
~ 1 ~

Enhancements to the dynamics of a 2WD pickup truck pull

In an earlier paper, we looked at a simple model of a 2WD pickup truck pulling a loaded sled in a "tractor

pull" competition. The simplified model was simple enough that we were able to derive a single equation

for the distance travelled by the rig as a function of time. The single equation was useful because it

provided some insight into the dynamics of a run and allowed us to quantify roughly what was going on.

On the other hand, a single equation suffers from two big disadvantages. Firstly, it can only describe the

activity in a single "mode" of operation. The most important mode in a tractor pull has the truck or

tractor firmly on the ground. But, the single equation does not describe what happens when the rig begins

to operate in some other mode, such as spinning its wheels. Secondly, keeping the model simple meant

that we had to ignore certain physical realities. For example, we assumed that the effective height of the

sled was the same as the effective height of the truck. As another example, we assumed that the entire rig

was a rigid body; its wheels translated along with the rest of the rig, but did not turn.

In this paper, we will enhance the dynamics of simplified model to make it more realistic. We will break

the rig into five separate rigid bodies, being the three sets of wheels, the truck's chassis and the sled's

chassis. The cost of making the enhancements is that we will no longer be able to perform closed-form

integration of the equations of motion, and will have to integrate numerically instead.

Part I -- Dynamics of the truck's front wheels, which are not driven wheels

In the earlier paper, we used Newton's Law, , to calculate the acceleration

of the rig along the horizontal. I described the variant of Newton's Law which applies to rotations,

, but we did not use it in the equations of

motion. We did not have to use it because we assumed that nothing would rotate. It is true that the

source of power in the simplified model was a rotational torque applied to the rear wheels of the truck,

from which we calculated the horizontal force applied by the tires on the ground. For that purpose, we

used the definition of torque, . But, we did not actually allow the rear

wheels to turn, so we did not need to find their rotational acceleration.

Let's consider a typical pair of non-driven wheels. Both the front wheels of the pickup truck and the rear

wheels of the sled fall into this category. They are not powered, and merely turn as required to adjust to

the instantaneous position of their respective vehicles. The following figure shows a free body diagram

for the front wheels of the truck. Variables which relate to these wheels have the subscript , which

stands for "truck wheels, front".

Non-driven wheel

Axle

radius

~ 2 ~

The wheels are shown in a side view and their motion will be considered only in the plane of the page.

Five forces act on the wheels. As is usual, the tail of each individual force is located at the point in the

rigid body at which it acts. (It would be customary to scale the lengths of the arrows in proportion to the

magnitudes of the forces, but we do not yet know the numerical values.) The five forces are these:

 is the mass of the pair of wheels, so that is the force of gravity exerted on the pair of

wheels. Since the wheels are rotationally symmetric, we know that the center-of-gravity lies at

the center of the axle. We will assume that the force of gravity can be concentrated at that point.

 is the vertical force which the rest of the truck (the"chassis") exerts on the front axle. I

have assumed that the weight of the chassis causes it to bear down on the axle, so that this force

will normally act in the downward direction. Note that the first subscript of the forces other than

gravity is either for vertical and for horizontal.

 is the horizontal force which the rest of the truck exerts on the front axle. As in the

earlier paper, the direction of the rig's motion is towards the right. If the vehicle is accelerating, it

will push the front wheels forward in the direction of motion.

 is the vertical force which the ground exerts on the front wheels. This will normally be

an upwards force, as shown.

 is the horizontal force which the ground exerts on the front wheels. This will normally

be a retarding force, as shown, with a tendency to hold the bottom of the wheels stationary. We

will not get into the details of the ground-to-rim interaction for the non-driven wheels. It will be

sufficient for our purposes to assume that the non-driven wheels do not slip. The maximum

frictional drag which the ground can exert on the rim of the tire is equal to the coefficient of static

friction multiplied by the vertical force acting through the ground-to-rim boundary. We will

assume that this maximum retarding force is always greater than the actual force

required to hold the bottom of the wheels in place.

We will assume that the lines-of-action of all of these forces, other than , pass through the center

of the front axle. We will assume that acts perpendicularly to the radial vector from the center

of the axle to the ground. In other words, everything is "squared up" with respect to the center of the axle

and the point of contact with the ground which lies directly below it.

We will use the same - - co-ordinate frame of reference that we used in the earlier paper. Its axes are

shown to the lower right of the free body diagram. Note that I have defined rotation angle in such a

way that it increases as the wheels move forward. The sums of the forces in the and -directions and

the sum of the torques in the -direction, around the center of the front axle, are as follows:

In the earlier paper, we used the symbol for the angle by which an arbitrary wheel had rotated. For

convenience, we will continue to use that symbol, with the appropriate subscript for the truck's front

wheels. In the earlier paper, we used the symbol for the horizontal distance an arbitrary wheel had

travelled. We did not have a corresponding symbol for the vertical distance an arbitrary wheel had

travelled, since we assumed that the rig remained in contact with the ground at all times. Let's use a new

set of symbols for the distance travelled by the front wheels of the truck. Let and be the

~ 3 ~

absolute co-ordinates of the front axle. We will measure upwards from the ground and from

some spot related to the start of the run. Defined in this way, and cannot be said to be the

"distances travelled" by the front wheels, but the distances travelled can easily be found from them by

subtracting their starting values.

The horizontal acceleration of the wheels at any instant in time is the second derivative of the horizontal

distance travelled. The vertical acceleration of the wheels at any instant in time is the second derivative of

the vertical distance travelled. The rotational acceleration of the wheels at any instant in time is the

second derivative of the angle by which the wheels have rotated. Note that, in Equation following,

the rotational acceleration around the -axis has a minus sign. This arises because I defined angle

in such a way that it increases as the wheel rotates around the negative -axis. We can state these

relationships as:

To apply the linear variant of Newton's Law, the relevant physical parameter is the mass of the wheels,

. The physical parameter needed to apply the rotational variant of Newton's Law is the moment of

inertia. For the moment of inertia, we will use the symbol . I will explain presently how to calculate

this quantity. One can think of the mass of the wheels as their resistance to moving in response to an

applied force. In a like way, the moment of inertia of the wheels is their resistance to rotating in response

to an applied torque. Newton's Law applied to the front wheels of the truck can be written as:

This is the set of three equations of motion which apply to the front wheels. We cannot solve them in

isolation. Each of the five forces is associated with an equal and opposite force which is applied to some

other body. The reaction to the force of gravity , for example, is the upwards pull which is

experienced by the center of the Earth. We don't really care how the Earth responds to the pull of the

wheels. But we do care about the equal and opposite forces associated with two of these five forces,

 and . The reaction forces are experienced by the truck's chassis, which is an integral

part of the rig. There is said to be a "coupling" between the equations of motion for the front wheels and

the equations of motion for the truck's chassis. Both equations of motion will need to be solved

simultaneously. In fact, we are going to divide the rig up into five separate rigid bodies, each with its

own three equations of motion. There are couplings between various pairs of these five bodies, with the

result that all 15 equations of motion will need to be solved simultaneously

The three equations of motion involve seven unknowns: accelerations in the three variables ,

and , a pair of ground forces and a pair of chassis forces. Even if we expect to get two more pieces

~ 4 ~

of information, in the form of two more equations, when we solve the equations of motion for the chassis,

we will still have an under-constrained set of equations. There will still be two more unknowns than

equations. Resolving the shortfall is most easily done if we consider certain physical states, or cases, in

which the front wheels can be in. There are three distinct states.

Case Front #1 -- The front wheels are in the air

If the front wheels do leave the ground, then the ground can no longer exert any vertical or horizontal

forces on the wheel. I will call this condition "airborne". Mathematically, we can describe this state as:

Note the inequality in which describes the front wheels being above the ground. Of course,

when , the wheels are on the ground. A less-than inequality is not physically possible since

it would correspond to the wheels somehow sinking into the ground.

When the wheels are airborne, the equations of motion reduce to:

There are only five unknowns now and a solution should be possible. The third equation is a second-

order differential equation in the single variable which sets the rotational acceleration of the front

wheels to zero. The rotational speed is the first integral of the rotational acceleration, so the rotational

speed of the front wheels will be constant. In fact, this constant rotational speed will be the rotational

speed at which the wheels were turning at the instant they left the ground. Mathematically, the wheels

will keep spinning forever at this speed or, at least until the wheels come back into contact with the

ground. In reality, the wheels will not keep spinning in the air forever. There is some friction in the axle

that will absorb energy from the spin and slow the rotation. We are going to ignore this little bit of

rotational drag.

Case Front #2 -- The front wheels are on the ground

When the front wheels are in contact with the ground, then the rims of the wheels do not slip with respect

to the ground. As we saw in the earlier paper, this requires that the rate at which the circumference of the

wheels comes into contact with the ground must be equal to the rate at which the wheels are moving

forward. This relationship applies not just to the horizontal speed, but to the horizontal acceleration as

well. Mathematically, we can express the accelerations' relationship in this state as:

We can notionally add this equation to the three which constitute the equations of motion. Equation

is a kinematic relationship, or constraint, which applies whenever the front wheels are on the ground.

~ 5 ~

Even adding this extra equation is not enough to give a unique solution. There is still one more unknown

than there are equations. Before I describe how we can resolve this shortfall, let me show what happens

when we substitute Equation into the equations of motion. We can re-arrange Equation to

isolate the horizontal ground force . After substituting for it, the first two equations of motion

reduce to:

Notice that the first equation looks a lot like Newton's Law, . In fact, it

is exactly in the form of Newton's Law if we treat the factor as the "effective mass" of

the wheels. In other words, for the purposes of calculating their linear acceleration, the rotation of the

front wheels can be treated like, and has the same effect as, an increase in their mass.

Notice that the second equation also looks a lot like Newton's Law. In fact, it is exactly in the form of

Newton's Law if we interpret the factor as the "effective vertical acceleration" of the

wheels. The term is the sum of the gravitational force and the reaction force to the acceleration of the

wheels as they travel upwards.

Case Front #2A -- The front wheels are on the ground, and stay on the ground

It might be tempting to say: if the front wheels are on the ground, then the sum of the vertical forces must

be zero. That is not necessarily so. It is true that, if the sum of the vertical forces is zero, then the front

wheels will say of the ground. In fact, that is exactly what we would say if we were looking for a "static

equilibrium" for the wheels. But, what if the front wheels are just on the verge of going airborne. It's best

if we look at two sub-cases of the Front #2 case.

If the front wheels are on the ground, and are expected to stay on the ground, then the net vertical force

must be zero. An equivalent description of this situation, in terms of acceleration, is that the vertical

acceleration is zero. We can write down this situation mathematically as:

One can look at this as either adding another equation or as eliminating one of the unknowns. Either way,

the number of equations is brought into balance with the number of unknowns, making a solution

possible.

Case Front #2B -- The front wheels are on the ground, but are on the verge of going airborne

Two things must happen at the same instant when the front wheels make a transition from being on the

ground to being airborne. The vertical force of the ground on the wheels must be zero and the

vertical acceleration must be non-zero. Mathematically, we cannot say that one causes the

other or vice versa. They happen together. Knowing that has the effect of reducing the

number of unknowns by one, once again making the set of equations soluble.

~ 6 ~

There is a certain symmetry between the Front #2A case and the Front #2B case. We set an acceleration

equal to zero in the former; we set a force equal to zero in the latter.

It will not be very convenient if we have to set up and solve different sets of equations for different cases.

As we will see, there are also different cases for the truck's rear wheels and for the sled's motion. It will

be more convenient to have a single set of equations which can handle all of the various cases. One way

to accomplish that is to use binary flags which cause certain terms or even equations to be included or

excluded from the set. I propose to use two binary flags for the truck's front wheels. I will define them as

follows:

State of truck's front wheels

Case Front #1: Wheels are airborne

Case Front #2A: On ground; remain on ground

Case Front #2A: On ground; ready for take-off

The subscript of is intended to be descriptive. When the "truck's front wheels are airborne", it is

equal to one. When they are not airborne, it is equal to zero. The flag does not mean anything

when the wheels are in the air but, when they are on the ground, it is equal to one when the "truck's front

wheels are ready for take-off". Using these flags, we can combine everything we know about the state of

the truck's front wheels into the following set of equations:

It makes sense to combine Equations and . The vertical force of the ground on the front

wheels is identically equal to zero in two of the cases. We we combine them as follows:

Having combined two of the equations leaves seven equations. They involve seven unknowns. But, they

are not soluble. The reader can confirm that, for any combination of the binary flags, two of the equations

be become trivial identities . So, we will always have exactly five non-trivial equations. That's

good, because the front wheels interact with the truck's chassis and the interaction will be the source of

two more equations, which involve the two chassis forces.

~ 7 ~

Part II -- Dynamics of the sled's rear wheels, which are also non-driven wheels

Like the front wheels of the truck, the rear wheels of the sled are not driven. If we use the subscript ,

which stands for "sled wheels, rear", then we can take over all of the results from Part I. In fact, the rear

wheels of the sled are even simpler. We do not expect them to rise off the ground, so there are not

multiple cases. In other words, at all times. Not only that, but the net vertical force is

always zero. These wheels are in a static vertical equilibrium. The equations of motion of the rear

wheels of the sled can be written down by inspection from Equation as follows:

Since these wheels remain in contact with the ground, and do not slip, the following circumference versus

distance relationship holds true as well:

We can combine Equations and into a single set of equations, as follows:

There are six unknowns: accelerations in the two variables and , a pair of ground forces and a

pair of chassis forces. A solution is possible. These four equations will be augmented by two more when

the interaction between the sled's chassis and its rear wheels is taken into account.

 Part III -- Calculating the moment of inertia of a wheel

As I have said, a moment of inertia is an object's resistance to a rotational force, which one calls torque.

Let's consider the simplest case first, of a point mass on the end of a massless stick with length . We

will try to rotate the mass around the other end of the stick by applying torque . (These are generic

symbols and do not relate specifically to the truck, the sled or their wheels.) The following figure shows

the setup.

torque

instantaneous speed

instantaneous angle

rotation axis

distance
mass

~ 8 ~

Since the stick is fixed at one end, the mass revolves around the fixed end in a circle with radius . At any

instant in time, the mass is moving in a direction which is tangent to its orbit, which is to say, in the

direction which is perpendicular to the stick. In the figure, I have shown an angle , which is the Greek

letter "theta", which is measured from a starting position defined, arbitrarily, as the dotted horizontal line.

As we have seen before, the distance travelled around the circumference of a circle is related to the angle

subtended by the arc, and the constant of proportionality is the radius. So, the speed of the mass is

related to the rate of change of the subtended angle by:

The direction of the speed changes as the mass revolves, but the instantaneous speed is always given by

Equation . If the mass happens to be revolving around the rotation axis at speed , and no torque is

applied, then the mass will continue to orbit at this constant speed. It will nevertheless be accelerating,

inwards, along the axis of the stick. This is the centripetal acceleration which counteracts the so-called

centrifugal force. Circular motion is a special case where the acceleration is such that it changes the

direction of travel of an object without changing its speed. When we apply a non-zero torque, we will

cause changes in the speed of travel as well.

Let's consider a very short interval of time during which the object moves a very short distance along the

circumference of its circular orbit. We can easily imagine such a short interval and such a short distance

that the object travels, for all intents and purposes, along a straight line segment. If torque is being

applied to the other end of the stick during this interval, then the point mass will experience a force along

its direction of travel during the interval equal to the torque divided by the lever-arm . If we let be the

mass's linear acceleration along the straight line during this interval, then Newton's Law for linear motion

can be written as:

Since the acceleration is the rate of change of the speed , we can combine Equations and as:

This has exactly the form of the variant of Newton's Law for rotational acceleration,

, where the moment of inertia is . For a point mass,

the moment of inertia is the mass multiplied by the square of the radius of the orbit. A point mass twice as

heavy resists a torque by twice as much. A point mass twice as far away resists a torque by four times as

much.

The units of a moment of inertia are mass multiplied by distance squared. In English units, we would say

pound-inch-squared or pound-foot-squared. In S.I. units, we would say kilogram-meter-squared.

The concept and derivation of the moment of inertia of a point mass can be extended to any rigid object,

including a three dimensional one. The trick is to divide the rigid object up into a large number of tiny

~ 9 ~

bits, and to deal with each little bit as if it was a point mass. Consider the homogeneous disk shown in

the following figure. The disk does not have to be thin; it can have thickness. The moment of inertia of

the little bits depends only on their radial distance from the axis of rotation. It does not depend on their

displacement along the axle, so we can think of a thick disk as being the sum of many thin disks glued

together face-to-face.

If the disk has an outer radius and a total mass , then its mass per unit area of face is equal to .

We will divide the face up into little bits in two steps. Firstly, we will divide the face up into annuli. An

annulus is a circle with a circular hole cut out of the middle, just like a washer. One such annulus is

shown in the figure. It has an inside radius and an outside radius that is just a tiny bit bigger. The

outside radius of the annulus is . Both the inside and outside circumferences of the annulus are

shown as dotted circles in the figure. We will divide up the entire disk into a succession of such annuli,

where the outer radius of each annulus is equal to the inner radius of the next bigger annulus, and so on

until we reach the rim of the disk.

Secondly, each annulus is divided up by chopping the 360° around the circle into small angles. I have

shown an angle , which is the Greek letter "psi", which is defined by a radial dotted line. A nearby

radial dotted line is positioned at angle , where is a very small angle.

The intersection of the annulus and the small change in angle is a small rectangular-shaped area. It is

not a true rectangle. Two of its sides are arcs of circles and so are slightly curved. Its other two sides are

radii of the same circle and so are not exactly parallel. However, as we imagine that and become

smaller and smaller, the small bit of area becomes more and more rectangular. In the limit as the two

differentials become infinitely small, the area becomes exactly rectangular. Like any rectangle, its area is

the product of its base times its height, . If we multiply this area by the mass of the disk

per unit area, we get the mass of the disk enclosed by this rectangle: . It should be

apparant that I have used the symbol for the mass of this little rectangle.

We can now apply the formula for the moment of inertia of a point mass, .

We have just calculated the mass and, by definition, the radial distance of the little rectangle is . If

we let be the moment of inertia of the little rectangle, then:

This formula applies to each little rectangle into which we can divide the disk. "Adding up" the

contibutions to the total moment of inertia of the disk as a whole is accomplished by integrating

Equation over the physical extemes of the disk. The integration is straight forward:

 a little bit of area

radius

~ 10 ~

The moment of inertia of a uniform disk is quite similar to that of a point mass. The difference is the

factor one-half. As expected, the units are the same, too, being mass times distance squared.

As a quick numerical example, suppose we have a uniform disk which has a mass of 100 pounds (45.4

kilograms) and a diameter of 30 inches (radius = 0.381 meters). Its moment of inertia is 45.4 0.381
2

6.59 kg-m
2
. This is roughly equivalent to 17 pounds on the end of a yard-stick. A real wheel, of course,

is not a uniform disk. It likely has a metal rim and rubber tires and, in any event, has various amounts of

these materials at various radii from the center. Calculating the moment of inertia of a real wheel can be

done by adding up the little bits, as we have done, but requires a complete specification of the mass as a

function of radial distance.

Let's take the concept to the next stage. What if a rigid body is subjected to a combination of rotation and

revolution? There is a difference between rotation and revolution. The Earth, for example, rotates once

per day but revolves once per year. Rotation takes place around a body's center of mass while revolution

is the rotation of the center of mass around some other point. To explore this concept, let's consider a

uniform disk with mass and radius bolted to the end of a stick with length . This is shown in the

following figure.

The two black dots are the bolts that secure the disk to the stick. It must therefore be the case that the

angle by which the disk rotates around the rotation axis is identical to the angle by which the disk

revolves around the revolution axis. To calculate the moment of inertia of this body, we will follow the

procedure we did above. We will divide the disk up into annuli and radial sectors. A typical small

rectangle will again be located by radius , measured from the rotation axis, and by angle , measured

counter-clockwise from the horizontal. But, to calculate the moment of inertia around the revolution axis,

mass , radius

torque

distance

instantaneous orbital speed

instantaneous angle

revolution axis

rotation axis

~ 11 ~

we need to convert the radius and angle by which the small rectangle is located into terms referenced to

the revolution axis. We will use the trigonometry shown in the following figure to do the conversion.

The instantaneous location of the rectangle can be specified using the Cartesian co-ordinates and

, which are computed using the following trigonometry:

The radius from the revolution axis to the rectangle can be found by applying the Pythagorean

Theorem:

The mass of the small rectangle is the same as it was before, . Now, however, the

expression for the moment of inertia of the point mass must depend on its radius from the revolution

axis, as follows:

instantaneous position of bit

rotation axis

revolution axis

distance

distance

~ 12 ~

To find the total moment of inertia, we integrate over the extremes of the disk. The integration is a little

bit more involved than it was before, since it involves a trigonometric term. One proceeds as follows,

integrating over the angle first:

This is a very important result. It says that the total moment of inertia is the sum of the M.O.I. of the disk

around its central axis (the term) plus the M.O.I. of the disk's total mass treated as if it is a point

mass revolving around the revolution axis (the term).

Part IV -- Dynamics of the rear wheels of the truck, which are driven wheels

The equations which describe the dynamics of a driven wheel are not much more complicated than those

of a non-driven wheel. Driven wheels are more complex, or course, but the extra complexity is required

to calculate the applied forces, not in the equations of motion themselves.

As a starting point, let's

consider the rear wheels of

the truck, which are a driven

pair of wheels. The figure

shown here is a free body

diagram for these wheels.

The subscript stands for

"truck wheels, rear".

Driven wheel

Axle

radius

~ 13 ~

There are only three differences compared with a pair of non-driven wheels, two of which are merely

changes in the directions in which the horizontal forces are expected to act. The differences are these:

 The chassis, through the powertrain, applies a clockwise torque to the rear wheels. Of

course, the wheels exert an equal and opposite torque on the truck's chassis.

 The horizontal force of the chassis on the axle is a retarding force on the driven wheels.

The wheels push the chassis ahead, and the reaction from the chassis is a force holding the wheels

back.

 Similarly, the expected direction of the horizontal force of the ground on the wheels is

reversed. The rims of the tires push backwards on the ground and the ground responds by

pushing forward on the rims.

The sums of the forces in the and -directions and the sum of the torques in the -direction, around the

center of the axle, are as follows:

The distances and and the angle can be defined for this driven wheel in the same way as

they were defined for the non-driven wheels above. Therefore, the expressions for the linear and

rotational accelerations in Equation apply to driven wheels, as well.

We will use for the mass of the truck's rear wheels and for their moment of inertia. Newton's

Law applied to the wheels can then be written as:

Like we did for the non-driven wheels, we can specify some constraints. The vertical distance will

always be equal to the wheels' radius . The drive wheels may slip, but they will never rise off the

ground. Since at all times, both the vertical speed and the vertical acceleration

 must be identically zero. So will the net vertical force. We can re-write Equation as

follows:

Although the truck's drive wheels are always in contact with the ground, they may or may not be slipping.

The proportionality between the wheels rotational speed and translational speed cannot be taken for

granted. In any event, it looks like we will have to consider two cases for the rear wheels as well. An

important difference between the cases arises from the nature of the ground friction.

.

~ 14 ~

Part V -- The ground reaction forces on the rear wheels of the truck

I am going to refer to both coefficients of friction, the coefficient of static friction which applies

when the rear wheels do not slip and the coefficient of dynamic friction which applies when they

do. These coefficients have the same definitions as the coefficients of friction I described in the earlier

paper.

Case Rear #1 -- The rear wheels are not slipping

Let's consider first the case when the rear wheels do not slip. When the wheels are not slipping, we will

have the same circumferential-speed versus translational-speed relationship that obtains for non-driven

wheels. We write that relationship for the truck's rear wheels as follows:

But, we know more than that. The static friction which the wheels and ground can exert on each other is

subject to a maximum value. At a high enough applied torque, the ground will be unable to resist the

shear force applied by the wheels. They will begin to slip. The maximum frictional drag is calculated in

a way similar to the dynamic drag, but using the coefficient of static friction instead. I will write the

condition as:

Note that this is an inequality. It does not affect the calculation of the horizontal force or

participate in the solution of the equations of motion. Instead, it is a condition that determines when the

non-slipping state comes to an end and slipping starts. Because it is an inequality, we will have to deal

with it differently than we deal with the other equations, all of which are equalities.

Case Rear #2 -- The rear wheels are slipping

Now, let's consider the case when the rear wheels are slipping. When there is slippage, the drag force is

equal to the vertical force across the interface multiplied by the coefficient of dynamic friction. I will

assume that the coefficient of dynamic friction already includes the effects of noise, heat and other

inefficiencies and so will not define another efficiency parameter. So, when there is slippage:

Equation does not depend on the applied torque. Nor does it depend on the speed with which the

wheels are spinning. This has important physical consequences. Once the rear wheels start to slip, the

ground reaction force is a constant. Pressing down on the gas pedal does not increase the ground reaction

force; it simply makes the wheels spin faster. The only way to stop the spin is to take one's foot off the

gas pedal and wait for the frictional drag to slow the wheels back down to a point where they grip the

ground once more. Usually, this means waiting for the wheels to come to a stop. Waiting for a complete

stop is not a mathematical necessity, but the result of two practical matters: (i) with one's foot off the gas

pedal, there is no tactile feedback about the status of the drag, and (ii) sitting in the driver's seat, there are

no visual cues either.

~ 15 ~

At any given time during a run, we will have to figure out which of one of the cases to use. It is one thing

to be able to calculate the horizontal ground reaction force for one case or the other, but it is a

different thing to decide which case should be used. Nor is it as simple as comparing the tangential rim

speed of the wheels to their horizontal speed. If the two speeds are equal and opposite, the wheels are, by

definition, not slipping. But, they could be just at the point where slipping begins. The inequality in

Equation will be our test for the transition point.

To handle these two with a single set of equations, I will introduce another binary flag. will

have the value one when the wheels are not slipping and zero when they are. The subscript should help

one remember that the flag is active when the wheels are not slipping. The equations which describe the

dynamics of the truck's rear wheels can then be written as follows:

Let's set the last equation -- the inequality -- aside for a moment. Although there are five other equations,

only four will be non-trivial at any given time. Depending on the value of , either Equation

 or will vanish. The set of equations involves six unknowns: accelerations in the two

variables and , a pair of ground forces and a pair of chassis forces. (Although the torque

 is a variable in the equations, it is not an unknown.) A solution should be possible. These four

equations will be augmented by two more, which involve the two chassis forces, when the interaction

between the truck's chassis and its rear wheels is taken into account.

Part VI -- Dynamics of the truck's chassis

In the enhanced model, the front and rear wheels are treated as separate rigid bodies, so the chassis does

not include them. The chassis does, however, feel their effects and the free body diagram will include the

forces they exert. We are also going to add some hitch details to the enhanced model. The following

figure shows the dimensions we will use for the truck.

~ 16 ~

The chassis consists of the collection of red line segments, which should be thought of as having no mass.

The effective masses of the chassis over the rear axle and over the front axle are shown as

the red dots. They are assumed to be concentrated at the centers of their respective axles. I have shown

dotted circles which represent the front and rear wheels. They can have different diameters, and we will

use the symbols and for their radii, respectively. Drawing the red line which represents the

chassis horizontally at the vertical midpoint between the two axles is quite arbitrary. The hitch ball is

shown by a small black dot. It is located a distance behind the rear axle and a distance above the

ground.

To keep track of the location of the chassis, we need to specify its horizontal and vertical co-ordinates.

Because the front wheels might rise off the ground, we also need to keep track of the angle of the chassis's

rotation. We will reference all three quantities to the center of the rear axle, as follows.

 is the horizontal distance of the rear axle from its starting position. is the distance of the axle

above the ground. Angle is the angle by which the chassis has rotated in the counter-clockwise

direction from the horizontal. The subscript stands for "truck chassis".

I am not going to draw the free body diagram just yet. Here's why. We intend to use the free body

diagram as a reference to add up the forces and torques acting on the chassis. To calculate the torques, we

will need to know the lever-arms through which the torquing forces act. However, the lengths of some of

the lever-arms change if the chassis rotates. Therefore, I have shown in this next figure the distances

from which we can calculate the lever-arms when the chassis is rotated by angle .

where:

~ 17 ~

Some trigonometry is required to determine distances through . I will describe first how I

determined the relationship between the front and rear axles, and distances and . The following

figure shows the relationship between the two axles (the red dots, as above) before any rotation (on the

left) and after rotation by angle (on the right).

Before the rotation, the vertical and horizontal separations of the two axles are the differences in wheel

radii and the wheelbase , respectively. A right triangle can be set up with these two

distances as its short sides. The hypotenuse is the point-to-point distance between the centers of the

axles and can be calculated using the Pythagorean Theorem. I have shown an angle , which is the Greek

letter "zi", as the angle between the vertical and the line segment connecting the axles.

A similar right triangle can be set up after the rotation, as shown on the right. The vertical angle has

increased by the amount of the rotation, and is now . The hypotenuse stays the same, as . Now,

let's compare the sines, cosines and tangents of the vertical angles before and after.

We can combine these equations to get:

~ 18 ~

The relationship between the hitch ball and the rear axle, from which distances and are calculated,

is shown before and after the rotation in the following figure. Here, the unrotated vertical angle is shown

as , the Greek letter "lambda". This vertical angle decreases when the chassis rotates.

The definitions of the trigonometric functions are as follows:

which can be combined to give:

Now, we arrive at last at the free body diagram of the truck's chassis, which is shown in the following

figure. Since we have just quantified the distances between important points on the chassis, I have not

shown any dimensions in the free body diagram, just the forces and torques. To avoid any confusion, I

have shown the chassis in a rotated position.

Three forces act at the point where the front mass is concentrated:

~ 19 ~

 is the force of gravity acting on the concentrated front mass;

 is the vertical force which the front wheels exert on the chassis and

 is the horizontal force which the front wheels exert on the chassis.

As usual, I have picked a direction to use as the algebraically "positive" direction of each force. I have

picked the direction in which we expect the forces to act when the truck is in normal operation. The front

wheels, for example, must be pushed forwards, which results in their applying a retarding force on the

chassis.

A similar set of three forces acts at the point where the rear mass is concentrated. There is also the

reaction to the torque applied to the rear drive wheels. The relevant symbols are:

 is the force of gravity acting on the concentrated rear mass;

 is the vertical force which the drive wheels exert on the chassis;

 is the horizontal force which the drive wheels exert on the chassis and

 is the reaction to the torque applied to the drive wheels.

The influence of the sled is felt through the tension exerted by the tow chain. The tow chain is no longer

necessarily horizontal in the enhanced model, so we need to take its angle into account. The easiest way

to do this is to resolve the tension into its vertical and horizontal components. This is done in the figure,

where:

 is the horizontal component of the tension on the truck and

 is the vertical component of the tension on the truck.

Note that I have assumed that the tow chain is such that it will normally be pulling down on the truck's

hitch. We now have enough information to write down the sum of the forces and torques acting on the

chassis.

In the expression for the sum of the torques, I have identified the force which gives rise to each

constituent torque. I have added or subtracted the torque from the total depending on whether it normally

acts in the positive or negative -direction, respectively.

To apply Newton's Law, we need the total mass of the chassis, which is , and the moment of

inertia of the chassis, for which we will use the symbol . Since we expect that the truck will rotate

around its rear axle if it rotates at all, we will want to use the moment of inertia which applies to rotations

around that axis. The numerical value of the moment of inertia depends on the rotation axis chosen, in

the same way that the numerical value of a torque depends what axis is chosen for measuring the lever-

arm.

~ 20 ~

The accelerations of the chassis are slightly different from those for the wheels which we looked at above.

The linear accelerations are the same but the rotational acceleration needs a positive sign rather than a

negative sign. I defined angle , which describes the rotation angle of the chassis, in such a way that

 increases as the chassis rotates around the positive -axis. On the other hand, I defined the rotation

angles for the wheels so that they increased by rotations around the negative -axis. For the chassis,

the accelerations are given by:

and the equations of motion can be written as:

We have only one constraint: that the net force in the -direction is zero. We know this because the

chassis does not rise off the ground in the vertical direction. That is not to say that the front wheels

cannot rise up off the ground. They can but, when they do, it is a result of the chassis's rotation, not a

result of the chassis's upward translation. Enforcing the constraint allows us to write this set of equations

as follows:

There are eight unknowns in these three equations: accelerations in the two variables and , a pair

of forces from the front wheels, a pair of forces from the rear wheels and a pair of forces from the tow

chain. When we combine these equations with those of the front wheels, we will in effect be adding two

more equations, which involve the two front wheel forces. When we combine these equations with those

of the rear wheels, we will be adding two more equations, which involve the two rear wheel forces.

Similarly, when we combine these equations with those of the sled, we will be adding another two, which

involve the tow chain forces. In effect, we will have a total of equations.

At first blush, it looks like we have too many equations, one more than the number of unknowns. But,

that's not true. We have over-counted both the number of unknowns and the number of equations. For

example, the horizontal location of the chassis is not really a new unknown. We are measuring the

horizontal location of the truck's chassis to the center of the rear axle, which is the same spot to which we

are measuring the horizontal location of the truck's rear wheels . They will always have the same

~ 21 ~

value, notwithstanding that we have used different symbols while setting up the equations of motion. The

same applies to the rotation angle , which can be derived from knowledge of the vertical displacement

 of the front wheels. There are other kinematic redundancies, which I will describe below. We are

also over-counting the number of equations. Combining the chassis's equations of motion with those of

the front wheels does not "add" another two equations to this set. It would be more accurate to say that it

"removes" two equations from this set, since we already counted the information from two extra

equations when we compared the numbers of unknowns and equations when analyzing the front wheels.

This is probably a good time to stop trying to predict solubility of the equations on a rigid body-by-rigid

body basis. Despite my efforts to do so for the three sets of wheels, things are involved enough that we

should defer a final check until all the equations have been written down and redundancies eliminated.

Before moving on, though, I want to digress for a moment to deal with one loose end: the moment of

inertia of the truck's chassis. We have set up the dynamics so that the truck's rear axle is the axis of

rotation, so we will want to know the moment of inertia of the chassis as it rotates around the rear axle.

We modeled the chassis as two point masses. One of them is concentrated at the rear axle itself. Since its

lever-arm is zero, it makes no contribution to the moment of inertia. The other point mass is concentrated

at the front axle, whose distance away from the rear axle is approximately equal to the wheelbase .

More precisely, the separation between the axes is equal to the hypotenuse shown in one of the figures

above, whose numerical value is equal to . Using the formula for the moment of

inertia of a point mass, we get:

The right-hand side of Equation is the front mass multiplied by the square of the lever-arm.

So, why is there a "greater than" sign? Philosophically, the right-hand side of Equation is the

moment of inertia of the revolution of the front-end mass around the rear axle. What is missing from the

right-hand side of Equation is the additional moment of inertia which applies when bits of the

chassis are rotated around each other. In order to do a more detailed calculation of the moment of inertia,

we would need a lot more information about the location and weight of the various components which

make up the truck. If we use the estimate of set out in Equation , we will under-estimate the

moment of inertia of the truck's chassis. We should ask the question: is this under-estimation a problem?

One can argue that it is not.

Our objective is to win truck pulls. If the front wheels of the truck leave the ground, it is a sign that the

truck's ability to pull the sled further has pretty much come to an end. Under-estimating the moment of

inertia will result in over-estimating the rotational acceleration of the chassis. The chassis will rotate

more quickly than the use of the correct, and larger, moment of inertia would predict. Rotation of the

chassis is an interesting phenomenon to see but, once it starts, there will not be much, if any, further

progress down the course. In any event, if you can find or derive a better value for than the estimate in

Equation , use it.

Part VII -- Dynamics of the sled's chassis

In this section, we will look at the sled or, more precisely, the chassis of the sled. The rear wheels of the

sled have been dealt with as a separate rigid body. The following figure shows the dimensions of the

sled we will consider in the enhanced model.

~ 22 ~

The sled has not changed too much from the simplified model. It still has the masses concentrated over

the rear wheels and over the center-line of the pan . Although the sled has not changed

physically, the numerical values of one or both of these masses will need to be changed because the rear

wheels are no longer included as part of the chassis. The wheelbase of the sled is defined as it was

before. The moveable weight has the same mass and instantaneous relative location as it

had before.

I have changed the definition of the deck height . Here, it is equal to the distance above the ground of

the center of mass of the moveable weight. In practice, this height will be somewhat above the top of the

rails which carry the moveable weight. Also new is the hitch, whose ball is located a distance ahead of

the center-line of the pan and a distance up from the ground. Since the sled is not expected to rotate,

we can jump right in and look at the free body diagram.

There are three forces which act in the neighbourhood of the rear of the sled.

 is the force of gravity acting on the concentrated rear mass;

 is the vertical force which the rear wheels exert on the chassis and

 is the horizontal force which the rear wheels exert on the chassis.

I have assumed that the first force, the gravitational one, acts at a point at deck height. The latter two

forces, which are equal and opposite to the forces which the sled's chassis exerts on the rear wheels, are

assumed to act at the center of the rear axle.

The force of gravity on the moveable weight is unchanged from the simplified model. It is and is

assumed to act at the center of mass of the weight.

~ 23 ~

There are three forces which act in the neighbourhood of the pan.

 is the force of gravity acting on the concentrated front mass;

 is the vertical force with which the ground pushes up on the pan and

 is the horizontal drag of the ground on the bottom of the pan. (Consistency might suggest

that one use the symbol for this important force. I will defy consistency and continue to

use for drag.)

The force of the tow chain on the hitch completes the picture. As with the truck, it is easiest if we resolve

the tension in the tow chain into its horizontal and vertical components.

We can now write down the sums of the forces. We get:

To write down the sum of the torques, we need to pick an axis of rotation. For convenience, we will use

the center of the rear axle. Bear in mind that the radius of the rear axle is not the same as the height of the

deck. The sum of the torques is:

To write down the equations of motion, we need to know the total mass of the sled's chassis, which is

equal to . If we were purists, we might also want to know the moment of inertia of

the sled's chassis. But it is not something we need to know. Since the sled will never rotate, we can set

the sum of the torques to zero. We can do that merely by setting the right-hand side of Equation to

zero. In addition, since the sled will remain on the ground, we can set the sum of the vertical forces to

zero. The only motion the sled makes is a horizontal translation. We will use the symbol for the

instantaneous location of the rear axle with respect to its location when the rig is at the starting line.

Then, the equations of motion are:

Part VIII - The ground reaction forces on the pan

When the sled is moving, the horizontal drag on the pan is determined by the coefficient of

dynamic friction , as follows:

~ 24 ~

where is the vertical force acting across the boundary between the bottom of the pan and the

ground.

When the sled is stopped, a slightly different relationship holds:

where the maximum frictional drag the ground can sustain is equal to the coefficient of static friction

multiplied by the vertical force across the boundary. This is an inequality, so will not help in finding the

value of . Instead, Equation is a condition that determines when the pan's non-slipping state

comes to an end and the sled starts moving. However, when the sled is stopped and expected to remain

stopped, we know that the horizontal acceleration is equal to zero:

It is apparent that there are two cases for the drag on the pan, one when the sled is moving and the other

when it is stopped. The procedure to calculate the drag is going to differ between the two cases,

but the same equations of motion, Equation , apply equally to both cases. Like we have done before,

we can combine the cases into a single set using another binary flag. For this purpose, we will use the

flag , where the subscript refers to the "sled moving" and the value is set to one when the sled is

moving. When the sled is stopped, . Then, the equations which describe the dynamics of

the sled are as follows:

The alert reader may compare what we have done here with what we did with the truck's front wheels.

For the front wheels, we divided things into three cases: (i) the front wheels airborne, (ii) the front wheels

on the ground and expected to remain on the ground and (iii) the front wheels on the ground but also on

the verge of going airborne. Why do we not have three cases here: (i) the sled moving, (ii) the sled

stopped and expected to stay stopped and (iii) the sled stopped but on the verge of starting to move? It is

not necessary here since the difference between the two cases only involves two variables: a horizontal

force and a horizontal acceleration. The differences between the cases for the front wheels involved three

variables: a relative tangential speed, a vertical force and a vertical acceleration. If took more work, and

two binary flags, to sort out the possibilities there.

~ 25 ~

Part IX -- Collating the equations of motion

Let me bring together in this section, for future reference, all of the equations of motion and the

constraints which we identified above. I will make the following changes before transcribing them.

There are certain pairs of forces (and a torque) between some of the rig's constituent parts which are at all

times equal and opposite. The free body diagrams were drawn in such a way that these equal and

opposite forces (and the torque) were drawn in opposing directions. No minus signs are needed. We can

set equal the magnitudes of the following equal and opposite forces (and the torque):

In addition, the forces at the end of the tow chain must always be equal and opposite:

We will substitute the variables on the left-hand sides of Equations and for the variables on the

right-hand sides wherever they occur. The complete equations of dynamics can then be written as:

and

~ 26 ~

I will eliminate the internal variables which represent the forces between the wheels and their respective

chasses. Although the tensions in the tow chain are internal forces from the point-of-view of the rig, I

will not eliminate them. I will use the following equations as the sources expressions for the internal

variables to be eliminated.

Variable Equation

The set of equations which remains after the substitutions is as follows. For convenience in tracing, I

have not changed the letter suffixes in the equation identification numbers.

~ 27 ~

How many unknowns are there? There are six forces acting between separate rigid bodies in the rig; they

are listed in Equation . The torque is not an unknown; the assumptions we will make about the

powertrain will quantify the torque. There are the two forces acting on the tow chain, as listed in

Equation . There are four vertical ground-reaction forces -- , , and

-- one for each point of contact between the rig and the ground. There are four corresponding horizontal

~ 28 ~

ground-reaction forces -- , , and . There are five horizontal distances --

, , , and -- one for each of the constituent rigid bodies. There is only one vertical

distance -- -- since the truck's front wheels are the only ones which can rise off the ground. And,

there are four rotation angles -- , , and -- one for each pair of wheels and one for the

truck's chassis. The parameters through are not independent variables; they can all expressed in

terms of the angle , which we have already noted as an independent variable.

This is a total of variables. There are 20 equations, not all of which will

be non-trivial at any time.

We will not be able to get a unique solution unless the number of non-trivial equations is equal to the

number of variables. We are going to need more pieces of information. Here is how I think we can get at

least some of them.

1. We do not need five different horizontal distances. Let's pick the location of the rear axle of the

sled as the one which is truly independent. We can express the other four distances in terms

of distance and angle .

2. We can also express the vertical distance in terms of the truck's rotation angle .

3. The horizontal and vertical components of the tension in the tow chain are not independent. They

can both be expressed in terms of a single variable, the total tension force in the tow chain, for

example, and the truck's rotation angle .

4. The binary flags vary among the cases. Some settings of these flags, either to one or to zero,

cause some equations to become trivial or redundant, but also set the values of some of the

variables. I am hopeful that the dependencies will work themselves out.

The additional information described in paragraphs 1 through 3 are related to the tow chain. I will

describe this matter in the next section.

Part X -- The tow chain

The tow chain is the only connection between sled and the truck. Its length and angle determine their

their horizontal separation. If the truck does not rotate, then the tow chain is static and the horizontal

separation remains constant. Things become interesting when the truck rotates. Not only does the

horizontal separation of the vehicles change, which requires that their horizontal accelerations be

different, but the ratio of the horizontal and vertical forces which are transmitted between them changes

as well.

I set up the variables so that the horizontal locations of the sled's chassis and the sled's rear wheels

 are measured to the same spot, being the center of the sled's rear axle. Similarly, the horizontal

locations of the truck's chassis and rear wheels are measured to the same spot, being the center

of the truck's rear axle. Therefore:

~ 29 ~

Let's look at the front wheels of the truck, whose horizontal and vertical locations are given by and

, respectively. When the truck is on the ground, the horizontal separation between its axles is equal

to the wheelbase . If the truck rotates, the horizontal separation is the distance which we illustrated

and quantified in an earlier section. When the truck is on the ground, the front axle is a distance

above the ground. If the truck rotates, this distance increases to , where distance was also

illustrated and quantified in the earlier section. Recall that and depend on the rotation angle of the

chassis . In any event, we can express the absolute co-ordinates of the front wheels in terms of chassis

variables as follows:

To calculate the horizontal and vertical speeds of the front wheels, we need to take the derivatives of

and . We proceed as follows, using the expressions for and from above:

Take a close look at the arguments of the sine and cosine terms, and their coefficients. After comparison

with the definitions of and , it is apparent that:

Then, for the accelerations, we derive a second time, as follows:

and

~ 30 ~

Again comparing certain factors with the definitions of and , it is apparent that:

Note the symmetry between the two equations. When the truck is firmly on the ground, and the truck's

rotation angle remains zero, the first expression says that the horizontal accelerations of the truck's front

wheels and the truck's chassis are the same, and the second expression says that the vertical acceleration

of the front wheels is zero. Both of these are as we expect.

Next, we need to relate the horizontal locations of the truck and the sled . They are connected by

the tow chain. We will continue to assume, even in the enhanced model, that the tow chain has zero mass

or, alternatively, that its mass is included in the masses used for the vehicles. Even so, the tow chain

imposes another constraint on the rigid bodies in the rig. We will use the symbol for the nominal

length of the tow chain. During normal operation, when the tow chain is taut, the relevant dimensions are

the following:

Note that was defined above as the nominal height above ground of the truck's hitch ball. If the truck's

chassis rotates, the height of the ball will decrease. Its instantaneous height is the quantity ,

where the distance was described above. Using the distance , the horizontal extent of the

tow chain can be found using the Pythagorean Theorem, and is the radical shown in the figure. Of course,

if the truck is not rotated, then the truck's ball is a height above ground and the radical reduces to

.

We are interested in the horizontal component of the tow chain's length because it is the only dimensional

variable which links the horizontal distances, speeds and accelerations of the truck and the sled. The

following figure shows the five rigid bodies and the definitions of their instantaneous horizontal locations.

In the figure, is the horizontal component of the tow chain's length. The truck's chassis is shown

with a bit of rotation, by angle , which has actually caused the tow chain to angle downwards.

Length

Ground surface

Truck's ball

Truck's ball

Sled's ball

Sled's ball

~ 31 ~

As we saw above, the distance variable for the sled's chassis is measured to the center of its rear axle, as is

the distance variable for the sled's rear wheels, so . Similarly, the distance variable for the

truck is measured to the center of its rear axle, as is the distance variable for the truck's rear wheels, so

. The distance variable for the truck's front wheels is measured to the center of the front

axle.

Each of the three distinct distance variables is measured from its location when the rig was back at the

starting line. Just to be clear about this matter, it means that the distance travelled by each rigid body

must be calculated by subtracting the starting distance from the current value.

Consider the location of the truck's chassis . It can be written in terms of the location of the sled's

chassis as follows:

The horizontal speed of the truck's chassis is the first derivative of this expression with respect to time.

Since and are constants, their derivatives are identically equal to zero and we are left with:

Let's tackle the derivative of first.

It looks like we are going to need to find the derivative and well as . Proceeding first

with , we get:

~ 32 ~

Similarly, is calculated as:

Substituting Equations through into Equation gives:

The horizontal acceleration of the truck's chassis is the derivative of Equation with respect to time.

and, continuing:

~ 33 ~

I will not try to simplify this expression further since we are going to be computerizing the calculations

anyway. Note that this expression has the same functional form as the acceleration of the front wheels.

The horizontal acceleration of the truck's chassis is equal to the horizontal acceleration of the sled's

chassis plus two types of terms. One type is proportional to the square of the first derivative of the truck's

rotation angle. The other is proportional to the second derivative of the truck's rotation angle. This is a

pretty common sight in dynamics and, for that matter, in second derivatives generally. We will write

Equation as follows:

where the functions and are functions only of the rotation angle and are defined by

their position in Equation .

Fortunately, this is as far as we need to take the relationships among the distances. We have the ones we

need. We will substitute for all kinematic variables other than and , leaving them as the only two

independent variables needed to describe the rig's location.

We do, however, want an expression relating the horizontal and vertical components of the tension force

in the tow chain. Since the tow chain is a chain, it can resist a force which tends to pull it apart, which

one calls a "tension" force, but it cannot resist a compressive force. The tension force must act along the

axis of the chain. Therefore, the angle of the forces on its two ends will be the same as the physical slope

of the chain itself. From the diagram of the chain above, we can write the slope of the chain as follows:

~ 34 ~

The ratio of the horizontal component of the tension to the vertical component must be the same.

Combining the two expressions gives:

To simply the algebra, I propose to introduce the symbol , which is the Cyrillic letter "yoo", as the

factor of proportionality between the vertical and horizontal forces in the tow chain, thus:

Although this is not an equation of motion per se, we will add Equation to our set of equations.

Part XI -- The equations of motion revisited

We will start with the equations of motion in Equation . We will make the appropriate substitutions

from the preceding section to remove references in all of the equations to the second derivatives

, , , and . In a couple of equations, two

successive substitutions are needed. In addition, we will also add Equation to the set. After all is

said and done, we have the following 21 equations.

~ 35 ~

I am going to re-order the equations in anticipation of writing them in matrix format as a prelude to

inversion. At the same time, I am going to make an ordered list of the unknowns. My intention is to

populate the main diagonal of the matrix with as many non-zero entries as possible. Planning the first

dozen or so entries in the lists is pretty straight forward.

Matrix row # Equation Unknown Value of A(i, i)

~ 36 ~

After this, things get less deterministic. Most of the remaining equations involve one or more binary flags

so there is less assurance that some or all of the coefficients will be non-zero when it comes time to invert

the matrix. I have chosen to complete the ordering of equations and unknowns as follows.

Matrix row # Equation Unknown Value of A(i, i)

The 19 rows in the table do not include the two inequalities. We will test the inequalities only after we

have found a solution. We can write the 19 equations in the form of the following matrix equation:

Vector is the list of the unknwons in the order set out in the third column of the table. The

"constant" vector is the list of all the terms in the equations which are not coefficients of the

unknowns. Any time we solve the equation, all of the terms in vector will be known. Each row in the

main matrix corresponds to one of the equations; each column corresponds to one of the unknowns. I

ordered the equations and variables in such a way that we are guaranteed that the elements on the

principal diagonal are non-zero down to the eleventh row. That is, is non-zero for .

A unique solution can be obtained only if the number of non-zero rows and columns in matrix are the

same. To ensure that this will always be the case, we need to look at rows 12 through 19 of matrix .

The following figure is a block diagram of those rows. The elements of the matrix are not given in full.

Only their dependence on the binary flags is shown. To keep the size of the diagram reasonable, I have

used the symbol for the complement of binary flag . In addition, I have excluded those unknowns

(columns) which are not referenced by the last eight equations.

~ 37 ~

The first and last rows, corresponding to Equations and , respectively, are complemenatry.

Depending on the setting of the flag , exactly one of these two equations will vanish.

Similarly, the second and second-to-last rows, corresponding to Equations and ,

respectively, are also complementary. Depending on the setting of , exactly one of these two

equations will vanish.

The third and fourth-from-last equations, corresponding to Equations and , respectively, are

complementary. Depending on the setting of , exactly one of these two equations will vanish.

That leaves Equations and , which are related to the front wheels (and not the other wheels)

and also on the whether or not the front wheels are on the verge of going airborne. These two equations

do not look complementary, but they are. See the following truth table.

 Coefficient in Coefficient in

It turns out, then, that the last eight rows of matrix will always reduce to exactly four non-trivial

equations. Along with the first 11 rows, there will always be exactly 15 equations. There are 15

unknowns, so we shoudl always be able to get a solution.

Ordering the equations and unknowns so that the principal diagonal of matrix has as few zero elements

as possible is not a mathematical necessity. But I did have a reason to do so. Inverting a matrix

which represents non-trivial and linearly independent equations is always possible. That is not to say that

it is easy or that, if done by computer, can be done quickly. We are going to be solving the equations of

motion several hundred thousand times per real-world second, so we do not want to waste processing

time.

Our matrix has a characteristic that I would like to take advantage of. It is very sparse. Although we

have a lot of equations and a lot of unknowns, each equation only refers to a couple of the unknowns.

Most of the elements in matrix are zero. There are numerical methods to invert matrices which have

been optimized for sparse matrices, but I do not have such a routine at hand. I will use Eulerian

elimination instead. When a matrix is sparse, and has a healthy diagonal, Eulerian substitution can run

pretty quickly. It can be particularly good/fast if the ALU does a pre-check for multiplication by zero.

~ 38 ~

Time

Acceleration

Time

Acceleration

Part XII -- Numerical integration

As I explained in the earlier paper, adding up the area below the curve in an acceleration-versus-time

graph gives the speed. Adding up the area below the curve in a speed-versus-time graph gives the

distance travelled. When the Calculus is used, adding up the area below a curve is called "integrating".

But that is not the only way areas can be added up. Another way, not much used in recent times, is to

draw the curve on heavy paper, use scissors to cut out the areas corresponding to different times, and then

weigh the pieces on a scale. A third way, the mainstay of computerized calculations, is to divide the area

up into little rectangles, each of whose area can be found using the formula, and to add up

the little bits. The following figure illustrates how this can be done.

The curve on the left is a typical plot of acceleration versus time . The area under this curve from time

 to some arbitrary time is the change in the object's speed since time . A very small section

of the curve is shown in detail on the right. We are going to consider an extremely short period of time,

with duration . Times and are the times at which the interval begins and ends. If we know the

object's speed and its acceleration at the beginning of the interval, then we can approximate its

speed at the end of the interval as:

The product is the area of the red rectangle shown on the right. The area of the red rectangle differs

from the true area under the curve by the small right triangle above the rectangle. There are lots of

methods which are sometimes used to increase the accuracy of the approximation, such as adding a term

based on the assumption that the change in the acceleration over the preceding small increment of time

continues during this one. It should be noted, though, that the missing area can be made arbitrarily small

by shrinking the length of the time-interval. Shrinking the length of the time-intervals, or "time steps",

does increase the number of such steps and the amount of labour needed to do the calculations.

As described in the earlier paper, the relationship between the object's speed and the distance it travels are

related in exactly the same way. The area under a speed-versus-time curve from time to some

arbitrary time is the change in the object's location since time . We can update the estimate of the

object's position during a time step using the following equation:

Like the estimate for speed, this expression becomes exact in the limit as we make the duration of the

time steps vanishingly small.

~ 39 ~

Here is how we will use these expressions.

1. Let's pick a time step which is 100 microseconds, or 0.0001 seconds, long. A truck pull which

lasts 20 seconds will require time steps. (A quick and dirty method to

determine if the time steps are short enough is to re-run one or more cases using a different time

step and compare the results.)

2. We will make a note of the location and speed of each of the five rigid bodies at the start of the

run, which we will say happens at time . Note that "location and speed" actually refers to

six quantities for each rigid body. Each body has two directions of motion and a direction of

rotation, plus corresponding changes, or speeds, for those three directions.

3. As we move along from one time step to the next, we will keep track of the updated values for the

three location variables and three corresponding speeds of each rigid body. It follows that, at the

start of any particular time step, we will know the five bodies' current locations and speeds.

4. With the locations and speeds at time known, we will solve the equations of motion to

calculate the current accelerations. There will be three accelerations for each rigid body, one for

each direction of travel and one for rotation.

5. With the accelerations at time now at hand, we will use Equations and to calculate

the locations and speeds at the end of the time step, at time . The relationships for speed and

distance in these two equations are not restricted to systems which involve a single variable.

They apply independently to each to each kinematic variable in any physical system.

6. We are now set up to begin processing the next time step, whose beginning time will be equal to

the ending time of the previous time step.

I want to expand the descriptions I gave in steps 4 and 5 to be more particular about the implementation

of these steps in the attached computer code. The matrix equations we developed above do not include

accelerations in all of the kinematic variables. Certain geometric relationships allowed us to express

, , , and in terms of and

. It follows that, when we solve the equations of motion by inverting matrix , the only

accelerations whose values we will have are those for the sled's horizontal location , the truck's

rotation angle and the rotational acceleration of the three sets of wheels. Philosophically, there are

two ways to proceed.

One way would be to use the geometric relationships to calculate the accelerations for all ten kinematic

variables. Each acceleration could be integrated separately using Equations and to find the

corresponding speed and position.

The other way is to limit the integration to the five kinematic variables whose accelerations are produced

by the matrix inversion. The speeds and locations of the other kinematic variables would be inferred from

the changes in the basic five. For example, we know that the change in the location of the sled's rear

wheels during any time step must be exactly equal to the change in the location of sled's chassis .

Mathematically, the two ways give identical answers. When the equations are discretized for

computerization solution, small differences arise, which grow as the integration continues. After a large

number of time steps, for example, one could find that the rear wheels of the sled have travelled a slightly

different distance than the sled. These inconsistencies can be eliminated by ensuring that the kinematic

variables are always updated in a consistent way.

~ 40 ~

At the end of every time step, the updated speeds and locations need to be reviewed for realism. Consider

this example. At the start of the time step, the truck's front wheels are slightly above the ground, but

headed downwards. It is possible that, at the end of the time step, the vertical location of the front wheels

 turns out to be less than the radius of the front wheels . This is not possible physically -- the

wheels do not go into the ground. It occurs during numerical integration because we assume that the rig

remains in the same state for the entire duration of a time step. At the end of every time step, the code

checks for such physical imperfections and rounds them to zero.

Part XIII -- The transition conditions

At any instant in time, the rig can be in one of eight states, or cases. I will henceforth refer to the eight

states, or cases, as follows:

Case ID Sled moving or stopped Truck's front wheels Truck's rear wheels

1 Moving On ground Not slipping

2 Moving On ground Slipping

3 Moving Airborne Not slipping

4 Moving Airborne Slipping

5 Stopped On ground Not slipping

6 Stopped On ground Slipping

7 Stopped Airborne Not slipping

8 Stopped Airborne Slipping

It is pretty obvious what it means for the rig to be running in one of these states.

State Mathematical condition

Sled is moving

Sled is stopped

Front wheels on ground

Front wheels airborne

Rear wheels gripping

Rear wheels slipping

These conditions are stated in terms of speeds and locations only. They do not involve accelerations.

This is important. It is the main reason why I placed this section after the one that describes the

numerical integration procedure. At the end of each time step, we will know the values and speeds of the

kinematic variables. We can therefore determine what state the rig is in at this instant.

What is of interest to us at the start of each time step is what state the rig is going to be in during the

upcoming time step. Most often, it will continue forward in whatever state it has been in. But, not

~ 41 ~

always. Sometimes, the rig will make a transition to a new state. We need to figure out what state the rig

is going to be in during the upcoming time step so that we can use the correct equations of motion to

calculate the correct accelerations. In short, we need to figure out when each of the foregoing six

conditions has come to an end or is expected to come to an end during the upcoming time step. I am

going to refer to these as "stopping" conditions. Let's examine them on a one-by-one basis.

When the front wheels are airborne at the end of a time step

If the front wheels are airborne, so that , they will continue to be airborne until they come

back into contact with the ground. We can get a rough idea about when the wheels will hit the ground by

dividing their current height above ground, , by their current speed . Of course,

this test only makes sense if the speed is algebraically negative, so the wheels are heading down towards

the ground. We will compare this estimated time to the length of a time step. If the front wheels will

encounter the ground less than one-half time step away, then we will assume that the front wheels are on

the ground during the whole of the time step. If the front wheels are more than one-half time step away

from the ground, then we will assume that they are airborne throughout the time step. If we use the

symbol as the duration of a time step, then we can express this test as follows:

Conditions at start of time step,

with
Expected state during time step Flag settings

 Front wheels will be airborne

 Front wheels will be on ground

 Front wheels will be airborne

When the front wheels are on the ground at the end of a time step

When the front wheels are on the ground, the only way (physically) they can become airborne is if their

vertical acceleration is non-zero and positive for at least an instant. The analysis of the front wheels

showed there is a connection between the vertical acceleration of the front wheels and the vertical force

between the wheels and the ground. Generally speaking, either one or the other must be zero. In order to

deal with the special instant when the front wheels on the ground but ready to take-off, we introduced the

binary flag .

To predict what is going to happen to the front wheels, we need to look at what is happening to the

vertical force of the ground. If the vertical force is zero, or expected to reach zero during the upcoming

time step, we should use the airborne equations, which we do by setting . As before, let's

use the mid-point of the time step as the decision point.

One slight difficulty, but easily overcome, is that the equations of motion do not explicitly include the

time-derivative of the vertical force on the front wheels. A first-order estimate can be made if we

temporarily store the value of the vertical force at the beginning of each time time. Then, at the end of the

time step, we can make a subtraction to compute the change which occurred in the vertical force. If we

use the symbol as the current value of the vertical force (as always) and the symbol

~ 42 ~

for the vertical force at the start of the previous time step, then we can approximate the time-rate-of-

change of the vertical force as follows:

Dividing the value of the vertical force at the end of a time step by this rate-of-change will give the

approximate length of time before the vertical force reaches zero. The following table sets out the

flowchart for deciding which equations of motion to solve.

Conditions at start of time step,

with
Expected state during time step Flag settings

 Front wheels will be on ground

 Front wheels will be airborne

 Front wheels will be on ground

When the sled is moving at the end of a time step

If the sled is moving, it will continue to move until it comes to a stop. This is a kinematic test of the same

ilk as the front wheels being airborne. If the sled is decelerating, we can estimate the time until it will

come to a stop by dividing its current speed by the rate of deceleration. It happens that the sled's

horizontal acceleration is included in the equations of motion, so we do not need to save former speeds to

approximate the rate of change. We will use the following flowchart

Conditions at start of time step,

with
Expected state during time step Flag settings

 Sled will be moving

 Sled will be stopped

 Sled will be moving

Let me describe the physical ramifications of using the second test. The condition is met if the sled is

decelerating fast enough that it will come to a stop very shortly. Since it is going to be stopped very soon,

we will solve the equations of motion assuming it is already stopped. We are, in effect, jolting the sled to

a stop. The jolt will never be more than one-half step. We can reduce the effect of the jolt as much as we

want by making the time steps shorter and shorter. Note that the same kind of jolt will occur even when

we use the third test. If it happens that the sled's speed reaches zero during the second half of the time

step, the deceleration will continue for the rest of the time step, with the result that the sled will have a

very small negative speed at the end of the time step. We will round that negative speed back up to zero,

~ 43 ~

in effect jolting the sled to a stop for the start of the following time step. A similar kind of jolt occurs

when the front wheels of the truck are airborne and come back into contact with the ground. These are

not physical jolts, but a natural result of discretizing time.

When the sled is stopped at the end of a time step

If the sled is stopped, the only kinematic variable which can get it moving is its horizontal acceleration.

We did not notice any problems above when solving the equations of motion for the sled's horizontal

acceleration. Therefore, when the sled is stopped, we should be able to set the flag and

then solve the equations. But, that is not the end of it. The sled will remain stopped only if the frictional

force the ground exerts on the pan is less than the critical maximum force. We need to compare the value

of with the maximum possible value, . This is the inequality in Equation which,

being an inequality, was not included in the matrix equations per se. If the former exceeds the latter, the

sled will be jostled into motion. The flowchart is as follows:

Conditions at start of time step,

with
Expected state during time step Flag settings

 Sled will be moving

 Sled will be stopped

Alert readers may notice a small delay inherent in this test. When we apply the test, the value of the

ground drag is the one calculated when the equations of motion were solved at the start of he

previous time step. We are therefore basing our test on a force which is one time step delayed. We could

do better. We could do a trial solution of the equations of motion to update the value of and decide

whether the sled will be moving or stopped. That would give a slightly better decision but would require

that the equations of motion be solved twice at the start of every time step. An alternative approach

would be to look at how fast has been changing, and to make a prediction about whether it will

pass through the critical value within the next half-time step. That is what we did in the tests above. This

test is a little different from the previous ones because the critical value is not constant but is itself

changing. I have decided not to bother at all with prediction.

When the rear wheels are not slipping at the end of a time step

Slippage of the truck's rear wheels is a friction-driven condition like that which governs the sled. In this

case, the variable to test is the horizontal force of the ground on the rear wheels and the

maximum frictional force permitted is . If the former exceeds the latter, the rear wheels

will be jostled into slipping. The flowchart is as follows:

Conditions at start of time step,

with
Expected state during time step Flag settings

 Rear wheels will be slipping

 Rear wheels will not be slipping

Just like the test for starting up the sled, this test involves a one time step delay.

~ 44 ~

When the rear wheels are slipping at the end of a time step

I suspect this transition is rarely seen during a truck pull. It seems to me that the run is pretty much over

once the wheels start slipping. Or, alternatively, that the run must continue with the wheels slipping. It is

possible to keep moving, and perhaps complete the course, with slipping wheels. Once the wheels are

slipping, their rotational speed must be reduced substantially before they will again grip the ground.

Think about how slipping starts. The tread's horizontal force must exceed the static friction of the ground.

As soon as slipping starts, he wheels' rotation is resisted by the dynamic friction of the ground, which will

always be less than the static friction. Before their rotational speed will have decreased to the point where

the wheels grip the ground, two unrelated things will have happened: (i) the moveable weight will have

advanced further towards the front of the sled and (ii) the whole rig will have slowed down. If the wheels

started slipping before, they are even more likely to slip under these two more adverse conditions. In any

event, it is prudent to give the program the capability to deal with this kind of transition.

The rear wheels will stop slipping, by definition, when the tread speed decreases enough to equal the

horizontal forward speed of the wheels. This is a speed-related test, like the sled continuing in motion,

and we can handle it in the same way. Here, the speed we are interested in is the relative speed between

the tread and the ground. We can calculate the time rate-of-change of the relative speed as follows:

and the decision tree is the following flowchart:

Conditions at start of time step,

with

Expected state during time

step
Flag settings

 Rear wheels will be slipping

Rear wheels will not be

slipping

 Rear wheels will be slipping

State at the start of the truck pull

The six transition conditions apply once the truck pull gets underway. Some of them rely on the rig's

recent trajectory. At the start of a run, there is no such history, and one needs to make a guess about the

starting state. A sensible default state has the sled at rest, the truck's front wheels on the ground and the

truck's rear wheels no slipping. When the equations of motion are solved assuming that state, however,

the tests as described above fail to detect certain states. For example, the equations of motion may

produce less than zero. This means the front wheels must be airborne, even during the first time

step. If this is not corrected, the second time step will produce an even more negative vertical ground

force. The related test may never put the wheels mathematically back on the ground. The remedy is to

detect forces which are not physically realistic and reset them to realistic values, or even zero.

Subsequent solutions of the equations of motion will then converge to the realistic trajectory.

~ 45 ~

Part IX -- Simulation results

In the earlier paper, we looked at a stock 1997 Ford F-150 SuperCab two wheel drive pickup truck and a

sled in "Hillbilly" mode. I carried out a numerical simulation of that rig based on the equations of motion

developed above. The results given below are the distance covered during the run ("Distance") and the

time taken ("Time").

Benchmarking against the solution from the simplified model

The place to start, of course, is to run a simulation based on the same assumptions as used in the earlier

paper. To the extent possible, all parameters were set to the same values as before. For example, the

wheels' radii, sled's deck height and the two hitch heights were all set to the same value, 15¾ inches.

There was one exception. The enhanced model assumes that each set of wheels has a moment of inertia.

Some of the equations of motion degenerate when the moments of inertia are set identically equal to zero.

(Think of trying to apply Newton's Law to an object having zero mass.) In order to use the equations of

motion without any modification, I set the moments of inertia to a very small but non-zero, value:

0.00001 pound-feet-squared. The results were:

The result in the earlier paper was:

After some checking, I believe the difference arises because we restricted the interim calculations in the

earlier paper to three significant digits. The numerical simulation was done by computer in double

precision. The difference is not caused by the non-zero moments of inertia, which would tend to reduce

the distance run. Changing the moments of inertia to even smaller values, first to and then to

, did not the results in Equation .

Sensitivity to the length of each time step

The simulation which produced Equation was run using a time step of 10 microseconds. The

simulation was re-run using various time steps , with the following results:

The simulation dos not begin to show any effects from lengthening the time step until it becomes greater

than one millisecond, which corresponds to 1,000 time steps per second. Just to be on the safe side, the

simulations whose results are shown below were all carried out with a time step ten times smaller than

this, or 100 microseconds, which corresponds to 10,000 time steps per second.

~ 46 ~

An aside:

I had initially thought that the simulation would require a time step of 10 microseconds. It turns

out that the physical events take place on a much longer time scale than this. In any event, I had

some concern that the computations would take too long for the results to be displayed in real

time. I planned on taking two steps to reduce execution time. I ended up implementing the first,

but not the second.

If the matrix equation is implemented in the form described in the table following Equation ,

it will be a 19 15 matrix. Exactly four of the rows will be indentically zero. In my original

coding of the Eulerian elimination scheme, I set the coefficients in a matrix as per the

19 equations in Equation . Then, I caused the code to check to make sure that four rows

were zero. Doing things the long way makes debugging easier, but is not very efficient. Lugging

four useless equations through the process does take time. The easiest way to save some time is

simply not to enter the four zero-equations in the matrix. Recall that the four zero equations arise

from a set of eight equations which involve the four binary flags. The eight equations come in

pairs, and it happens that one of each pair vanishes whatever the setting of the flags. In the final

version of the code, the main matrix is declared as square . The 19 equations are

examined sequentially and only the 15 non-zero equations have their coefficients entered into the

matrix.

I did not implement any further reduction from . Since the computation time required to

invert an matrix rises by the order of , even minor reductions of scale give a

disproportionate saving in time. Some of the unknowns are referred to only two or three times in

the entire set of equations. The rotational accelerations of the three sets of wheels are examples.

It would be possible to substitute some of the equations of motion into the remaining equations

without too much increase in the complexity of the elements in matrix .

As it turns out, a 100 microsecond time step can easily be handled in real time. In order to give a

realistic display, the screen is refreshed every 200 time steps, or nominally 50 times per second.

Since it takes the operating system a little bit of time to do the calculations required to refresh the

screen, the observed refresh rate is about 25 times per second.

Including realistic moments of inertia

In this and the following sections, I will add realistic features to the rig. I will add the features one-by-

one so their effects on the run can be evaluated individually. First, I gave the three sets of wheels some

moments of inertia.

I assumed that the truck's front and rear wheels were the same, and weighed 300 pounds per axle

. In order to keep the truck's total weight and front-to-rear weight distribution

unchanged, I removed 300 pounds from the masses assumed to be concentrated at the front and rear axles.

I approximated the truck's wheels as uniform disks with diameters of 31½ inches and masses of 300

pounds. The formula given in the earlier paper gives the moment of inertia as , or 258 pound-feet-

squared – .

I assumed that the rear wheels on the sled were smaller, only 20 inches in diameter , but

also weighed 300 pounds . Their weight was removed from the concentrated mass at

~ 47 ~

the rear end of the sled, and the wheels were assigned a moment of inertia of 104 pound-feet-squared

– . The results of the simulation were:

Although the moments did not reduce the run time, they did reduce the distance covered by about 5.7 feet,

or 3.2%.

Increasing the deck height

In the simplified model, and so far in the simulation, the deck height of the sled has been the same as the

radius of the truck's wheels. For this next change, I increased the deck height to 25 inches, so it clears the

rear wheels. I left the heights of both hitch balls at 15¾ inches for this next run. The results were

unchanged:

Setting more realistic hitch dimensions

In the simplified model, and so far in the simulation, the tow chain has been horizontal. In reality, the tow

chain normally slopes upwards towards the truck. I believe that more realistic hitch heights are 14 inches

at the truck and eight inches at the sled .

When the tow chain is horizontal, the length of the tow chain and the distances of the two hitches from

their two vehicles do not matter. Once the tow chain is not horizontal, they do matter. For this

simulation, I made the following assumptions.

 The horizontal distance from the truck's rear axle to the hitch is 3'6";

 The horizontal distance from the sled's hitch to the pan's center-line is 5'6" and

 The length of the tow chain is four feet.

With these dimensions, the slope of the hitch is 7.2°. This, of course, will be the inclination angle of the

tension force in the tow chain. But, the other dimensions, such as the distance of the hitch from the

wheels, are also important. They determine how much torque the tension exerts on the vehicles. An

upward-sloping tow chain will reduce the effective weight on the pan but reduce the horizontal force

accelerating the sled. The former increases the run distance; the latter reduces it. It seems that the former

outweighs the latter, as the following simulation result shows.

I will look at a couple of more sensitivities after the following figure. It shows the screen part-way

through this run. The top third of the screen is a visual display of the rig, with meter-markers on the

ground to track its progress. The middle third allows the viewer to keep track of significant variables

during the run. The bottom third is a representation of the dashboard with, from left-to-right, a

speedometer in meters per second, an accelerometer in meters per second squared, a tachometer in RPM

and a diagram of the gearshift H set up for six forward gears. Although this paper only deals with the

more complex dynamics of the rig, I set up the dashboard in anticipation of a more complex model for the

powertrain to be described in a subsequent paper.

~ 48 ~

~ 49 ~

Further increases in the height of the truck's hitch

The previous simulation constitutes what I consider to be the basic case for the 1997 F-150 SuperCab. As

expected, adding an upwards slope to the tow chain improved the run distance. I mentioned that

increasing the slope is a trade-off between reducing the effective load on the pan (since the truck pulls the

chain upwards) but also reducing the horizontal acceleration. There should be an optimal slope for the

tow chain, where the effects are in balance. To explore this, I ran simulations with the height of the

truck's hitch raised further and further off the ground. The results are:

There is no sign of abatement. Raising the hitch further is not necessary, since the rig already travels

further than most courses. On balance, though, it seems as if distances would continue to increase with

increasing hitch height. Class rules will need to be consulted to determine if there are statutory

constraints on this parameter.

Changing the horizontal location of the hitch on the truck

Anything that changes the slope of the tow chain will affect the distance achieved during a run. The

horizontal position of the hitch on the truck may also have an effect. To explore this possibility, I

changed the distance of the hitch aft of the truck's rear wheels . In the stock truck, the distance is

3'6". I tried it at six inches less and 12 inchs less, to model the hitch point being moved closer and closer

to the rear axle. In all the cases, I used the same "base case" height above ground: . The results

are:

There was no change. The sled was merely closer to the tailgate. A common characteristic of all the runs

so far is that the front wheels of the truck remained on the ground and the rear wheels did not slip.

Changing the horizontal placement of the truck's hitch ball does change the overall torque around the rear

axle. But, that only affects the dynamics if it leads to either wheelies or wheel-slipping. Neither of these

ever occurred during these runs so the effects of horizontal placement did not express themselves.

Changing the coefficient of dynamic friction of the pan

In the "base case", both here and in the earlier paper, I assumed that the coefficient of dynamic friction of

the pan was equal to 0.4 . The retarding drag which the ground exerts on the bottom of the

pan is proportional to this coefficient. Increasing the coefficient increases the drag, leading to reduced

run distances. The following simulation results show by how much.

~ 50 ~

Reducing the coefficient will lead to increases in the run distance by the same factor, about 15 feet per

basis point of coefficient. The participant in a truck pull event may or may not have some control over

when he runs. If so, he will want to run as soon as possible after a brief rain shower, or perhaps to wait

for one if one is expected. If track maintenance is not performed after every run, it would be best to run

as soon as possible after maintenance is done. I assume that the track is compacted every time the pan

passes over. Compaction increases the coefficient. Running after the surface has been loosened affords a

lower coefficient.

The benefits of smaller tires

The simplified model alerted us to the benefits of using smaller diameter tires. The following simulations

confirm that finding.

A typical high-performance vehicle

High-performance vehicles can do more interesting things than a stock pickup truck. The following

figure shows a high-performance vehicle performing a wheelie with its rear wheels spinning.

 I made a couple of changes to the pickup truck to model this vehicle.

~ 51 ~

To model this vehicle, I made the following changes to the stock pickup truck. Each of these changes is

made in the direction, that is, an increase or decrease, to increase the tendency of the truck to rotate

around its rear axle.

 Reduced the wheelbase from 138.8" to 100";

 Reduced the mass over the front wheels by 2,000 pounds, from 2,940 pounds to 940 pounds;

 Added that weight (2,000 pounds) to the mass over the rear axle;

 Increased the tire size from 31½" to 60";

 Increased the truck's hitch height to 2'10";

 Increased the horizontal distance from the rear axle to the hitch to 5' and

 Increased the crankshaft torque from 330 foot-pounds to 900 foot-pounds.

Spot the problem? The above screenshot was taken early in the run, two seconds after the start. The

wheels are turning slowly and, because of the big wheels, the engine is turning slowly as well. In the

simplified model, the crankshaft speed is the wheels' rotational speed, increased by the transmission and

differential gear ratios. This is the RPM shown on the tachometer. When the screenshot was taken, the

engine was turning over at about 600 RPM. This is certainly less than the RPM which corresponds to

maximum torque. It is also likely to be less than the idling speed. In other words, the real-world vehicle

would probably be stalled.

Using a mathematical model based on an average amount of torque applied as a constant during a run has

its shortcomings. This shortcoming will be fixed in a subsequent paper which describes an enhanced

model for the powertrain.

Some readers might also question what appears to be an unaccepatbly high hitch point. The figure drawn

for the truck is misleading. As I described in the earlier paper, I modeled the chassis as a horizontal

massless line with concentrated masses at the axles. Using such a horizontal line has no effect on the

dynamcis but obscures something else. The follwing figure shows only the truck from the previous figue.

I have rotated the image to put the bottom of the wheels parallel to the ground. Then, I have drawn a

heavy blue line through the axles, marking the approximate bottom of the truck's body. If anything, the

hitch could be raised even higher.

bottom of chassis

Ground surface

~ 52 ~

Part X -- The computer program

The simulation was carried out by a Visual Basic program written in Microsoft's Visual Basic 2010

Express. There are several modules, most of which deal with the input of model parameters and the

output of results, both to the screen and to an Excel file. I have set out in Appendix "A" attached hereto a

listing of the code for a module named EOMSolver, which prepares matrix and inverts it.

EOMSolver also contains the subroutine which integrates the knienamtic variables through a time step. I

have set out in Appendix "B" a listing of module EOMDecider, which implements the testing requires at

the beginning of each time step to predict the state of the rig during the upcoming time step.

Jim Hawley

November 2013

An e-mail setting out errors and omissions would be appreciated.

~ 53 ~

Appendix "A"

Listing of module EOMSolver

Option Strict On
Option Explicit On

' This module contains two principal subroutines, which: (i) solve the equations of
' motion and (ii) integrate the speed and distance variables from the accelerations
' computed by solving the equations of motion.
' Eulerian_Elimination()
' Integrate_One_Step()

' The matrix is named A(15,15). The vector ReductionRows(15) is initialized to ones.
' Every time a row is in A(,) is used as the basis for normalization during the first
' phase of the process, its ReductionRows() entry is set to zero. New ReductionRows
' can only be selected from among the remaining unused rows. Vector SubstitutionRows(19)
' is similar. It is also initialized to ones. Every time a row is used as the basis
' for back substitution during the second phase of the process, its SubstitutionRows()
' entry is set to zero. New SubstitutionRows can only be selected from among the
' remaining unused rows.

Public Module EOMSolver

 Public Sub Euler_Elimination(_
 ByVal DebugEquations As Boolean, ByVal DebugStartTime As Double, _
 ByVal DisplayResults As Boolean, ByVal DisplayStartTime As Double)
 Dim A(15, 15) As Double
 Dim Unknown(15) As Double
 Dim B(15) As Double
 Dim ReductionRows(15) As Int32
 Dim SubstitutionRows(15) As Int32
 '
 ' Calculate the D* distances
 Dim HypotenuseFront As Double = Math.Sqrt(((RADtwr - RADtwf) ^ 2) + (Wt ^ 2))
 Dim ArcTanFactorFront As Double = Math.Atan2(Wt, RADtwr - RADtwf)
 Dim AnglePlus As Double = ArcTanFactorFront + PHItc
 D1 = HypotenuseFront * Math.Sin(AnglePlus)
 D2 = HypotenuseFront * Math.Cos(AnglePlus)
 Dim HypotenuseRear As Double = Math.Sqrt(((RADtwr - Yt) ^ 2) + (Xt ^ 2))
 Dim ArcTanFactorRear As Double = Math.Atan2(Xt, RADtwr - Yt)
 Dim AngleMinus As Double = ArcTanFactorRear - PHItc
 D3 = HypotenuseRear * Math.Sin(AngleMinus)
 D4 = HypotenuseRear * Math.Cos(AngleMinus)
 ' Calculate the F* functions
 Dim FTerm1 As Double = RADtwr - D4 - Ys
 Dim FTerm2 As Double = (Ltow ^ 2) - (FTerm1 ^ 2)
 Dim FTerm3 As Double = Math.Sqrt(FTerm2)
 Dim FTerm4 As Double = (D3 ^ 2) + (FTerm1 * D4)
 Dim FTerm5 As Double = FTerm1 * D3
 Dim FTerm6 As Double = FTerm5 * D3
 F1 = 1 + (FTerm4 / FTerm3) + (FTerm6 / (FTerm2 * FTerm3))
 F2 = (FTerm5 / FTerm3) - D4
 ' Calculate the Yoo function
 Yoo = FTerm1 / FTerm3
 '
 ' Zero-out all entries in matrix A(,) and vector Unknown()

~ 54 ~

 For Irow As Int32 = 1 To 15 Step 1
 For Icol As Int32 = 1 To 15 Step 1
 A(Irow, Icol) = 0
 Next Icol
 Next Irow
 For Irow As Int32 = 1 To 15 Step 1
 Unknown(Irow) = 0
 ReductionRows(Irow) = 1
 SubstitutionRows(Irow) = 1
 Next Irow
 '
 ' Calculate the coefficients in the matrices
 ' Row #1, Equation (68R)
 A(1, 1) = Mtruck
 A(1, 2) = (Mtruck * F2) + (Mtwf * D2)
 A(1, 8) = 1
 A(1, 13) = -1
 A(1, 14) = 1
 B(1) = ((Mtwf * D1) - (Mtruck * F1)) * PHIDottc * PHIDottc
 ' Row #2, Equation (68T)
 A(2, 1) = Mtwf * D2
 A(2, 2) = MOItc + (Mtwf * ((D1 * D1) + (F2 * D2) + (D2 * D2)))
 A(2, 7) = -D3
 A(2, 8) = D4
 A(2, 14) = D2
 A(2, 15) = -D1
 B(2) = (-Mtwf * F1 * D2 * PHIDottc * PHIDottc) + _
 Torque - ((Mtwf + Mtcf) * D1 * G)
 ' Row #3, Equation (68C)
 A(3, 3) = MOItwf
 A(3, 14) = -RADtwf
 B(3) = 0
 ' Row #4, Equation (68K)
 A(4, 1) = 1
 A(4, 4) = -RADswr
 B(4) = 0
 ' Row #5, Equation (68N)
 A(5, 5) = MOItwr
 A(5, 13) = RADtwr
 B(5) = Torque
 ' Row #6, Equation (68W)
 A(6, 6) = Ws
 A(6, 7) = Ws + Xs
 A(6, 8) = RADswr - Ys
 A(6, 12) = -RADswr
 B(6) = (Mscf * G * Ws) + (Msm * G * Dw)
 ' Row #7, Equation (68AA)
 A(7, 7) = 1
 A(7, 8) = -Yoo
 B(7) = 0
 ' Row # 8, Equation (68U)
 A(8, 1) = Msled
 A(8, 8) = -1
 A(8, 11) = 1
 A(8, 12) = 1
 B(8) = 0
 ' Row #9, Equation (68S)
 A(9, 2) = Mtwf * D1

~ 55 ~

 A(9, 7) = 1
 A(9, 9) = -1
 A(9, 15) = -1
 B(9) = (-Mtwf * D2 * PHIDottc * PHIDottc) - (Mtruck * G)
 ' Row #10, Equation (68V)
 A(10, 6) = 1
 A(10, 7) = 1
 A(10, 10) = 1
 B(10) = Msled * G
 ' Row #11, Equation (68J)
 A(11, 4) = MOIswr
 A(11, 11) = -RADswr
 B(11) = 0
 ' Beginning of rows which depend on the binary flags
 Dim MatrixRow As Int32 = 11
 ' Row #12, Equation (68X)
 If (BSledMove <> 0) Then
 MatrixRow = MatrixRow + 1
 A(MatrixRow, 6) = -BSledMove * Cpd
 A(MatrixRow, 12) = BSledMove
 B(MatrixRow) = 0
 end if
 ' Row #13, Equation (68P)
 If (BtwrNoSlip <> 1) Then
 MatrixRow = MatrixRow + 1
 A(MatrixRow, 9) = (BtwrNoSlip - 1) * _
 Math.Min(Ctwrd, Torque / (Fvgtwr * RADtwr))
 A(MatrixRow, 13) = 1 - BtwrNoSlip
 B(MatrixRow) = 0
 End If
 ' Row #14, Equation (68D)
 If (BtwfAir <> 0) Then
 MatrixRow = MatrixRow + 1
 A(MatrixRow, 14) = BtwfAir
 B(MatrixRow) = 0
 End If
 ' Row #15, Equation (68E)
 If ((BtwfAir + ((1 - BtwfAir) * BtwfRTO)) <> 0) Then
 MatrixRow = MatrixRow + 1
 A(MatrixRow, 15) = BtwfAir + ((1 - BtwfAir) * BtwfRTO)
 B(MatrixRow) = 0
 End If
 ' Row #16, Equation (68F)
 If (BtwfAir <> 1) Then
 MatrixRow = MatrixRow + 1
 A(MatrixRow, 1) = 1 - BtwfAir
 A(MatrixRow, 2) = (1 - BtwfAir) * (F2 + D2)
 A(MatrixRow, 3) = (BtwfAir - 1) * RADtwf
 B(MatrixRow) = (BtwfAir - 1) * (F1 - D1) * PHIDottc * PHIDottc
 End If
 ' Row #17, Equation (68G)
 If ((BtwfAir <> 1) And (BtwfRTO <> 1)) Then
 MatrixRow = MatrixRow + 1
 A(MatrixRow, 2) = (1 - BtwfAir) * (1 - BtwfRTO) * D1
 B(MatrixRow) = (BtwfAir - 1) * (1 - BtwfRTO) * D2 * PHIDottc * PHIDottc
 End If
 ' Row #18, Equation (68O)
 If (BtwrNoSlip <> 0) Then

~ 56 ~

 MatrixRow = MatrixRow + 1
 A(MatrixRow, 1) = BtwrNoSlip
 A(MatrixRow, 2) = BtwrNoSlip * F2
 A(MatrixRow, 5) = -BtwrNoSlip * RADtwr
 B(MatrixRow) = -BtwrNoSlip * F1 * PHIDottc * PHIDottc
 End If
 ' Row #19, Equation (68Y)
 If (BSledMove <> 1) Then
 MatrixRow = MatrixRow + 1
 A(MatrixRow, 1) = 1 - BSledMove
 B(MatrixRow) = 0
 End If
 If (MatrixRow <> 15) Then
 MsgBox("Logic error: Matrix has " & Trim(Str(MatrixRow)) & " rows.")
 End If
 '
 ' For debugging purposes, print out the matrices
 If ((DebugEquations = True) And (Time >= DebugStartTime)) Then
 Dim OutStr As String
 OutStr = _
 "Time = " & Trim(Str(Time)) & vbCrLf & _
 "BtwfAir=" & Trim(Str(BtwfAir)) & " " & _
 "BtwfRTO = " & Trim(Str(BtwfRTO)) & " " & _
 "BtwrNoSlip=" & Trim(Str(BtwrNoSlip)) & " " & _
 "BSledMove=" & Trim(Str(BSledMove)) & vbCrLf
 For Irow As Int32 = 1 To 15 Step 1
 OutStr = OutStr & "Row # " & Trim(Str(Irow)) & ":" & vbCrLf
 For Icol As Int32 = 1 To 15 Step 1
 OutStr = OutStr & Trim(Str(A(Irow, Icol))) & ", "
 Next Icol
 OutStr = OutStr & Trim(Str(B(Irow))) & vbCrLf
 Next Irow
 MsgBox(OutStr, , "Elements in original matrices A and B")
 End If
 '
 ' Ensure that the number of non-zero rows and columns are equal
 Dim RowIsZero As Boolean
 Dim ColIsZero As Boolean
 For Irow As Int32 = 1 To 15 Step 1
 RowIsZero = True
 For Icol As Int32 = 1 To 15 Step 1
 If (A(Irow, Icol) <> 0) Then
 RowIsZero = False
 Exit For
 End If
 Next Icol
 If (RowIsZero = True) Then
 MsgBox("Logic error: Row #" & Trim(Str(Irow)) & " is zero.")
 Exit Sub
 End If
 Next Irow
 For Icol As Int32 = 1 To 15 Step 1
 ColIsZero = True
 For Irow As Int32 = 1 To 15 Step 1
 If (A(Irow, Icol) <> 0) Then
 ColIsZero = False
 Exit For
 End If

~ 57 ~

 Next Irow
 If (ColIsZero = True) Then
 MsgBox("Logic error: Column #" & Trim(Str(Icol)) & " is zero.")
 Exit Sub
 End If
 Next Icol
 '
 ' Eulerian elimination
 ' MasterCol is the main column counter
 For MasterCol As Int32 = 1 To 15 Step 1
 ' Look for the first unused row in the master column which has a non-zero
 ' element. Use that row as a pivot for normalization.
 Dim PivotRow As Int32 = 0
 For Irow As Int32 = 1 To 15 Step 1
 If (ReductionRows(Irow) = 1) Then
 If (A(Irow, MasterCol) <> 0) Then
 PivotRow = Irow
 Exit For
 End If
 End If
 Next Irow
 ' For speed's sake, do not confirm that PivotRow > 0. Just continue.
 ReductionRows(PivotRow) = 0
 ' Reduce the leading coefficient in the PivotRow to one
 Dim PivotValue As Double = A(PivotRow, MasterCol)
 For Icol As Int32 = MasterCol To 15 Step 1
 A(PivotRow, Icol) = A(PivotRow, Icol) / PivotValue
 Next Icol
 B(PivotRow) = B(PivotRow) / PivotValue
 ' Normalize all following rows
 If (PivotRow <> 15) Then
 For Irow As Int32 = (PivotRow + 1) To 15 Step 1
 If (A(Irow, MasterCol) <> 0) Then
 Dim Denominator As Double
 Denominator = A(Irow, MasterCol)
 For Icol As Int32 = MasterCol To 15 Step 1
 A(Irow, Icol) = A(Irow, Icol) / Denominator
 Next Icol
 B(Irow) = B(Irow) / Denominator
 End If
 Next Irow
 End If
 ' Subtract the PivotRow from all following rows
 If (PivotRow <> 15) Then
 For Irow As Int32 = (PivotRow + 1) To 15 Step 1
 If (A(Irow, MasterCol) <> 0) Then
 For Icol As Int32 = MasterCol To 15 Step 1
 A(Irow, Icol) = A(Irow, Icol) - A(PivotRow, Icol)
 Next Icol
 B(Irow) = B(Irow) - B(PivotRow)
 End If
 Next Irow
 End If
 Next MasterCol
 '
 ' For debugging purposes, print out the reduced matrices
 If ((DebugEquations = True) And (Time >= DebugStartTime)) Then
 Dim OutStr As String

~ 58 ~

 OutStr = _
 "Time = " & Trim(Str(Time)) & vbCrLf & _
 "BtwfAir=" & Trim(Str(BtwfAir)) & " " & _
 "BtwfRTO = " & Trim(Str(BtwfRTO)) & " " & _
 "BtwrNoSlip=" & Trim(Str(BtwrNoSlip)) & " " & _
 "BSledMove=" & Trim(Str(BSledMove)) & vbCrLf
 For Irow As Int32 = 1 To 19 Step 1
 OutStr = OutStr & "Row # " & Trim(Str(Irow)) & ":" & vbCrLf
 For Icol As Int32 = 1 To 15 Step 1
 OutStr = OutStr & Trim(Str(A(Irow, Icol))) & ", "
 Next Icol
 OutStr = OutStr & Trim(Str(B(Irow))) & vbCrLf
 Next Irow
 MsgBox(OutStr, , "Elements in reduced matrices A and B")
 End If
 '
 ' Back-substitute from the lower right upwards
 For MasterCol As Int32 = 15 To 1 Step -1
 ' Look through the unused rows for the last row whose first non-zero element
 ' is in the master column. Use that row as the next substitution row.
 Dim PivotRow As Int32 = 0
 For Irow As Int32 = 15 To 1 Step -1
 If (SubstitutionRows(Irow) = 1) Then
 If (A(Irow, MasterCol) <> 0) Then
 PivotRow = Irow
 Exit For
 End If
 End If
 Next Irow
 ' For speed's sake, do not confirm that PivotRow > 0. Just continue.
 SubstitutionRows(PivotRow) = 0
 ' As a reality check, ensure the pivot element is equal to one
 If (A(PivotRow, MasterCol) <> 1) Then
 MsgBox("Logic error: Substitution element is not equal to one.")
 Exit Sub
 End If
 ' Add up the rest of the row products
 Dim RowProductSum As Double
 RowProductSum = B(PivotRow)
 If (MasterCol < 15) Then
 For Icol As Int32 = (MasterCol + 1) To 15 Step 1
 RowProductSum = RowProductSum - _
 (A(PivotRow, Icol) * Unknown(Icol))
 Next Icol
 End If
 ' Evaluate the corresponding unknown
 Unknown(MasterCol) = RowProductSum
 Next MasterCol
 '
 ' For de-bugging purposes, test the integrity of the equation
 If ((DebugEquations = True) And (Time >= DebugStartTime)) Then
 Dim TotalError As Double
 TotalError = 0
 For Irow As Int32 = 1 To 15 Step 1
 Dim RowError As Double
 Dim RowSum As Double
 RowError = 0
 RowSum = 0

~ 59 ~

 For Icol As Int32 = 1 To 15 Step 1
 RowSum = RowSum + (A(Irow, Icol) * Unknown(Icol))
 Next Icol
 RowError = RowSum - B(Irow)
 TotalError = TotalError + Math.Abs(RowError)
 Next Irow
 If (TotalError > Val("0.000000001")) Then
 MsgBox("Logic error: Matrix equation error exceeds 10^-9.")
 End If
 End If
 '
 ' Organize the results
 XDot2sc = Unknown(1)
 PHIDot2tc = Unknown(2)
 PHIDot2twf = Unknown(3)
 PHIDot2swr = Unknown(4)
 PHIDot2twr = Unknown(5)
 Fvgsp = Unknown(6)
 Tvtowt = Unknown(7)
 Thtowt = Unknown(8)
 Fvgtwr = Unknown(9)
 Fvgswr = Unknown(10)
 Fhgswr = Unknown(11)
 Dgsp = Unknown(12)
 Fhgtwr = Unknown(13)
 Fhgtwf = Unknown(14)
 Fvgtwf = Unknown(15)
 '
 ' Calculate the dependent accelerations
 XDot2tc = XDot2sc + (F1 * PHIDottc * PHIDottc) + (F2 * PHIDot2tc)
 XDot2twf = XDot2tc - (D1 * PHIDottc * PHIDottc) + (D2 * PHIDot2tc)
 YDot2twf = (D2 * PHIDottc * PHIDottc) + (D1 * PHIDot2tc)
 XDot2swr = XDot2sc
 XDot2twr = XDot2tc
 '
 ' Back-substitute for the internal forces
 Fhctwf = (Mtwf * XDot2twf) + Fhgtwf
 Fvctwf = Fvgtwf - (Mtwf * G) - (Mtwf * YDot2twf)
 Fhcswr = Fhgswr + (Mswr * XDot2swr)
 Fvcswr = Fvgswr - (Mswr * G)
 Fhctwr = Fhgtwr - (Mtwr * XDot2twr)
 Fvctwr = Fvgtwr - (Mtwr * G)
 '
 ' For de-bugging purposes, print out the results
 If ((DisplayResults = True) And (Time >= DisplayStartTime)) Then
 Dim OutStr As String
 OutStr = _
 "Time = " & Trim(Str(Time)) & vbCrLf & _
 "BtwfAir=" & Trim(Str(BtwfAir)) & " " & _
 "BtwfRTO = " & Trim(Str(BtwfRTO)) & " " & _
 "BtwrNoSlip=" & Trim(Str(BtwrNoSlip)) & " " & _
 "BSledMove=" & Trim(Str(BSledMove)) & vbCrLf & _
 "XDot2sc = " & Trim(Str(XDot2sc)) & vbCrLf & _
 "PHIDot2tc = " & Trim(Str(PHIDot2tc)) & vbCrLf & _
 "PHIDot2twf = " & Trim(Str(PHIDot2twf)) & vbCrLf & _
 "PHIDot2swr = " & Trim(Str(PHIDot2swr)) & vbCrLf & _
 "PHIDot2twr = " & Trim(Str(PHIDot2twr)) & vbCrLf & _
 "Fvgsp = " & Trim(Str(Fvgsp)) & _

~ 60 ~

 " Dgsp = " & Trim(Str(Dgsp)) & _
 " %H/V = " & Trim(Str(Dgsp / Fvgsp)) & vbCrLf & _
 "Tvtowt = " & Trim(Str(Tvtowt)) & _
 " Thtowt = " & Trim(Str(Thtowt)) & _
 " %V/H = " & Trim(Str(Tvtowt / Thtowt)) & vbCrLf & _
 "Fvgtwr = " & Trim(Str(Fvgtwr)) & _
 " Fhgtwr = " & Trim(Str(Fhgtwr)) & _
 " %H/V = " & Trim(Str(Fhgtwr / Fvgtwr)) & vbCrLf & _
 "Fvgswr = " & Trim(Str(Fvgswr)) & _
 " Fhgswr = " & Trim(Str(Fhgswr)) & _
 " %H/V = " & Trim(Str(Fhgswr / Fvgswr)) & vbCrLf & _
 "Fvgtwf = " & Trim(Str(Fvgtwf)) & _
 " Fhgtwf = " & Trim(Str(Fhgtwf))
 MsgBox(OutStr, , "Results of Eulerian elimination")
 End If
 '
 ' For de-bugging purposes, print out Equation (68)
 If ((DebugEquations = True) And (Time >= DebugStartTime)) Then
 Dim OutStr As String
 OutStr = _
 "Time = " & Trim(Str(Time)) & vbCrLf & _
 "BtwfAir=" & Trim(Str(BtwfAir)) & " " & _
 "BtwfRTO = " & Trim(Str(BtwfRTO)) & " " & _
 "BtwrNoSlip=" & Trim(Str(BtwrNoSlip)) & " " & _
 "BSledMove=" & Trim(Str(BSledMove)) & vbCrLf & _
 "(68C) " & Trim(Str(MOItwf * PHIDot2twf)) & " = " & _
 Trim(Str(RADtwf * Fhgtwf)) & vbCrLf & _
 "(68D) " & Trim(Str(BtwfAir * Fhgtwf)) & " = 0" & vbCrLf & _
 "(68E) " & Trim(Str((BtwfAir + ((1 - BtwfAir) * BtwfRTO)) * _
 Fhgtwf)) & " = 0" & vbCrLf & _
 "(68F) " & Trim(Str((1 - BtwfAir) * _
 (XDot2sc + ((F1 - D1) * PHIDottc * PHIDottc) + _
 ((F2 + D2) * PHIDot2tc) - (RADtwf * PHIDot2twf)))) & " = 0" & vbCrLf & _
 "(68G) " & Trim(Str((1 - BtwfAir) * (1 - BtwfRTO) * _
 ((D2 * PHIDottc * PHIDottc) + (D2 * PHIDot2tc)))) & " = 0" & vbCrLf & _
 "(68J) " & Trim(Str(MOIswr * PHIDot2swr)) & " = " & _
 Trim(Str(RADswr * Fhgswr)) & vbCrLf & _
 "(68K) " & Trim(Str(XDot2sc)) & " = " & _
 Trim(Str(RADswr * PHIDot2swr)) & vbCrLf & _
 "(68N) " & Trim(Str(MOItwr * PHIDot2twr)) & " = " & _
 Trim(Str(Torque - (RADtwr * Fhgtwr))) & vbCrLf & _
 "(68O) " & Trim(Str(BtwrNoSlip * _
 (XDot2sc + (F1 * PHIDottc * PHIDottc) + (F2 * PHIDot2tc) + _
 (-RADtwr * PHIDot2twr)))) & " = 0" & vbCrLf & _
 "(68P) " & Trim(Str((1 - BtwrNoSlip) * _
 (Fhgtwr - (Ctwrd * Fvgtwr)))) & " = 0" & vbCrLf & _
 "(68R) " & Trim(Str((Mtruck * XDot2sc) + _
 (((Mtruck * F1) - (Mtwf * D1)) * PHIDottc * PHIDottc) + _
 (((Mtruck * F2) + (Mtwf * D2)) * PHIDot2tc))) & " = " & _
 Trim(Str(-Fhgtwf + Fhgtwr - Thtowt)) & vbCrLf & _
 "(68S) " & Trim(Str(Mtwf * _
 ((D2 * PHIDottc * PHIDottc) + (D1 * PHIDot2tc)))) & _
 " = " & Trim(Str(Fvgtwf + Fvgtwr - Tvtowt - (Mtruck * G))) & vbCrLf & _
 "(68T) " & Trim(Str((Mtwf * D2 * XDot2sc) + _
 (Mtwf * F1 * D2 * PHIDottc * PHIDottc) + _
 ((MOItc + (Mtwf * ((D1 * D1) + (F2 * D2) + (D2 * D2)))) * _
 PHIDot2tc))) & " = " & _
 Trim(Str(Torque + (Fvgtwf * D1) - (Fhgtwf * D2) + (Tvtowt * D3) + _

~ 61 ~

 (-Thtowt * D4) - ((Mtwf + Mtcf) * D1 * G))) & vbCrLf & _
 "(68U) " & Trim(Str(Msled * XDot2sc)) & " = " & _
 Trim(Str(Thtowt - Dgsp - Fhgswr)) & vbCrLf & _
 "(68V) 0 = " & Trim(Str(Tvtowt + Fvgsp + Fvgswr - _
 (Msled * G))) & vbCrLf & _
 "(68W) 0 = " & Trim(Str((Tvtowt * (Ws + Xs)) + _
 (Thtowt * (RADswr - Ys)) + ((Fvgsp - (Mscf * G)) * Ws) + _
 (-Dgsp * RADswr) - (Msm * G * Dw))) & vbCrLf & _
 "(68X) " & Trim(Str(BSledMove * (Dgsp - (Cpd * Fvgsp)))) & _
 " = 0" & vbCrLf & _
 "(68Y) " & Trim(Str((1 - BSledMove) * XDot2sc)) & " = 0" & vbCrLf & _
 "(68AA) " & Trim(Str(Tvtowt)) & " = " & _
 Trim(Str(Yoo * Thtowt)) & vbCrLf & _
 "(68Q) " & Trim(Str(BtwrNoSlip * Fhgtwr)) & " <= " & _
 Trim(Str(BtwrNoSlip * Ctwrs * Fvgtwr)) & vbCrLf & _
 "(68Z) " & Trim(Str((1 - BSledMove) * Dgsp)) & " <= " & _
 Trim(Str((1 - BSledMove) * Cps * Fvgsp))
 MsgBox(OutStr, , "Equality of Equation (68)")
 End If

 End Sub

 Public Sub Integrate_One_Step(_
 ByVal DisplayResults As Boolean, ByVal DisplayStartTime As Double)
 ' Primary EOM kinematic variables, direct integration
 Dim DeltaXsc As Double = (XDotsc * DelT) + (0.5 * XDot2sc * DelT * DelT)
 Dim DeltaXDotsc As Double = XDot2sc * DelT
 Dim DeltaPHItc As Double = (PHIDottc * DelT) + (0.5 * PHIDot2tc * DelT * DelT)
 Dim DeltaPHIDottc As Double = PHIDot2tc * DelT
 DeltaXsc = (XDotsc * DelT) + (0.5 * XDot2sc * DelT * DelT)
 DeltaXDotsc = XDot2sc * DelT
 DeltaPHItc = (PHIDottc * DelT) + (0.5 * PHIDot2tc * DelT * DelT)
 DeltaPHIDottc = PHIDot2tc * DelT
 ' Deduced changes and variables
 Dim DeltaXtc As Double
 Dim DeltaXDottc As Double
 ' Sled's chassis - horizontal position, direct integration
 Xsc = Xsc + DeltaXsc
 XDotsc = XDotsc + DeltaXDotsc
 ' Sled's rear wheels - horizontal position, Equation (42A)
 Xswr = Xsc
 XDotswr = XDotsc
 ' Sled's rear wheels - rotational position, Equation (38F)
 PHIswr = PHIswr + (DeltaXsc / RADswr)
 PHIDotswr = PHIDotswr + (DeltaXDotsc / RADswr)
 ' Truck's chassis - horizontal position, Equations (47) and (52)
 Dim XtcBefore As Double = Xtc
 Xtc = Xsc + Ws + Xs + (Ltow / Math.Sqrt(1 + (Yoo * Yoo))) + D3
 DeltaXtc = Xtc - XtcBefore
 Dim XDottcBefore As Double = XDottc
 XDottc = XDotsc + (((Yoo * D3) - D4) * PHIDottc)
 DeltaXDottc = XDottc - XDottcBefore
 ' Truck's chassis - rotational position, direct integration
 PHItc = PHItc + DeltaPHItc
 PHIDottc = PHIDottc + DeltaPHIDottc
 ' Truck's rear wheels - horizontal position, Equation (42B)
 Xtwr = Xtc
 XDottwr = XDottc

~ 62 ~

 ' Truck's rear wheels - rotational position, Equation
 If (BtwrNoSlip = 1) Then ' No slipping, Equation (21B)
 PHItwr = PHItwr + (DeltaXtc / RADtwr)
 PHIDottwr = XDottc / RADtwr
 Else ' Slipping, Equation (41I) and direct integration
 PHItwr = PHItwr + (PHIDottwr * DelT) + (0.5 * PHIDot2twr * DelT * DelT)
 PHIDottwr = PHIDottwr + (PHIDot2twr * DelT)
 End If
 ' Truck's front wheels - horizontal position, Equations (43A) and (45A)
 Xtwf = Xtc + D1
 XDottwf = XDottc + (D2 * PHIDottc)
 ' Truck's front wheels - vertical position, Equations (43B) and (45B)
 Ytwf = RADtwr - D2
 YDottwf = -D1 * PHIDottc
 ' Truck's front wheels - rotational position, Equations (4D) and (5F)
 If (BtwfAir = 0) Then ' Front wheels on ground
 PHItwf = PHItwf + (DeltaXsc / RADtwf)
 PHIDottwf = PHIDottwf + (DeltaXDotsc / RADtwf)
 Else ' Front wheels airborne and direct integration
 PHItwf = (PHIDottwf * DelT) + (0.5 * PHIDot2twf * DelT * DelT)
 PHIDottwf = PHIDot2twf * DelT
 End If
 '
 ' Detect and force zero conditions
 If (Math.Abs(Ytwf - RADtwf) < EqualityFuzziness) Then
 Ytwf = 0
 End If
 If (Math.Abs(XDotsc) < EqualityFuzziness) Then
 XDotsc = 0
 End If
 If (Math.Abs(PHItc) < EqualityFuzziness) Then
 PHItc = 0
 End If
 If (Math.Abs(Fvgtwf) < EqualityFuzziness) Then
 Fvgtwf = 0
 End If
 '
 ' Detect and correct unrealistic conditions.
 ' The truck will not rotate into the ground.
 If (PHItc < 0) Then
 PHItc = 0
 End If
 ' The truck's front wheels will not go below ground.
 If (Ytwf < RADtwf) Then
 Ytwf = RADtwf
 End If
 ' The sled will not travel backwards.
 If (XDotsc < 0) Then
 XDotsc = 0
 XDotswr = 0
 End If
 ' The sled's rear wheels will not turn backwards.
 If (PHIDotswr < 0) Then
 PHIDotswr = 0
 End If
 '
 ' For de-bugging purposes, print out the results
 If ((DisplayResults = True) And (Time >= DisplayStartTime)) Then

~ 63 ~

 Dim OutStr As String
 OutStr = _
 "Time = " & Trim(Str(Time)) & vbCrLf & _
 "BtwfAir=" & Trim(Str(BtwfAir)) & " " & _
 "BtwfRTO = " & Trim(Str(BtwfRTO)) & " " & _
 "BtwrNoSlip=" & Trim(Str(BtwrNoSlip)) & " " & _
 "BSledMove=" & Trim(Str(BSledMove)) & vbCrLf & _
 "XDot2sc = " & Trim(Str(XDot2sc)) & _
 " XDotsc = " & Trim(Str(XDotsc)) & _
 " Xsc = " & Trim(Str(Xsc)) & vbCrLf & _
 "PHIDot2tc = " & Trim(Str(PHIDot2tc)) & _
 " PHIDottc = " & Trim(Str(PHIDottc)) & _
 " PHItc = " & Trim(Str(PHItc)) & vbCrLf & _
 "PHIDot2twf = " & Trim(Str(PHIDot2twf)) & _
 " PHIDottwf = " & Trim(Str(PHIDottwf)) & _
 " PHItwf = " & Trim(Str(PHItwf)) & vbCrLf & _
 "YDot2twf = " & Trim(Str(YDot2twf)) & _
 " YDottwf = " & Trim(Str(YDottwf)) & _
 " Ytwf = " & Trim(Str(Ytwf)) & vbCrLf & _
 "PHIDot2swr = " & Trim(Str(PHIDot2swr)) & _
 " PHIDotswr = " & Trim(Str(PHIDotswr)) & _
 " PHIswr = " & Trim(Str(PHIswr)) & vbCrLf & _
 "PHIDot2twr = " & Trim(Str(PHIDot2twr)) & _
 " PHIDottwr = " & Trim(Str(PHIDottwr)) & _
 " PHItwr = " & Trim(Str(PHItwr)) & vbCrLf & _
 "XDot2twr = " & Trim(Str(XDot2twr)) & _
 " XDottwr = " & Trim(Str(XDottwr)) & _
 " Xtwr = " & Trim(Str(Xtwr)) & vbCrLf & _
 "Fvgsp = " & Trim(Str(Fvgsp)) & _
 " Dgsp = " & Trim(Str(Dgsp)) & _
 " %H/V = " & Trim(Str(Dgsp / Fvgsp)) & vbCrLf & _
 "Tvtowt = " & Trim(Str(Tvtowt)) & _
 " Thtowt = " & Trim(Str(Thtowt)) & _
 " %V/H = " & Trim(Str(Tvtowt / Thtowt)) & vbCrLf & _
 "Fvgtwr = " & Trim(Str(Fvgtwr)) & _
 " Fhgtwr = " & Trim(Str(Fhgtwr)) & _
 " %H/V = " & Trim(Str(Fhgtwr / Fvgtwr)) & vbCrLf & _
 "Fvgswr = " & Trim(Str(Fvgswr)) & _
 " Fhgswr = " & Trim(Str(Fhgswr)) & _
 " %H/V = " & Trim(Str(Fhgswr / Fvgswr)) & vbCrLf & _
 "Fvgtwf = " & Trim(Str(Fvgtwf)) & _
 " Fhgtwf = " & Trim(Str(Fhgtwf))
 MsgBox(OutStr, , "Results at end of time step")
 End If

 End Sub

End Module

~ 64 ~

Appendix "B"

Listing of module EOMDecider

Option Strict On
Option Explicit On

' This module contains one principal subroutine, which determines which equations of
' motion should be applied during the next time step. It also contains a minor
' subroutine to assign cardinal numbers to the various cases. These case ID numbers
' are used only for information and display purposes.
' Set_Binary_Flags()
' Set_CaseID_Numbers()

Public Module EOMDecider

 Public Sub Set_Binary_Flags(ByVal Debug As Boolean)
 '
 ' Determine the previous states
 If (Math.Abs(XDotsc) <= EqualityFuzziness) Then
 SledIsMoving = False
 Else
 If (XDotsc > 0) Then
 SledIsMoving = True
 Else
 MsgBox("Logic error: Sled is moving backwards.")
 Exit Sub
 End If
 End If
 If (Math.Abs(Ytwf - RADtwf) <= EqualityFuzziness) Then
 FrontIsAirborne = False
 Else
 If (Ytwf > RADtwf) Then
 FrontIsAirborne = True
 Else
 MsgBox("Logic error: Front wheels are below ground.")
 Exit Sub
 End If
 End If
 If (Math.Abs((RADtwr * PHIDottwr) - XDottwr) <= EqualityFuzziness) Then
 RearIsNotSlipping = True
 Else
 RearIsNotSlipping = False
 End If
 '
 ' First case
 ' Determine the future state of the front wheels, if they are now airborne
 If (FrontIsAirborne = True) Then
 If (YDottwf >= 0) Then
 BtwfAir = 1
 BtwfRTO = 0
 Else
 If (Math.Abs((Ytwf - RADtwf) / YDottwf) <= (DelT / 2)) Then
 BtwfAir = 0
 BtwfRTO = 0
 Else
 BtwfAir = 1

~ 65 ~

 BtwfRTO = 0
 End If
 End If
 End If
 '
 ' Second case
 ' Determine the future state of the front wheels, if they are now on the ground
 If (FrontIsAirborne = False) Then
 '
 ' ***
 ' ** Special test subsequently added for Fvgtwf < 0 at Time = 0
 ' ***
 If (Fvgtwf < 0) Then
 BtwfAir = 1
 BtwfRTO = 0
 Else
 Dim Slope As Double
 Slope = (Fvgtwf - FvgtwfLast) / DelT
 If (Slope >= 0) Then
 BtwfAir = 0
 BtwfRTO = 0
 Else
 If (Math.Abs(Fvgtwf / Slope) <= (DelT / 2)) Then
 BtwfAir = 0
 BtwfRTO = 1
 Else
 BtwfAir = 0
 BtwfRTO = 0
 End If
 End If
 End If
 End If
 '
 ' Third case
 ' Determine the future state of the sled's motion, if it is now moving
 If (SledIsMoving = True) Then
 Dim Slope As Double
 Slope = XDot2sc
 If (Slope >= 0) Then
 BSledMove = 1
 Else
 If (Math.Abs(XDotsc / Slope) <= (DelT / 2)) Then
 BSledMove = 0
 Else
 BSledMove = 1
 End If
 End If
 End If
 '
 ' Fourth case
 ' Determine the future state of the sled's motion, if it is now stopped
 If (SledIsMoving = False) Then
 If (Dgsp > (Cps * Fvgsp)) Then
 BSledMove = 1
 Else
 BSledMove = 0
 End If
 End If

~ 66 ~

 '
 ' Fifth case
 ' Determine the future state of the rear wheels, if they are not slipping
 If (RearIsNotSlipping = True) Then
 If (Fhgtwr > (Ctwrs * Fvgtwr)) Then
 BtwrNoSlip = 0
 Else
 BtwrNoSlip = 1
 End If
 End If
 '
 ' Sixth case
 ' Determine the future state of the rear wheels, if they are now slipping
 If (RearIsNotSlipping = False) Then
 Dim RS As Double
 Dim RSSlope As Double
 RS = (RADtwr * PHIDottwr) - XDottwr
 RSSlope = (RADtwr * PHIDot2twr) - XDot2twr
 If (RSSlope >= 0) Then
 BtwrNoSlip = 0
 Else
 If (Math.Abs(RS / RSSlope) <= (DelT / 2)) Then
 BtwrNoSlip = 1
 Else
 BtwrNoSlip = 0
 End If
 End If
 End If
 '
 ' For debugging purposes, print out the conclusions
 If (Debug = True) Then
 Dim OutStr As String
 OutStr = _
 "Time = " & Trim(Str(Time)) & vbCrLf & _
 "Current state is:" & vbCrLf & _
 " FrontIsAirborne = " & FrontIsAirborne.ToString & vbCrLf & _
 " RearIsNotSlipping = " & RearIsNotSlipping.ToString & vbCrLf & _
 " SledIsMoving = " & SledIsMoving.ToString & vbCrLf & _
 "Expected state is:" & vbCrLf & _
 " BtwfAir = " & Trim(Str(BtwfAir)) & vbCrLf & _
 " BtwfRTO = " & Trim(Str(BtwfRTO)) & vbCrLf & _
 " BtwrNoSlip = " & Trim(Str(BtwrNoSlip)) & vbCrLf & _
 " BSledMove = " & Trim(Str(BSledMove))
 MsgBox(OutStr, , "EOMDecider results")
 End If

 End Sub

 Public Sub Set_CaseID_Numbers()
 If (SledIsMoving = True) Then
 If (FrontIsAirborne = False) Then
 If (RearIsNotSlipping = True) Then
 CaseID = 1
 Else
 CaseID = 2
 End If
 Else
 If (RearIsNotSlipping = True) Then

~ 67 ~

 CaseID = 3
 Else
 CaseID = 4
 End If
 End If
 Else
 If (FrontIsAirborne = False) Then
 If (RearIsNotSlipping = True) Then
 CaseID = 5
 Else
 CaseID = 6
 End If
 Else
 If (RearIsNotSlipping = True) Then
 CaseID = 7
 Else
 CaseID = 8
 End If
 End If
 End If
 End Sub

End Module

