Compaction increases the coefficient.  Running after the surface has been loosened affords a 

lower coefficient. 

 

The benefits of smaller tires 

 

The simplified model alerted us to the benefits of using smaller diameter tires.  The following simulations 

confirm that finding. 

 

 

 

A typical high-performance vehicle 

 

High-performance vehicles can do more interesting things than a stock pickup truck.  The following 

figure shows a high-performance vehicle performing a wheelie with its rear wheels spinning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  I made a couple of changes to the pickup truck to model this vehicle.     
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To model this vehicle, I made the following changes to the stock pickup truck.  Each of these changes is 

made in the direction, that is, an increase or decrease, to increase the tendency of the truck to rotate 

around its rear axle. 

 

 Reduced the wheelbase from 138.8" to 100"; 

 Reduced the mass over the front wheels by 2,000 pounds, from 2,940 pounds to 940 pounds; 

 Added that weight (2,000 pounds) to the mass over the rear axle; 

 Increased the tire size from 31½" to 60"; 

 Increased the truck's hitch height to 2'10"; 

 Increased the horizontal distance from the rear axle to the hitch to 5' and 

 Increased the crankshaft torque from 330 foot-pounds to 900 foot-pounds. 

 

Spot the problem?  The above screenshot was taken early in the run, two seconds after the start.  The 

wheels are turning slowly and, because of the big wheels, the engine is turning slowly as well.  In the 

simplified model, the crankshaft speed is the wheels' rotational speed, increased by the transmission and 

differential gear ratios.  This is the RPM shown on the tachometer.  When the screenshot was taken, the 

engine was turning over at about 600 RPM.  This is certainly less than the RPM which corresponds to 

maximum torque.  It is also likely to be less than the idling speed.  In other words, the real-world vehicle 

would probably be stalled. 

 

Using a mathematical model based on an average amount of torque applied as a constant during a run has 

its shortcomings.  This shortcoming will be fixed in a subsequent paper which describes an enhanced 

model for the powertrain. 

 

Some readers might also question what appears to be an unaccepatbly high hitch point.  The figure drawn 

for the truck is misleading.  As I described in the earlier paper, I modeled the chassis as a horizontal 

massless line with concentrated masses at the axles.  Using such a horizontal line has no effect on the 

dynamcis but obscures something else.  The follwing figure shows only the truck from the previous figue.  

I have rotated the image to put the bottom of the wheels parallel to the ground.  Then, I have drawn a 

heavy blue line through the axles, marking the approximate bottom of the truck's body.  If anything, the 

hitch could be raised even higher. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bottom of chassis 

Ground surface 
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Part X -- The computer program 

 

The simulation was carried out by a Visual Basic program written in Microsoft's Visual Basic 2010 

Express.  There are several modules, most of which deal with the input of model parameters and the 

output of results,  both to the screen and to an Excel file.  I have set out in Appendix "A" attached hereto a 

listing of the code for a module named EOMSolver, which prepares matrix  and inverts it.  

EOMSolver also contains the subroutine which integrates the knienamtic variables through a time step.  I 

have set out in Appendix "B" a listing of module EOMDecider, which implements the testing requires at 

the beginning of each time step to predict the state of the rig during the upcoming time step. 

 

 

 

 

Jim Hawley 

November 2013 

 

 

An e-mail setting out errors and omissions would be appreciated. 
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Appendix "A" 

 

Listing of module EOMSolver 

 
Option Strict On 
Option Explicit On 
 
' This module contains two principal subroutines, which: (i) solve the equations of 
' motion and (ii) integrate the speed and distance variables from the accelerations 
' computed by solving the equations of motion. 
'   Eulerian_Elimination() 
'   Integrate_One_Step() 
 
' The matrix is named A(15,15).  The vector ReductionRows(15) is initialized to ones.   
' Every time a row is in A(,) is used as the basis for normalization during the first 
' phase of the process, its ReductionRows() entry is set to zero.  New ReductionRows 
' can only be selected from among the remaining unused rows.  Vector SubstitutionRows(19) 
' is similar.  It is also initialized to ones.   Every time a row is used as the basis 
' for back substitution during the second phase of the process, its SubstitutionRows() 
' entry is set to zero.  New SubstitutionRows can only be selected from among the 
' remaining unused rows. 
 
Public Module EOMSolver 
 
    Public Sub Euler_Elimination( _ 
        ByVal DebugEquations As Boolean, ByVal DebugStartTime As Double, _ 
        ByVal DisplayResults As Boolean, ByVal DisplayStartTime As Double) 
        Dim A(15, 15) As Double 
        Dim Unknown(15) As Double 
        Dim B(15) As Double 
        Dim ReductionRows(15) As Int32 
        Dim SubstitutionRows(15) As Int32 
        ' 
        ' Calculate the D* distances 
        Dim HypotenuseFront As Double = Math.Sqrt(((RADtwr - RADtwf) ^ 2) + (Wt ^ 2)) 
        Dim ArcTanFactorFront As Double = Math.Atan2(Wt, RADtwr - RADtwf) 
        Dim AnglePlus As Double = ArcTanFactorFront + PHItc 
        D1 = HypotenuseFront * Math.Sin(AnglePlus) 
        D2 = HypotenuseFront * Math.Cos(AnglePlus) 
        Dim HypotenuseRear As Double = Math.Sqrt(((RADtwr - Yt) ^ 2) + (Xt ^ 2)) 
        Dim ArcTanFactorRear As Double = Math.Atan2(Xt, RADtwr - Yt) 
        Dim AngleMinus As Double = ArcTanFactorRear - PHItc 
        D3 = HypotenuseRear * Math.Sin(AngleMinus) 
        D4 = HypotenuseRear * Math.Cos(AngleMinus) 
        ' Calculate the F* functions 
        Dim FTerm1 As Double = RADtwr - D4 - Ys 
        Dim FTerm2 As Double = (Ltow ^ 2) - (FTerm1 ^ 2) 
        Dim FTerm3 As Double = Math.Sqrt(FTerm2) 
        Dim FTerm4 As Double = (D3 ^ 2) + (FTerm1 * D4) 
        Dim FTerm5 As Double = FTerm1 * D3 
        Dim FTerm6 As Double = FTerm5 * D3 
        F1 = 1 + (FTerm4 / FTerm3) + (FTerm6 / (FTerm2 * FTerm3)) 
        F2 = (FTerm5 / FTerm3) - D4 
        ' Calculate the Yoo function 
        Yoo = FTerm1 / FTerm3 
        ' 
        ' Zero-out all entries in matrix A(,) and vector Unknown() 
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        For Irow As Int32 = 1 To 15 Step 1 
            For Icol As Int32 = 1 To 15 Step 1 
                A(Irow, Icol) = 0 
            Next Icol 
        Next Irow 
        For Irow As Int32 = 1 To 15 Step 1 
            Unknown(Irow) = 0 
            ReductionRows(Irow) = 1 
            SubstitutionRows(Irow) = 1 
        Next Irow 
        ' 
        ' Calculate the coefficients in the matrices 
        ' Row #1, Equation (68R) 
        A(1, 1) = Mtruck 
        A(1, 2) = (Mtruck * F2) + (Mtwf * D2) 
        A(1, 8) = 1 
        A(1, 13) = -1 
        A(1, 14) = 1 
        B(1) = ((Mtwf * D1) - (Mtruck * F1)) * PHIDottc * PHIDottc 
        ' Row #2, Equation (68T) 
        A(2, 1) = Mtwf * D2 
        A(2, 2) = MOItc + (Mtwf * ((D1 * D1) + (F2 * D2) + (D2 * D2))) 
        A(2, 7) = -D3 
        A(2, 8) = D4 
        A(2, 14) = D2 
        A(2, 15) = -D1 
        B(2) = (-Mtwf * F1 * D2 * PHIDottc * PHIDottc) + _ 
            Torque - ((Mtwf + Mtcf) * D1 * G) 
        ' Row #3, Equation (68C) 
        A(3, 3) = MOItwf 
        A(3, 14) = -RADtwf 
        B(3) = 0 
        ' Row #4, Equation (68K) 
        A(4, 1) = 1 
        A(4, 4) = -RADswr 
        B(4) = 0 
        ' Row #5, Equation (68N) 
        A(5, 5) = MOItwr 
        A(5, 13) = RADtwr 
        B(5) = Torque 
        ' Row #6, Equation (68W) 
        A(6, 6) = Ws 
        A(6, 7) = Ws + Xs 
        A(6, 8) = RADswr - Ys 
        A(6, 12) = -RADswr 
        B(6) = (Mscf * G * Ws) + (Msm * G * Dw) 
        ' Row #7, Equation (68AA) 
        A(7, 7) = 1 
        A(7, 8) = -Yoo 
        B(7) = 0 
        ' Row # 8, Equation (68U) 
        A(8, 1) = Msled 
        A(8, 8) = -1 
        A(8, 11) = 1 
        A(8, 12) = 1 
        B(8) = 0 
        ' Row #9, Equation (68S) 
        A(9, 2) = Mtwf * D1 
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        A(9, 7) = 1 
        A(9, 9) = -1 
        A(9, 15) = -1 
        B(9) = (-Mtwf * D2 * PHIDottc * PHIDottc) - (Mtruck * G) 
        ' Row #10, Equation (68V) 
        A(10, 6) = 1 
        A(10, 7) = 1 
        A(10, 10) = 1 
        B(10) = Msled * G 
        ' Row #11, Equation (68J) 
        A(11, 4) = MOIswr 
        A(11, 11) = -RADswr 
        B(11) = 0 
        ' Beginning of rows which depend on the binary flags 
        Dim MatrixRow As Int32 = 11 
        ' Row #12, Equation (68X) 
        If (BSledMove <> 0) Then 
            MatrixRow = MatrixRow + 1 
            A(MatrixRow, 6) = -BSledMove * Cpd 
            A(MatrixRow, 12) = BSledMove 
            B(MatrixRow) = 0 
        end if 
        ' Row #13, Equation (68P) 
        If (BtwrNoSlip <> 1) Then 
            MatrixRow = MatrixRow + 1 
            A(MatrixRow, 9) = (BtwrNoSlip - 1) * _ 
                Math.Min(Ctwrd, Torque / (Fvgtwr * RADtwr)) 
            A(MatrixRow, 13) = 1 - BtwrNoSlip 
            B(MatrixRow) = 0 
        End If 
        ' Row #14, Equation (68D) 
        If (BtwfAir <> 0) Then 
            MatrixRow = MatrixRow + 1 
            A(MatrixRow, 14) = BtwfAir 
            B(MatrixRow) = 0 
        End If 
        ' Row #15, Equation (68E) 
        If ((BtwfAir + ((1 - BtwfAir) * BtwfRTO)) <> 0) Then 
            MatrixRow = MatrixRow + 1 
            A(MatrixRow, 15) = BtwfAir + ((1 - BtwfAir) * BtwfRTO) 
            B(MatrixRow) = 0 
        End If 
        ' Row #16, Equation (68F) 
        If (BtwfAir <> 1) Then 
            MatrixRow = MatrixRow + 1 
            A(MatrixRow, 1) = 1 - BtwfAir 
            A(MatrixRow, 2) = (1 - BtwfAir) * (F2 + D2) 
            A(MatrixRow, 3) = (BtwfAir - 1) * RADtwf 
            B(MatrixRow) = (BtwfAir - 1) * (F1 - D1) * PHIDottc * PHIDottc 
        End If 
        ' Row #17, Equation (68G) 
        If ((BtwfAir <> 1) And (BtwfRTO <> 1)) Then 
            MatrixRow = MatrixRow + 1 
            A(MatrixRow, 2) = (1 - BtwfAir) * (1 - BtwfRTO) * D1 
            B(MatrixRow) = (BtwfAir - 1) * (1 - BtwfRTO) * D2 * PHIDottc * PHIDottc 
        End If 
        ' Row #18, Equation (68O) 
        If (BtwrNoSlip <> 0) Then 
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            MatrixRow = MatrixRow + 1 
            A(MatrixRow, 1) = BtwrNoSlip 
            A(MatrixRow, 2) = BtwrNoSlip * F2 
            A(MatrixRow, 5) = -BtwrNoSlip * RADtwr 
            B(MatrixRow) = -BtwrNoSlip * F1 * PHIDottc * PHIDottc 
        End If 
        ' Row #19, Equation (68Y) 
        If (BSledMove <> 1) Then 
            MatrixRow = MatrixRow + 1 
            A(MatrixRow, 1) = 1 - BSledMove 
            B(MatrixRow) = 0 
        End If 
        If (MatrixRow <> 15) Then 
            MsgBox("Logic error: Matrix has " & Trim(Str(MatrixRow)) & " rows.") 
        End If 
        ' 
        ' For debugging purposes, print out the matrices 
        If ((DebugEquations = True) And (Time >= DebugStartTime)) Then 
            Dim OutStr As String 
            OutStr = _ 
                "Time = " & Trim(Str(Time)) & vbCrLf & _ 
                "BtwfAir=" & Trim(Str(BtwfAir)) & "     " & _ 
                "BtwfRTO = " & Trim(Str(BtwfRTO)) & "     " & _ 
                "BtwrNoSlip=" & Trim(Str(BtwrNoSlip)) & "     " & _ 
                "BSledMove=" & Trim(Str(BSledMove)) & vbCrLf 
            For Irow As Int32 = 1 To 15 Step 1 
                OutStr = OutStr & "Row # " & Trim(Str(Irow)) & ":" & vbCrLf 
                For Icol As Int32 = 1 To 15 Step 1 
                    OutStr = OutStr & Trim(Str(A(Irow, Icol))) & ", " 
                Next Icol 
                OutStr = OutStr & Trim(Str(B(Irow))) & vbCrLf 
            Next Irow 
            MsgBox(OutStr, , "Elements in original matrices A and B") 
        End If 
        ' 
        ' Ensure that the number of non-zero rows and columns are equal 
        Dim RowIsZero As Boolean 
        Dim ColIsZero As Boolean 
        For Irow As Int32 = 1 To 15 Step 1 
            RowIsZero = True 
            For Icol As Int32 = 1 To 15 Step 1 
                If (A(Irow, Icol) <> 0) Then 
                    RowIsZero = False 
                    Exit For 
                End If 
            Next Icol 
            If (RowIsZero = True) Then 
                MsgBox("Logic error: Row #" & Trim(Str(Irow)) & " is zero.") 
                Exit Sub 
            End If 
        Next Irow 
        For Icol As Int32 = 1 To 15 Step 1 
            ColIsZero = True 
            For Irow As Int32 = 1 To 15 Step 1 
                If (A(Irow, Icol) <> 0) Then 
                    ColIsZero = False 
                    Exit For 
                End If 
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            Next Irow 
            If (ColIsZero = True) Then 
                MsgBox("Logic error: Column #" & Trim(Str(Icol)) & " is zero.") 
                Exit Sub 
            End If 
        Next Icol 
        ' 
        ' Eulerian elimination 
        ' MasterCol is the main column counter 
        For MasterCol As Int32 = 1 To 15 Step 1 
            ' Look for the first unused row in the master column which has a non-zero 
            ' element.  Use that row as a pivot for normalization. 
            Dim PivotRow As Int32 = 0 
            For Irow As Int32 = 1 To 15 Step 1 
                If (ReductionRows(Irow) = 1) Then 
                    If (A(Irow, MasterCol) <> 0) Then 
                        PivotRow = Irow 
                        Exit For 
                    End If 
                End If 
            Next Irow 
            ' For speed's sake, do not confirm that PivotRow > 0.  Just continue. 
            ReductionRows(PivotRow) = 0 
            ' Reduce the leading coefficient in the PivotRow to one 
            Dim PivotValue As Double = A(PivotRow, MasterCol) 
            For Icol As Int32 = MasterCol To 15 Step 1 
                A(PivotRow, Icol) = A(PivotRow, Icol) / PivotValue 
            Next Icol 
            B(PivotRow) = B(PivotRow) / PivotValue 
            ' Normalize all following rows 
            If (PivotRow <> 15) Then 
                For Irow As Int32 = (PivotRow + 1) To 15 Step 1 
                    If (A(Irow, MasterCol) <> 0) Then 
                        Dim Denominator As Double 
                        Denominator = A(Irow, MasterCol) 
                        For Icol As Int32 = MasterCol To 15 Step 1 
                            A(Irow, Icol) = A(Irow, Icol) / Denominator 
                        Next Icol 
                        B(Irow) = B(Irow) / Denominator 
                    End If 
                Next Irow 
            End If 
            ' Subtract the PivotRow from all following rows 
            If (PivotRow <> 15) Then 
                For Irow As Int32 = (PivotRow + 1) To 15 Step 1 
                    If (A(Irow, MasterCol) <> 0) Then 
                        For Icol As Int32 = MasterCol To 15 Step 1 
                            A(Irow, Icol) = A(Irow, Icol) - A(PivotRow, Icol) 
                        Next Icol 
                        B(Irow) = B(Irow) - B(PivotRow) 
                    End If 
                Next Irow 
            End If 
        Next MasterCol 
        ' 
        ' For debugging purposes, print out the reduced matrices 
        If ((DebugEquations = True) And (Time >= DebugStartTime)) Then 
            Dim OutStr As String 
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            OutStr = _ 
                "Time = " & Trim(Str(Time)) & vbCrLf & _ 
                "BtwfAir=" & Trim(Str(BtwfAir)) & "     " & _ 
                "BtwfRTO = " & Trim(Str(BtwfRTO)) & "     " & _ 
                "BtwrNoSlip=" & Trim(Str(BtwrNoSlip)) & "     " & _ 
                "BSledMove=" & Trim(Str(BSledMove)) & vbCrLf 
            For Irow As Int32 = 1 To 19 Step 1 
                OutStr = OutStr & "Row # " & Trim(Str(Irow)) & ":" & vbCrLf 
                For Icol As Int32 = 1 To 15 Step 1 
                    OutStr = OutStr & Trim(Str(A(Irow, Icol))) & ", " 
                Next Icol 
                OutStr = OutStr & Trim(Str(B(Irow))) & vbCrLf 
            Next Irow 
            MsgBox(OutStr, , "Elements in reduced matrices A and B") 
        End If 
        ' 
        ' Back-substitute from the lower right upwards 
        For MasterCol As Int32 = 15 To 1 Step -1 
            ' Look through the unused rows for the last row whose first non-zero element 
            ' is in the master column.  Use that row as the next substitution row. 
            Dim PivotRow As Int32 = 0 
            For Irow As Int32 = 15 To 1 Step -1 
                If (SubstitutionRows(Irow) = 1) Then 
                    If (A(Irow, MasterCol) <> 0) Then 
                        PivotRow = Irow 
                        Exit For 
                    End If 
                End If 
            Next Irow 
            ' For speed's sake, do not confirm that PivotRow > 0.  Just continue. 
            SubstitutionRows(PivotRow) = 0 
            ' As a reality check, ensure the pivot element is equal to one 
            If (A(PivotRow, MasterCol) <> 1) Then 
                MsgBox("Logic error: Substitution element is not equal to one.") 
                Exit Sub 
            End If 
            ' Add up the rest of the row products 
            Dim RowProductSum As Double 
            RowProductSum = B(PivotRow) 
            If (MasterCol < 15) Then 
                For Icol As Int32 = (MasterCol + 1) To 15 Step 1 
                    RowProductSum = RowProductSum - _ 
                        (A(PivotRow, Icol) * Unknown(Icol)) 
                Next Icol 
            End If 
            ' Evaluate the corresponding unknown 
            Unknown(MasterCol) = RowProductSum 
        Next MasterCol 
        ' 
        ' For de-bugging purposes, test the integrity of the equation 
        If ((DebugEquations = True) And (Time >= DebugStartTime)) Then 
            Dim TotalError As Double 
            TotalError = 0 
            For Irow As Int32 = 1 To 15 Step 1 
                Dim RowError As Double 
                Dim RowSum As Double 
                RowError = 0 
                RowSum = 0 
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                For Icol As Int32 = 1 To 15 Step 1 
                    RowSum = RowSum + (A(Irow, Icol) * Unknown(Icol)) 
                Next Icol 
                RowError = RowSum - B(Irow) 
                TotalError = TotalError + Math.Abs(RowError) 
            Next Irow 
            If (TotalError > Val("0.000000001")) Then 
                MsgBox("Logic error: Matrix equation error exceeds 10^-9.") 
            End If 
        End If 
        ' 
        ' Organize the results 
        XDot2sc = Unknown(1) 
        PHIDot2tc = Unknown(2) 
        PHIDot2twf = Unknown(3) 
        PHIDot2swr = Unknown(4) 
        PHIDot2twr = Unknown(5) 
        Fvgsp = Unknown(6) 
        Tvtowt = Unknown(7) 
        Thtowt = Unknown(8) 
        Fvgtwr = Unknown(9) 
        Fvgswr = Unknown(10) 
        Fhgswr = Unknown(11) 
        Dgsp = Unknown(12) 
        Fhgtwr = Unknown(13) 
        Fhgtwf = Unknown(14) 
        Fvgtwf = Unknown(15) 
        ' 
        ' Calculate the dependent accelerations 
        XDot2tc = XDot2sc + (F1 * PHIDottc * PHIDottc) + (F2 * PHIDot2tc) 
        XDot2twf = XDot2tc - (D1 * PHIDottc * PHIDottc) + (D2 * PHIDot2tc) 
        YDot2twf = (D2 * PHIDottc * PHIDottc) + (D1 * PHIDot2tc) 
        XDot2swr = XDot2sc 
        XDot2twr = XDot2tc 
        ' 
        ' Back-substitute for the internal forces 
        Fhctwf = (Mtwf * XDot2twf) + Fhgtwf 
        Fvctwf = Fvgtwf - (Mtwf * G) - (Mtwf * YDot2twf) 
        Fhcswr = Fhgswr + (Mswr * XDot2swr) 
        Fvcswr = Fvgswr - (Mswr * G) 
        Fhctwr = Fhgtwr - (Mtwr * XDot2twr) 
        Fvctwr = Fvgtwr - (Mtwr * G) 
        ' 
        ' For de-bugging purposes, print out the results 
        If ((DisplayResults = True) And (Time >= DisplayStartTime)) Then 
            Dim OutStr As String 
            OutStr = _ 
                "Time = " & Trim(Str(Time)) & vbCrLf & _ 
                "BtwfAir=" & Trim(Str(BtwfAir)) & "     " & _ 
                "BtwfRTO = " & Trim(Str(BtwfRTO)) & "     " & _ 
                "BtwrNoSlip=" & Trim(Str(BtwrNoSlip)) & "     " & _ 
                "BSledMove=" & Trim(Str(BSledMove)) & vbCrLf & _ 
                "XDot2sc = " & Trim(Str(XDot2sc)) & vbCrLf & _ 
                "PHIDot2tc = " & Trim(Str(PHIDot2tc)) & vbCrLf & _ 
                "PHIDot2twf = " & Trim(Str(PHIDot2twf)) & vbCrLf & _ 
                "PHIDot2swr = " & Trim(Str(PHIDot2swr)) & vbCrLf & _ 
                "PHIDot2twr = " & Trim(Str(PHIDot2twr)) & vbCrLf & _ 
                "Fvgsp = " & Trim(Str(Fvgsp)) & _ 
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                "   Dgsp = " & Trim(Str(Dgsp)) & _ 
                "   %H/V = " & Trim(Str(Dgsp / Fvgsp)) & vbCrLf & _ 
                "Tvtowt = " & Trim(Str(Tvtowt)) & _ 
                "   Thtowt = " & Trim(Str(Thtowt)) & _ 
                "   %V/H = " & Trim(Str(Tvtowt / Thtowt)) & vbCrLf & _ 
                "Fvgtwr = " & Trim(Str(Fvgtwr)) & _ 
                "   Fhgtwr = " & Trim(Str(Fhgtwr)) & _ 
                "   %H/V = " & Trim(Str(Fhgtwr / Fvgtwr)) & vbCrLf & _ 
                "Fvgswr = " & Trim(Str(Fvgswr)) & _ 
                "   Fhgswr = " & Trim(Str(Fhgswr)) & _ 
                "   %H/V = " & Trim(Str(Fhgswr / Fvgswr)) & vbCrLf & _ 
                "Fvgtwf = " & Trim(Str(Fvgtwf)) & _ 
                "   Fhgtwf = " & Trim(Str(Fhgtwf)) 
            MsgBox(OutStr, , "Results of Eulerian elimination") 
        End If 
        ' 
        ' For de-bugging purposes, print out Equation (68) 
        If ((DebugEquations = True) And (Time >= DebugStartTime)) Then 
            Dim OutStr As String 
            OutStr = _ 
                "Time = " & Trim(Str(Time)) & vbCrLf & _ 
                "BtwfAir=" & Trim(Str(BtwfAir)) & "     " & _ 
                "BtwfRTO = " & Trim(Str(BtwfRTO)) & "     " & _ 
                "BtwrNoSlip=" & Trim(Str(BtwrNoSlip)) & "     " & _ 
                "BSledMove=" & Trim(Str(BSledMove)) & vbCrLf & _ 
                "(68C) " & Trim(Str(MOItwf * PHIDot2twf)) & " = " & _ 
                Trim(Str(RADtwf * Fhgtwf)) & vbCrLf & _ 
                "(68D) " & Trim(Str(BtwfAir * Fhgtwf)) & " = 0" & vbCrLf & _ 
                "(68E) " & Trim(Str((BtwfAir + ((1 - BtwfAir) * BtwfRTO)) * _ 
                Fhgtwf)) & " = 0" & vbCrLf & _ 
                "(68F) " & Trim(Str((1 - BtwfAir) * _ 
                (XDot2sc + ((F1 - D1) * PHIDottc * PHIDottc) + _ 
                ((F2 + D2) * PHIDot2tc) - (RADtwf * PHIDot2twf)))) & " = 0" & vbCrLf & _ 
                "(68G) " & Trim(Str((1 - BtwfAir) * (1 - BtwfRTO) * _ 
                ((D2 * PHIDottc * PHIDottc) + (D2 * PHIDot2tc)))) & " = 0" & vbCrLf & _ 
                "(68J) " & Trim(Str(MOIswr * PHIDot2swr)) & " = " & _ 
                Trim(Str(RADswr * Fhgswr)) & vbCrLf & _ 
                "(68K) " & Trim(Str(XDot2sc)) & " = " & _ 
                Trim(Str(RADswr * PHIDot2swr)) & vbCrLf & _ 
                "(68N) " & Trim(Str(MOItwr * PHIDot2twr)) & " = " & _ 
                Trim(Str(Torque - (RADtwr * Fhgtwr))) & vbCrLf & _ 
                "(68O) " & Trim(Str(BtwrNoSlip * _ 
                (XDot2sc + (F1 * PHIDottc * PHIDottc) + (F2 * PHIDot2tc) + _ 
                (-RADtwr * PHIDot2twr)))) & " = 0" & vbCrLf & _ 
                "(68P) " & Trim(Str((1 - BtwrNoSlip) * _ 
                (Fhgtwr - (Ctwrd * Fvgtwr)))) & " = 0" & vbCrLf & _ 
                "(68R) " & Trim(Str((Mtruck * XDot2sc) + _ 
                (((Mtruck * F1) - (Mtwf * D1)) * PHIDottc * PHIDottc) + _ 
                (((Mtruck * F2) + (Mtwf * D2)) * PHIDot2tc))) & " = " & _ 
                Trim(Str(-Fhgtwf + Fhgtwr - Thtowt)) & vbCrLf & _ 
                "(68S) " & Trim(Str(Mtwf * _ 
                ((D2 * PHIDottc * PHIDottc) + (D1 * PHIDot2tc)))) & _ 
                " = " & Trim(Str(Fvgtwf + Fvgtwr - Tvtowt - (Mtruck * G))) & vbCrLf & _ 
                "(68T) " & Trim(Str((Mtwf * D2 * XDot2sc) + _ 
                (Mtwf * F1 * D2 * PHIDottc * PHIDottc) + _ 
                ((MOItc + (Mtwf * ((D1 * D1) + (F2 * D2) + (D2 * D2)))) * _ 
                PHIDot2tc))) & " = " & _ 
                Trim(Str(Torque + (Fvgtwf * D1) - (Fhgtwf * D2) + (Tvtowt * D3) + _ 
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                (-Thtowt * D4) - ((Mtwf + Mtcf) * D1 * G))) & vbCrLf & _ 
                "(68U) " & Trim(Str(Msled * XDot2sc)) & " = " & _ 
                Trim(Str(Thtowt - Dgsp - Fhgswr)) & vbCrLf & _ 
                "(68V) 0 = " & Trim(Str(Tvtowt + Fvgsp + Fvgswr - _ 
                (Msled * G))) & vbCrLf & _ 
                "(68W) 0 = " & Trim(Str((Tvtowt * (Ws + Xs)) + _ 
                (Thtowt * (RADswr - Ys)) + ((Fvgsp - (Mscf * G)) * Ws) + _ 
                (-Dgsp * RADswr) - (Msm * G * Dw))) & vbCrLf & _ 
                "(68X) " & Trim(Str(BSledMove * (Dgsp - (Cpd * Fvgsp)))) & _ 
                " = 0" & vbCrLf & _ 
                "(68Y) " & Trim(Str((1 - BSledMove) * XDot2sc)) & " = 0" & vbCrLf & _ 
                "(68AA) " & Trim(Str(Tvtowt)) & " = " & _ 
                Trim(Str(Yoo * Thtowt)) & vbCrLf & _ 
                "(68Q) " & Trim(Str(BtwrNoSlip * Fhgtwr)) & " <= " & _ 
                Trim(Str(BtwrNoSlip * Ctwrs * Fvgtwr)) & vbCrLf & _ 
                "(68Z) " & Trim(Str((1 - BSledMove) * Dgsp)) & " <= " & _ 
                Trim(Str((1 - BSledMove) * Cps * Fvgsp)) 
            MsgBox(OutStr, , "Equality of Equation (68)") 
        End If 
 
    End Sub 
 
    Public Sub Integrate_One_Step( _ 
        ByVal DisplayResults As Boolean, ByVal DisplayStartTime As Double) 
        ' Primary EOM kinematic variables, direct integration 
        Dim DeltaXsc As Double = (XDotsc * DelT) + (0.5 * XDot2sc * DelT * DelT) 
        Dim DeltaXDotsc As Double = XDot2sc * DelT 
        Dim DeltaPHItc As Double = (PHIDottc * DelT) + (0.5 * PHIDot2tc * DelT * DelT) 
        Dim DeltaPHIDottc As Double = PHIDot2tc * DelT 
        DeltaXsc = (XDotsc * DelT) + (0.5 * XDot2sc * DelT * DelT) 
        DeltaXDotsc = XDot2sc * DelT 
        DeltaPHItc = (PHIDottc * DelT) + (0.5 * PHIDot2tc * DelT * DelT) 
        DeltaPHIDottc = PHIDot2tc * DelT 
        ' Deduced changes and variables 
        Dim DeltaXtc As Double 
        Dim DeltaXDottc As Double 
        ' Sled's chassis - horizontal position, direct integration 
        Xsc = Xsc + DeltaXsc 
        XDotsc = XDotsc + DeltaXDotsc 
        ' Sled's rear wheels - horizontal position, Equation (42A) 
        Xswr = Xsc 
        XDotswr = XDotsc 
        ' Sled's rear wheels - rotational position, Equation (38F) 
        PHIswr = PHIswr + (DeltaXsc / RADswr) 
        PHIDotswr = PHIDotswr + (DeltaXDotsc / RADswr) 
        ' Truck's chassis - horizontal position, Equations (47) and (52) 
        Dim XtcBefore As Double = Xtc 
        Xtc = Xsc + Ws + Xs + (Ltow / Math.Sqrt(1 + (Yoo * Yoo))) + D3 
        DeltaXtc = Xtc - XtcBefore 
        Dim XDottcBefore As Double = XDottc 
        XDottc = XDotsc + (((Yoo * D3) - D4) * PHIDottc) 
        DeltaXDottc = XDottc - XDottcBefore 
        ' Truck's chassis - rotational position, direct integration 
        PHItc = PHItc + DeltaPHItc 
        PHIDottc = PHIDottc + DeltaPHIDottc 
        ' Truck's rear wheels - horizontal position, Equation (42B) 
        Xtwr = Xtc 
        XDottwr = XDottc 
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        ' Truck's rear wheels - rotational position, Equation  
        If (BtwrNoSlip = 1) Then    ' No slipping, Equation (21B) 
            PHItwr = PHItwr + (DeltaXtc / RADtwr) 
            PHIDottwr = XDottc / RADtwr 
        Else                        ' Slipping, Equation (41I) and direct integration 
            PHItwr = PHItwr + (PHIDottwr * DelT) + (0.5 * PHIDot2twr * DelT * DelT) 
            PHIDottwr = PHIDottwr + (PHIDot2twr * DelT) 
        End If 
        ' Truck's front wheels - horizontal position, Equations (43A) and (45A) 
        Xtwf = Xtc + D1 
        XDottwf = XDottc + (D2 * PHIDottc) 
        ' Truck's front wheels - vertical position, Equations (43B) and (45B) 
        Ytwf = RADtwr - D2 
        YDottwf = -D1 * PHIDottc 
        ' Truck's front wheels - rotational position, Equations (4D) and (5F) 
        If (BtwfAir = 0) Then       ' Front wheels on ground 
            PHItwf = PHItwf + (DeltaXsc / RADtwf) 
            PHIDottwf = PHIDottwf + (DeltaXDotsc / RADtwf) 
        Else                        ' Front wheels airborne and direct integration 
            PHItwf = (PHIDottwf * DelT) + (0.5 * PHIDot2twf * DelT * DelT) 
            PHIDottwf = PHIDot2twf * DelT 
        End If 
        ' 
        ' Detect and force zero conditions 
        If (Math.Abs(Ytwf - RADtwf) < EqualityFuzziness) Then 
            Ytwf = 0 
        End If 
        If (Math.Abs(XDotsc) < EqualityFuzziness) Then 
            XDotsc = 0 
        End If 
        If (Math.Abs(PHItc) < EqualityFuzziness) Then 
            PHItc = 0 
        End If 
        If (Math.Abs(Fvgtwf) < EqualityFuzziness) Then 
            Fvgtwf = 0 
        End If 
        ' 
        ' Detect and correct unrealistic conditions. 
        ' The truck will not rotate into the ground. 
        If (PHItc < 0) Then 
            PHItc = 0 
        End If 
        ' The truck's front wheels will not go below ground. 
        If (Ytwf < RADtwf) Then 
            Ytwf = RADtwf 
        End If 
        ' The sled will not travel backwards. 
        If (XDotsc < 0) Then 
            XDotsc = 0 
            XDotswr = 0 
        End If 
        ' The sled's rear wheels will not turn backwards. 
        If (PHIDotswr < 0) Then 
            PHIDotswr = 0 
        End If 
        ' 
        ' For de-bugging purposes, print out the results 
        If ((DisplayResults = True) And (Time >= DisplayStartTime)) Then 
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            Dim OutStr As String 
            OutStr = _ 
                "Time = " & Trim(Str(Time)) & vbCrLf & _ 
                "BtwfAir=" & Trim(Str(BtwfAir)) & "     " & _ 
                "BtwfRTO = " & Trim(Str(BtwfRTO)) & "     " & _ 
                "BtwrNoSlip=" & Trim(Str(BtwrNoSlip)) & "     " & _ 
                "BSledMove=" & Trim(Str(BSledMove)) & vbCrLf & _ 
                "XDot2sc = " & Trim(Str(XDot2sc)) & _ 
                "   XDotsc = " & Trim(Str(XDotsc)) & _ 
                "   Xsc = " & Trim(Str(Xsc)) & vbCrLf & _ 
                "PHIDot2tc = " & Trim(Str(PHIDot2tc)) & _ 
                "   PHIDottc = " & Trim(Str(PHIDottc)) & _ 
                "   PHItc = " & Trim(Str(PHItc)) & vbCrLf & _ 
                "PHIDot2twf = " & Trim(Str(PHIDot2twf)) & _ 
                "   PHIDottwf = " & Trim(Str(PHIDottwf)) & _ 
                "   PHItwf = " & Trim(Str(PHItwf)) & vbCrLf & _ 
                "YDot2twf = " & Trim(Str(YDot2twf)) & _ 
                "   YDottwf = " & Trim(Str(YDottwf)) & _ 
                "   Ytwf = " & Trim(Str(Ytwf)) & vbCrLf & _ 
                "PHIDot2swr = " & Trim(Str(PHIDot2swr)) & _ 
                "   PHIDotswr = " & Trim(Str(PHIDotswr)) & _ 
                "   PHIswr = " & Trim(Str(PHIswr)) & vbCrLf & _ 
                "PHIDot2twr = " & Trim(Str(PHIDot2twr)) & _ 
                "   PHIDottwr = " & Trim(Str(PHIDottwr)) & _ 
                "   PHItwr = " & Trim(Str(PHItwr)) & vbCrLf & _ 
                "XDot2twr = " & Trim(Str(XDot2twr)) & _ 
                "   XDottwr = " & Trim(Str(XDottwr)) & _ 
                "   Xtwr = " & Trim(Str(Xtwr)) & vbCrLf & _ 
                "Fvgsp = " & Trim(Str(Fvgsp)) & _ 
                "   Dgsp = " & Trim(Str(Dgsp)) & _ 
                "   %H/V = " & Trim(Str(Dgsp / Fvgsp)) & vbCrLf & _ 
                "Tvtowt = " & Trim(Str(Tvtowt)) & _ 
                "   Thtowt = " & Trim(Str(Thtowt)) & _ 
                "   %V/H = " & Trim(Str(Tvtowt / Thtowt)) & vbCrLf & _ 
                "Fvgtwr = " & Trim(Str(Fvgtwr)) & _ 
                "   Fhgtwr = " & Trim(Str(Fhgtwr)) & _ 
                "   %H/V = " & Trim(Str(Fhgtwr / Fvgtwr)) & vbCrLf & _ 
                "Fvgswr = " & Trim(Str(Fvgswr)) & _ 
                "   Fhgswr = " & Trim(Str(Fhgswr)) & _ 
                "   %H/V = " & Trim(Str(Fhgswr / Fvgswr)) & vbCrLf & _ 
                "Fvgtwf = " & Trim(Str(Fvgtwf)) & _ 
                "   Fhgtwf = " & Trim(Str(Fhgtwf)) 
            MsgBox(OutStr, , "Results at end of time step") 
        End If 
 
    End Sub 
 
End Module 
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Appendix "B" 

 

Listing of module EOMDecider 

 
Option Strict On 
Option Explicit On 
 
' This module contains one principal subroutine, which determines which equations of 
' motion should be applied during the next time step.  It also contains a minor 
' subroutine to assign cardinal numbers to the various cases.  These case ID numbers 
' are used only for information and display purposes. 
'   Set_Binary_Flags() 
'   Set_CaseID_Numbers() 
 
Public Module EOMDecider 
 
    Public Sub Set_Binary_Flags(ByVal Debug As Boolean) 
        ' 
        ' Determine the previous states 
        If (Math.Abs(XDotsc) <= EqualityFuzziness) Then 
            SledIsMoving = False 
        Else 
            If (XDotsc > 0) Then 
                SledIsMoving = True 
            Else 
                MsgBox("Logic error: Sled is moving backwards.") 
                Exit Sub 
            End If 
        End If 
        If (Math.Abs(Ytwf - RADtwf) <= EqualityFuzziness) Then 
            FrontIsAirborne = False 
        Else 
            If (Ytwf > RADtwf) Then 
                FrontIsAirborne = True 
            Else 
                MsgBox("Logic error: Front wheels are below ground.") 
                Exit Sub 
            End If 
        End If 
        If (Math.Abs((RADtwr * PHIDottwr) - XDottwr) <= EqualityFuzziness) Then 
            RearIsNotSlipping = True 
        Else 
            RearIsNotSlipping = False 
        End If 
        ' 
        ' First case 
        ' Determine the future state of the front wheels, if they are now airborne 
        If (FrontIsAirborne = True) Then 
            If (YDottwf >= 0) Then 
                BtwfAir = 1 
                BtwfRTO = 0 
            Else 
                If (Math.Abs((Ytwf - RADtwf) / YDottwf) <= (DelT / 2)) Then 
                    BtwfAir = 0 
                    BtwfRTO = 0 
                Else 
                    BtwfAir = 1 
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                    BtwfRTO = 0 
                End If 
            End If 
        End If 
        ' 
        ' Second case 
        ' Determine the future state of the front wheels, if they are now on the ground 
        If (FrontIsAirborne = False) Then 
            ' 
            ' ************************************************************* 
            ' ** Special test subsequently added for Fvgtwf < 0 at Time = 0 
            ' ************************************************************* 
            If (Fvgtwf < 0) Then 
                BtwfAir = 1 
                BtwfRTO = 0 
            Else 
                Dim Slope As Double 
                Slope = (Fvgtwf - FvgtwfLast) / DelT 
                If (Slope >= 0) Then 
                    BtwfAir = 0 
                    BtwfRTO = 0 
                Else 
                    If (Math.Abs(Fvgtwf / Slope) <= (DelT / 2)) Then 
                        BtwfAir = 0 
                        BtwfRTO = 1 
                    Else 
                        BtwfAir = 0 
                        BtwfRTO = 0 
                    End If 
                End If 
            End If 
        End If 
        ' 
        ' Third case 
        ' Determine the future state of the sled's motion, if it is now moving 
        If (SledIsMoving = True) Then 
            Dim Slope As Double 
            Slope = XDot2sc 
            If (Slope >= 0) Then 
                BSledMove = 1 
            Else 
                If (Math.Abs(XDotsc / Slope) <= (DelT / 2)) Then 
                    BSledMove = 0 
                Else 
                    BSledMove = 1 
                End If 
            End If 
        End If 
        ' 
        ' Fourth case 
        ' Determine the future state of the sled's motion, if it is now stopped 
        If (SledIsMoving = False) Then 
            If (Dgsp > (Cps * Fvgsp)) Then 
                BSledMove = 1 
            Else 
                BSledMove = 0 
            End If 
        End If 
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        ' 
        ' Fifth case 
        ' Determine the future state of the rear wheels, if they are not slipping 
        If (RearIsNotSlipping = True) Then 
            If (Fhgtwr > (Ctwrs * Fvgtwr)) Then 
                BtwrNoSlip = 0 
            Else 
                BtwrNoSlip = 1 
            End If 
        End If 
        ' 
        ' Sixth case 
        ' Determine the future state of the rear wheels, if they are now slipping 
        If (RearIsNotSlipping = False) Then 
            Dim RS As Double 
            Dim RSSlope As Double 
            RS = (RADtwr * PHIDottwr) - XDottwr 
            RSSlope = (RADtwr * PHIDot2twr) - XDot2twr 
            If (RSSlope >= 0) Then 
                BtwrNoSlip = 0 
            Else 
                If (Math.Abs(RS / RSSlope) <= (DelT / 2)) Then 
                    BtwrNoSlip = 1 
                Else 
                    BtwrNoSlip = 0 
                End If 
            End If 
        End If 
        ' 
        ' For debugging purposes, print out the conclusions 
        If (Debug = True) Then 
            Dim OutStr As String 
            OutStr = _ 
                "Time = " & Trim(Str(Time)) & vbCrLf & _ 
                "Current state is:" & vbCrLf & _ 
                "  FrontIsAirborne = " & FrontIsAirborne.ToString & vbCrLf & _ 
                "  RearIsNotSlipping = " & RearIsNotSlipping.ToString & vbCrLf & _ 
                "  SledIsMoving = " & SledIsMoving.ToString & vbCrLf & _ 
                "Expected state is:" & vbCrLf & _ 
                "  BtwfAir = " & Trim(Str(BtwfAir)) & vbCrLf & _ 
                "  BtwfRTO = " & Trim(Str(BtwfRTO)) & vbCrLf & _ 
                "  BtwrNoSlip = " & Trim(Str(BtwrNoSlip)) & vbCrLf & _ 
                "  BSledMove = " & Trim(Str(BSledMove)) 
            MsgBox(OutStr, , "EOMDecider results") 
        End If 
 
    End Sub 
 
    Public Sub Set_CaseID_Numbers() 
        If (SledIsMoving = True) Then 
            If (FrontIsAirborne = False) Then 
                If (RearIsNotSlipping = True) Then 
                    CaseID = 1 
                Else 
                    CaseID = 2 
                End If 
            Else 
                If (RearIsNotSlipping = True) Then 
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                    CaseID = 3 
                Else 
                    CaseID = 4 
                End If 
            End If 
        Else 
            If (FrontIsAirborne = False) Then 
                If (RearIsNotSlipping = True) Then 
                    CaseID = 5 
                Else 
                    CaseID = 6 
                End If 
            Else 
                If (RearIsNotSlipping = True) Then 
                    CaseID = 7 
                Else 
                    CaseID = 8 
                End If 
            End If 
        End If 
    End Sub 
 
End Module 

 

 

 

 

 


